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3 UNCERTAINTIES  99 

3.1 INTRODUCTION 100 

This chapter provides guidance in estimating and reporting uncertainties associated with both annual estimates of 101 
emissions and removals, and emission and removal trends over time. It also elaborates on the importance of 102 
uncertainty assessment as a means of improving emission inventories over time. It is written from the viewpoint 103 
of the inventory compiler and provides, with examples, two approaches for combining category uncertainties into 104 
uncertainty estimates for total national net emissions and the trend. 105 

3.1.1 Overview of uncertainty analysis 106 

[Elaboration of Section 3.1.1 of the 2006 IPCC Guidelines].  107 

Uncertainty assessment is an important part of the effort of compiling an inventory of anthropogenic emissions 108 
and removals of GHGs (GHG inventory) and to assess its evolution over time. Since the GPG2000 report, the 109 
IPCC has adopted the concept of “Good Practice” in developing a GHG inventory, defined as an inventory that 110 
“contains neither over- nor under-estimates so far as can be judged, and in which uncertainties are reduced as far 111 
as practicable”. 112 

The first notion that emerges from this concept is that it is impossible to eliminate uncertainty completely, leading 113 
to the immediate conclusion that for every value reported in an inventory there will exist an associated uncertainty. 114 
Knowledge of this uncertainty is an integral part of the inventory compilation effort. 115 

The second notion that follows is that, as a priority, effort should focus on accuracy, ensuring that emissions and 116 
removals are neither over- nor under-estimated. In short, bias should be eliminated as far as can be judged. Figure 117 
3.2 of the 2006 IPCC Guidelines gives a good illustration of the difference between accuracy and precision clearly 118 
showing that a precise estimate is of limited value if it is not accurate. 119 

The key word is “knowledge”. Knowing the processes involved and the information available is key to quantify 120 
and reduce uncertainty. While variability is a characteristic of the process and cannot be eliminated, uncertainty, 121 
which covers both random error and bias, can be broadly associated with lack of knowledge. Causes of uncertainty 122 
are described in section 3.1.5 of the 2006 IPCC Guidelines and further discussed in section 3.1.5 of this 2019 123 
Refinement. 124 

Uncertainty calculation is strongly linked to the methods used to estimate emissions and removals. Simple methods 125 
are based on the multiplication of activity data (AD) by an emission factor (EF). More generally, both AD and EF 126 
can be the result of several different parameters (see section 3.2.3 for a discussion). For some complex systems, 127 
models are developed for their description (including spatial-temporal scales), evaluation of emissions and 128 
calculation of uncertainty. 129 

Regardless of the complexity of the approach, uncertainty of the results is a function of the uncertainty of data 130 
(activity or emission factors) used to compile the inventory. Hence, data collection and uncertainty evaluation are 131 
strongly linked. In short, all data collected should have an associated uncertainty assessment (further discussed in 132 
section 3.2). 133 

Finally, it is important to point out that producing an uncertainty analysis result (level or trend) for the inventory 134 
is not an independent goal. The uncertainty values are not absolute measures of the overall quality of the inventory. 135 
Even if they depend on the level of the complexity of the estimation methods and uncertainty calculation 136 
approaches, they are also a function of the share of sectors and categories in each country. Moreover, the 137 
uncertainty analysis as a whole is an important tool in the process of improvement of the inventory. Together with 138 
the key category analysis, it helps the inventory compilers in prioritizing the improvements in methodology 139 
development and data collection for the different source and sink categories (see section 3.1.2). 140 

3.1.1a Uncertainty assessment as part of inventory 141 

management 142 

[New guidance in the 2019 Refinement]. 143 
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The uncertainty assessment is one of the instruments that will be used by the inventory compiler in the effort of 144 
improving the inventory over time. Regardless of the framework, under which national GHG inventories are 145 
developed and reported this will not be a one-time task. Inventories will be reported annually, biannually or over 146 
longer periods but will be updated and extended periodically. 147 

Between two reporting occasions, it is good practice to evaluate the data sources, data flows and methods used. 148 
Ideally the inventory would have been verified by a third party and recommendations produced (e.g. reviews under 149 
the UNFCCC) in accordance with guidance provided in Chapter 4 of the 2006 of Volume 1 of the 2006 IPCC 150 
Guidelines. Figure 1.1 in Chapter 1.1 of Volume 1 of the 2006 IPCC Guidelines illustrates the steps of a typical 151 
inventory cycle and Chapter 1 of this report covers the steps to put in place the institutional arrangements necessary 152 
to manage the process, providing the organization and resources for planning and preparation of the inventory. 153 
Figure 3.1 below, builds from Figure 3.1 in Chapter 3 of Volume 1 of the 2006 IPCC Guidelines to show how the 154 
uncertainty assessment fits in this improvement cycle. 155 

The process of producing an uncertainty analysis can pragmatically be divided into four parts: (1) the rigorous 156 
investigation of the likely causes of data uncertainty and quality; (2) the creation of quantitative uncertainty 157 
estimates and parameter correlations; (3) the mathematical combination of those estimates when used as inputs to 158 
a statistical model (e.g., first-order error propagation or Monte Carlo method); and (4) the selection of inventory 159 
improvement actions (improvement plan) to take in response to the results of the previous three parts. 160 

The improvement plan will assess the opportunities and prioritize the ways to improve the inventory based on the 161 
key category analysis, the uncertainty assessment, the recommendations from quality assurance and verification 162 
processes (including review process) and available resources. 163 

Particularly in relation to the uncertainty analysis, the improvement plan will investigate ways to improve accuracy 164 
that would have been identified and ways to enhance precision for categories with high contribution to the overall 165 
uncertainty of the inventory. The approach 2 for key category analysis is a useful tool for this prioritization. 166 

Figure 3.1 Overall structure of a generic uncertainty analysis 167 

 168 

3.1.2 Overall structure of uncertainty analysis 169 

[Elaboration of Section 3.1.2 of the 2006 IPCC Guidelines]. 170 

As part of the planning process, an improvement plan will be developed selecting the categories for which changes 171 
would be implemented in the new inventory. The changes would cover both methodological choice and data 172 
specification, availability and collection. Often the improvement focuses on getting better data for the same 173 
methodology (e.g. collecting country-specific data). The goal is generally to increase the accuracy of the inventory 174 
through a better representation of the emissions/removals processes. 175 
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Figure 4.1 of Volume 1 of the 2006 IPCC Guidelines, shows the steps of methodology choice that will depend on 176 
the selection of the category for improvement, the data availability, the possibility of data obtaining and the 177 
resources involved. 178 

Figure 3.2 below show the general steps of an uncertainty assessment. It is important to note the strong link among 179 
these steps that usually need to be taken in conjunction and frequently reevaluated. This is true between the data 180 
definition and collection and between the data collection and the associated data uncertainty. 181 

When assessing data uncertainty, it is essential to identify the causes of uncertainty involving the data estimation. 182 
In particular, priority should be given to identifying and correcting causes of bias. 183 

Following the assessment of the uncertainty of the pieces of data used in emissions/removals estimation, the next 184 
step is to combine these findings, producing uncertainty assessment for a source or sink category that is 185 
subsequently propagated with uncertainties in all categories to determine the uncertainty in the whole inventory. 186 
Figure 3.2 show a simple scheme for the choice of approach but it is important to note that choices may vary 187 
among categories and usually a hybrid approach would be recommended. It is also important to note that even 188 
when requirements for application of approach 1 are not fully present it still can provide useful information about 189 
the uncertainty of the inventory. Because of its simplicity when compared with approach 2, it is also recommended 190 
to apply approach 1 as a QA/QC tool even when it is possible to apply approach 2.  191 

Figure 3.2 Uncertainty analysis steps description and decision tree 192 

 193 
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3.1.3 Key concepts and terminology 196 

No refinement. 197 

3.1.4 Basis for uncertainty analysis 198 

No refinement. 199 

3.1.5 Causes of uncertainty 200 

[Elaboration of section 3.1.5 of the 2006 IPCC Guidelines]. 201 

Section 3.1.5 of the 2006 IPCC Guidelines provides a description of the causes of uncertainty. It covers eight 202 
possible causes: lack of completeness, model, lack of data, lack of representativeness of data, statistical random 203 
sample error, measurement error, misreporting or misclassification and missing data. Depending on the cause, the 204 
result can be biases, random errors or both. Lack of completeness, lack of representativeness of data, misreporting 205 
or misclassification will typically lead to bias while model uncertainty and lack of data can lead to both. 206 

For each category, the identification of causes of uncertainty is fundamental for elimination of bias and 207 
quantification of random errors. A poor identification step will entirely compromise an uncertainty reducing effort. 208 

 209 

3.1.6 Reducing uncertainty 210 

[Elaboration of Section 3.1.6 of the 2006 IPCC Guidelines]. 211 

Uncertainties should be reduced as far as is practicable during the process of compiling an inventory, and it is 212 
particularly important to ensure that the model and the data collected are fair representations of the real world. 213 
When focusing efforts to reduce uncertainty, priority should be given to those inputs to the inventory that have the 214 
most impact on the overall uncertainty of the inventory, as opposed to inputs that are of minor or negligible 215 
importance to the assessment as described in Chapter 4, Methodological Choice and Identification of Key 216 
Categories. Tools for prioritising where uncertainties should be reduced include key category analysis (see Chapter 217 
4) and assessment of the contribution of uncertainties in specific categories to the total uncertainty in the inventory 218 
(see Section 3.2.3). Depending on the cause of uncertainty present, uncertainties could be reduced in seven broad 219 
ways:  220 

 221 

• Improving conceptualisation: Improving the inclusiveness of the structural assumptions chosen can reduce 222 
uncertainties. An example is better treatment of seasonality effects that leads to more accurate annual estimates 223 
of emissions or removals for the AFOLU Sector.  224 

• Improving models: Improving the model structure and parameterisation can lead to better understanding and 225 
characterisation of the systematic and random errors, as well as reductions in these causes of uncertainty.  226 

• Improving representativeness: This may involve stratification or other sampling strategies, as set out in Section 227 
3.2.1.2. This is particularly important for categories in the agriculture, forestry and land use parts of an inventory, 228 
but also applies elsewhere, e.g., wherever different technologies are operating within a category. For example, 229 
continuous emissions monitoring systems (CEMS) can be used to reduce uncertainty for some sources and gases 230 
as long as the representativeness is guaranteed. CEMS produces representative data at the facilities where it is 231 
used, but in order to be representative of an entire source category, CEMS data must be available for a sample 232 
or an entire set of individual facilities that comprise the category. When using CEMS both GHG emissions 233 
concentration and flow will vary, requiring simultaneous observations of both attributes.  234 

• Using more precise measurement methods: Measurement error can be reduced by using more precise 235 
measurement methods, avoiding simplifying assumptions, and ensuring that measurement technologies are 236 
appropriately used and calibrated. See Chapter 2, Approaches to Data Collection. 237 

• Collecting more data that are measured: Uncertainty associated with random sampling error can be reduced 238 
by increasing the sample size. Both bias and random error can be reduced by filling in data gaps. This applies 239 
both to measurements and surveys. 240 
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• Eliminating known risk of bias: This is achieved by ensuring instrumentation is properly positioned and 241 
calibrated (see Section 2.2 in Chapter 2), models or other estimation procedures are appropriate and 242 
representative as indicated by the decision trees and other advice on methodological choice in sectoral 243 
volumes, and by applying expert judgements in a systematic way.  244 

• Improving state of knowledge: Generally, improving the understanding of the categories and the processes 245 
leading to emissions and removals can help to discover, and correct for, problems of incompleteness. It is 246 
good practice to continuously improve emissions and removal estimates based on new knowledge (see 247 
Chapter 5, Time Series Consistency). 248 

• Moving to higher tier method: For example, Tier 1 emission factors that are considered global defaults may 249 
be biased when they are applied in a specific country where emission rates deviate by a specific amount from 250 
the global defaults. Moving to a higher tier method in this case, will remove the bias associated with the 251 
default emission factor. Applying a higher tier method may also improve the precision of estimates as shown 252 
in Box 3.1. 253 

The effort to reduce uncertainty is also one that is tightly integrated with data collection and QA/QC processes. In 254 
many ways, it is an in-depth approach to quality management. Both uncertainty analysis and QA/QC processes 255 
require rigorous investigation into the causes of data quality problems, especially ones that general QC checks are 256 
unlikely to identify. These problems will often involve issues of incomplete data or other systematic biases in the 257 
data, which also happen to be key issues for developing a quantitative uncertainty analysis (Gillenwater et al., 258 
2007). 259 

Both QA/QC and uncertainty analysis are part of a learning process. While the uncertainty analysis provides a 260 
standalone quantitative assessment of the inventory, its primary function is to understand what produces 261 
uncertainty and how to improve inventory quality. Conversely, the outcome of QA/QC procedures may result in 262 
a reassessment of individual category or parameter uncertainty estimates. Procedures to check quality and analyse 263 
uncertainties overlap and should work together because both processes are intended to understand the causes of 264 
uncertainty and identify potential areas of improvement (US-EPA, 2002).265 
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BOX 3.1 266 
EXAMPLE OF REDUCING UNCERTAINTY IN A SOURCE CATEGORY BY ADOPTING HIGHER TIER METHODS  267 

Mineral soil C stock changes for Cropland Remaining Cropland have been estimated with all three 268 
methodological tiers for the United States, and this box provides information about how uncertainty 269 
has been reduced by moving to higher tiers. Each of the methods used a Monte Carlo Analysis for 270 
propagating uncertainties addressing key dependencies in the underlying data, such as the 271 
relationship among the land use areas. As with other source categories, the Tier 1 method is relatively 272 
simple with default emission factors provided in the IPCC guidance, but does require compilation 273 
of activity data for a simple classification of the lands, climate and soils. The IPCC guidance (2006) 274 
provides uncertainties in emission factors, while uncertainties in land use and management data were 275 
derived from the survey data that are used in the inventory. For example, land use data were based 276 
on a two-stage survey design that was used to derive joint probability distributions for land use and 277 
land use change over the inventory time series. By moving to Tier 2, the compilers derived country-278 
specific emission factors (i.e., stock change factors) that were based on experimental data from the 279 
region (Ogle et al., 2003). Specifically, the new factors were derived using a linear mixed-effect 280 
modelling approach from 46 experiments evaluating the effect of tillage management on soil C, 19 281 
experiments evaluating the impact of variation in carbon input to soils, and 35 experiments 282 
evaluating the impact of land use change between native conditions and long-term cultivation. 283 
Compilers also had the option of refining the land representation and activity data into a country-284 
specific set of climate and soil types, in addition to management classes. However, the compilers 285 
did not change the classification in this application, and so the uncertainties in activity data were the 286 
same for the Tier 1 and 2 methods. Regardless, flexibility in deriving new emission factors improved 287 
the precision of the estimates, reducing the confidence interval for the estimated soil C stock changes 288 
from ± 59% using the Tier 1 method to a ± 40% for the Tier 2 method (Figure, US-EPA 2017). 289 

The compilers further improved the inventory for Cropland Remaining Cropland by developing a 290 
Tier 3 method. This method was based on applying the Century Ecosystem Model, and later the 291 
DayCent Ecosystem Model (Ogle et al. 2010, US-EPA 2017). These models incorporate a more 292 
mechanistic representation of the processes influencing soil organic matter dynamics, including 293 
water flows through the soil, crop production, organic matter decomposition, and nutrient cycling 294 
(Parton et al. 1987). With a more advanced representation of processes, the inventory was able to 295 
capture a broader suite of drivers influencing the change in soil C stocks. In addition, the inventory 296 
incorporated more detailed information on activity data and environmental variables, such as 297 
weather, soils, and management practices. There were additional uncertainties associated with these 298 
activity data, such as the variability in specific N fertilisation rates. Several of the main datasets, 299 
however, such as land use and cropping histories, did not differ across the three methods. In theory, 300 
Tier 3 methods allow compilers to develop a methodology that is more specific to national 301 
circumstances, and ultimately an approach meeting good practice that is working towards the goal 302 
of neither over nor under-estimating emissions (or removals) as far as can be judged. To address 303 
uncertainty in the emission rates (i.e., analogous to the emission factors for the Tier 1 and 2 methods), 304 
the compilers evaluated uncertainty (i.e., bias and precision) in the Century/DayCent model 305 
predictions of soil C stock changes by comparing results to independent measurement data. They 306 
used these data comparisons to develop an empirical model to adjust for biases and assess precision 307 
in the inventory results (Ogle et al. 2007). The Tier 3 inventory reduced uncertainty in soil C stock 308 
change estimates over 5 years from a ± 40% with the Tier 2 method to ± 16% for the Tier 3 method 309 
(see Figure below). 310 

 311 
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It is difficult to know that the improvements produce more accurate estimates because the compilers 312 
do not have an omniscient view of the emissions (if they did, then estimation would be unnecessary).  313 
However, incorporating data specific to a country for estimating Tier 2 emission factors will better 314 
represent the population of emission sources in the country. The Tier 1 factors are based on samples 315 
from a larger global population, which has considerably more variation in climates, soils and other 316 
variables driving soil organic matter dynamics, and all of this variation is not relevant for an 317 
individual country. Of course, the accuracy of the Tier 2 factors also depends on an adequate sample 318 
of emission measurements in a country. For the Tier 3 method, the compilers incorporated scientific 319 
understanding of soil organic matter dynamics using the Century/DayCent model, which embodies 320 
key processes and structure that influence soil C stock changes. In turn, the compilers could estimate 321 
management impacts on soil C stock changes with more specificity to physical and biogeochemical 322 
conditions of the plant-soil environments in the country than is possible with the lower tier methods. 323 
The compilers quantified the accuracy and precision of the model estimates based on independent 324 
data to ensure that confidence intervals incorporated model prediction error.  325 

Emissions estimates will not always be more precise or even accurate with higher tier methods. 326 
Ultimately, the level of improvement will depend on the precision of the model inputs, 327 
representativeness of the model and/or emissions data, and implementation, and requires sufficient 328 
data and testing. 329 

 330 

Figure: Estimates and 95% confidence intervals for mineral soil C stock changes in Cropland 331 
Remaining Cropland in the United States using Tier 1, 2 and 3 methods. 332 
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3.1.7 Implications of methodological choice 335 

No refinement. 336 

3.2 QUANTIFYING UNCERTAINTIES 337 

[Elaboration of section 3.2 of the 2006 IPCC Guidelines]. 338 

Regardless of the methodology used to estimate emissions/removals for a category, the evaluation will be based on 339 
the underlying data. The overall uncertainty of the emissions/removals will depend on the uncertainty associated with 340 
each and every piece of data that is used to inform the inventory. As such, good practice uncertainty assessment 341 
begins with good practice in data collection. Uncertainty consideration will need to be an integral part of the data 342 
collection effort, including selection of data sources and choice of methods following the guidance in Chapter 2 of 343 
Volume 1 of the 2006 IPCC Guidelines.  344 

Section 3.2 of Volume 1 of the 2006 IPCC Guidelines covers the different techniques for quantifying uncertainties 345 
depending on the availability of information and ways of data collection. These include measured data, published 346 
information, model outputs and expert judgement. Usually, the pragmatic approach will be a combination of the 347 
techniques. 348 

Again, regardless of the approach, it is good practice to follow strictly the procedures for QA/QC according to the 349 
guidance in Chapter 6 of Volume 1 of the 2006 IPCC Guidelines. This will be fundamental in preventing mistakes 350 
and misreporting and misclassification errors and approach deviations.  351 

Ultimately, the measure of uncertainty will be a 95 percent confidence interval around a point estimate for the value. 352 
In order to develop this information a probability density function (PDF) will be associated with each quantity. The 353 
development of that PDF is an essential part of the uncertainty assessment. Section 3.2.2.4 of Volume 1 of the 2006 354 
IPCC Guidelines provide guidance on how to select the PDF. The representativeness of the PDF will depend on the 355 
characteristics of the quantity, including domain (e.g., if it can have both positive or negative values, or only non-356 
negative values), range (e.g., is the range narrow or does it cover orders-of-magnitude) and shape (e.g., symmetry). 357 
The same characteristics will be fundamental when the approaches for combining uncertainties are selected. 358 

Where the PDF is believed to be symmetrical the confidence interval can be conveniently expressed as plus or minus 359 
half the confidence interval width divided by the estimated value of the variable (e.g., ± 10%). Where the PDF is not 360 
symmetrical upper and lower limits of the confidence interval need to be specified separately (e.g., -30%, +50%). In 361 
both cases, the understanding is that the confidence interval has a 95 percent probability of enclosing the true but 362 
unknown value of the emission factor, parameter or activity data. 363 
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BOX 3.2 364 
DIFFERENCE BETWEEN STANDARD DEVIATION AND STANDARD ERROR 365 

In case of data assumed normally distributed, the 95% confidence interval may be derived 366 
considering the standard deviation (σ) or the standard error (SE) around our point estimate. The 367 
uncertainty of our estimate (µ) may be expressed as: 368 

Uncertainty = ± (1.96 σ/µ) *100%, where: 369 

2

1

1 ( )
n

i
i

x
n

σ µ
=

= −∑   370 

or  371 

Uncertainty = ± (1.96 SE/µ) *100%, where:  372 

SE
n
σ

=   373 

Where: 374 

 n is the number of observations;  375 

xi are the observed values. 376 

In the formula for the calculation of SE, the denominator is assumed to be “n” instead of “n-1” as an 377 
approximation for large samples and to be consistent with the calculation spreadsheet. 378 

Some practical examples may help the inventory compiler choose between these two statistics.  379 

The standard deviation is a measure of variability. The standard deviation of a sample can be used 380 
as an estimate of the variability of the population from which the sample was drawn. For data with 381 
a normal distribution, about 95% of individuals will have values within 1.96 standard deviations of 382 
the mean, the other 5% being equally scattered above and below these limits. 383 

When the sample mean is available, the interest of the inventory compiler is usually not in the mean 384 
of that particular sample, but in the mean of the population from which the sample is drawn. For 385 
instance, for a sectoral category in the inventory, in order to estimate a specific parameter (e.g. 386 
emission factor, carbon stock change factor or AD), data are usually collected with the aim to 387 
generalize from them and use the sample mean as an estimate of the average parameter for the whole 388 
category. 389 

The sample mean will vary from sample to sample; the way this variation occurs is described by the 390 
“sampling distribution” of the mean. The variability of the mean is calculated by the standard 391 
deviation of this sampling distribution, which is defined as the standard error of the mean. 392 

The standard error falls as the sample size increases but the standard deviation will not tend to 393 
change. 394 

In summary, to calculate the uncertainty of the parameter of concern, the first step is to establish if 395 
it derives from:  396 

1). The variability of the population (i.e. how much values of the population are spread), which is 397 
measured by the standard deviation; or  398 

2). From the variability of the mean of the samples (i.e. how much the mean values of the samples 399 
taken from the population are spread), which is measured by the standard error.  400 

The first case occurs when the mean value is used to estimate an individual of the population (e.g. 401 
the average C stock of a forest to infer the C stock a single portion of that forest). The second one 402 
occurs when the mean value is used to estimate the entire population (e.g. the average C stock of a 403 
forest to infer the C stock of the entire forest). 404 

The following examples are provided for emission factors.  405 

Case 1: 406 
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Availability of annual information to derive country specific emission factors of a specific 407 
category/gas/fuel. Data are yearly collected from the whole population or a representative sample(s) 408 
of the relevant category.  409 

This situation may occur in case data are collected from facilities. 410 

In this case, the annual emission factor is calculated as the average emission factor from repeated 411 
measurements in the specific year and it may change over the years. Inventory compilers are 412 
therefore interested in the variability of this average annual value.  413 

Assuming a normal distribution of the data collected, the 95% confidence interval may be expressed 414 
with the standard error and the uncertainty of the estimated emission factor as:  415 

Uncertainty = ± (1.96 SE/µ) *100% 416 

Case 2: 417 

Availability of irregular information to derive country specific emission factors of a specific 418 
category/gas/fuel. Data are not regularly collected and the result of data collected for one single year 419 
for a specific category is used for a longer period of the time series.   420 

This situation may occur in case data are sporadically collected from facilities, e.g. methane 421 
emissions and relevant activity data and parameters from landfills.  422 

In this case, the 95% confidence intervals can be calculated using the standard deviation of the point 423 
estimate because, assuming the value representative of other years, the variability of the population 424 
has to be considered. The uncertainty will be:  425 

Uncertainty = ± (1.96 σ/µ) *100% 426 

Case 3: 427 

Availability of annual information to derive country specific emission factors at an upper level than 428 
actually used.  429 

This situation may occur if for instance, an average emission factor is available and this country 430 
specific value is applied to a specific portion of area, e.g. carbon stock per hectare of deforested area.  431 

As in case 2, the variability of the individuals should be considered to derive the 95% confidence 432 
intervals and the uncertainty is to be estimated as:  433 

Uncertainty = ± (1.96 σ/µ) *100% 434 

3.2.1 Sources of data and information 435 

No refinement.  436 

3.2.1.1 UNCERTAINTIES ASSOCIATED WITH MODELS 437 

No refinement. 438 

3.2.1.2 EMPIRICAL DATA FOR SOURCES AND SINKS AND ACTIVITY 439 

This section describes sources of empirical data, and their implications for uncertainty, and is relevant to measured 440 
emissions data, data obtained from literature, and activity data. 441 

UNCERTAINTY ESTIMATES OBTAINED FROM MEASURED 442 
EMISSIONS/REMOVALS DATA 443 

No refinement 444 

UNCERTAINTY ESTIMATES FOR EMISSION FACTORS AND OTHER 445 
PARAMETERS OBTAINED FROM PUBLISHED REFERENCES 446 

No refinement 447 
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UNCERTAINTIES ASSOCIATED WITH ACTIVITY DATA 448 

Activity data are often more closely linked to economic activity than are emission factors are. However, unlike 449 
emission factor data, there is typically no statistical sample of alternative activity data estimates readily available 450 
to fit distributions and estimate uncertainty. There are often well-established price incentives and fiscal 451 
requirements for accurate accounting of economic activity. Activity data therefore tend to have lower uncertainties 452 
and a lower correlation between years than emission factor data. Activity data are often collected and published 453 
regularly by national statistical agencies, which may have already assessed the uncertainties associated with their 454 
data as part of their data collection procedures. These previously developed uncertainty estimates can be used to 455 
construct PDFs. This information will not necessarily have been published, so it is recommended to contact the 456 
statistical agencies directly. Since economic activity data are not usually collected for the purpose of estimating 457 
greenhouse gas emissions and removals, it is good practice to assess the applicability of the uncertainty estimates 458 
before using them.   459 

There are several approaches that may be helpful in assessing the uncertainty of activity data in particular 460 
circumstances: 461 

Activity data based on complete samples (censuses): Census data are activity data that are based, in principle, on 462 
counting every instance of a particular activity. Census typically includes both systematic and random errors. 463 
Systematic errors arise through systematic undercounting or double counting. Random errors are typically the sum 464 
of a range of commonplace errors. Random errors usually can be expected to be normally distributed and serially 465 
uncorrelated. Because activity data are usually collected by the same people, using the same processes, for each 466 
observation, systematic errors are likely to take approximately the same value each year. There are several 467 
approaches to identifying the potential uncertainty of activity data for complete samples. These approaches are 468 
often an integrated part of a QA/QC plan: 469 

• To check for the size of random errors, look for fluctuations over time, and differential fluctuations in series 470 
that ought to be highly correlated with the data of interest. 471 

• To check for bias errors, cross-check the data of interest with other, related information. One might, for 472 
instance, look up and down the supply chain for fuels, comparing coal production, coal import/export, and 473 
reported consumption. Or, one might study activities for which data are collected independently but which 474 
ought to be highly correlated with the data of interest, for instance reported fuel input vs. electricity output. 475 
One might also look at activity data of different frequencies (e.g., monthly, annual), if they are collected using 476 
different approaches. 477 

• Interpretation of statistical differences, within, for instance, national energy data are an example of cross-478 
checking. The comparison between energy-related carbon dioxide emissions derived from the IPCC reference 479 
approach is a formal cross-check with emissions estimates derived from other sources. 480 

Census-based activity data are often ‘precise but inaccurate’ in the taxonomy shown in Figure 3.2, the random 481 
errors are small, but there may be larger bias errors. Cross-checking can suggest upper and lower bounds for 482 
possible bias errors, and sometimes will permit an actual estimate of the bias error. A possible bias error lurking 483 
within these bounds may often be characterised as a truncated uniform distribution: cross-checking shows that the 484 
unobservable true value must lie within a particular range, but there may be no reason to think any point within 485 
that range is more or less likely. However, because the bias errors in activity data are likely to be highly correlated, 486 
the difference between the reported value and the unknown true value is likely to be about the same every year, 487 
and this characteristic should be taken into account when estimating trend uncertainty. 488 

Activity data based on random samples: Some kinds of activity data are derived from sample surveys, for instance 489 
consumer surveys, land use surveys, or forest cover surveys. In these cases, the data will be subject to sampling 490 
errors, that are normally distributed. The agency conducting the sample will normally be able to advise on sampling 491 
error. If this information is unavailable, it may be possible to identify or infer the sample and population sizes and 492 
calculate sampling error directly. 493 

The most common survey designs are simple random sampling, systematic sampling, stratified sampling, and two-494 
stage sampling. For a simple random sampling design, a sample of n elements are selected without replacement 495 
from a population of N total elements with equal probability. For example, a survey may sample the fuel usage 496 
from 2,000,000 vehicles in a country with 80,000,000 total vehicles by randomly selecting vehicles to be included 497 
in the sample. Each sampled vehicle is multiplied by a weight of 4 (i.e., total number of vehicles divided by the 498 
number that are sampled) and summed to estimate the total fuel usage. This design is commonly used when there 499 
is little additional information known about the population.  500 

With systematic sampling, an initial sample element is randomly selected then subsequent sampling elements are 501 
selected at equal increments, such as geographic distances apart. For example, a survey may be determining the 502 
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amount of biomass C in forestlands by sampling 50 forest stands from a population 1000 stands in a country. A 503 
random location is selected for the first sample, and then additional samples are spaced at 20 km apart across all 504 
of the forestland in a country. The biomass C for each forest is multiplied by a weight of 20 in this example (total 505 
number of forest stands divided by the number in the sample), and then summed to obtain the total biomass C for 506 
forestlands in the country. Systematic sampling is used to ensure a wide dispersion of samples in a geographical 507 
region.  508 

Stratified sampling designs subdivide population into separate groups, referred to as strata. Individual stratum may 509 
be sampled using simple random sampling or systematic sampling. The differences among strata should be as 510 
heterogeneous as possible, whilst the subpopulation within a stratum should be as homogeneous as possible. For 511 
example, farms may be sampled to determine the amount of livestock manure N production by stratifying the 512 
farms according to the production systems in a country. If there are 15 production systems, the surveyor may have 513 
funds to sample 100 farms in each production system for a total of 1500 farms. If 10 farms are sampled in each 514 
production system, then the total amount of manure N production is estimated by multiplying each farm’s value 515 
by a weight of 10 (total number of farms in a stratum divided by the number in the sample). The national total is 516 
the sum of the manure N production for the 15 production systems. In addition, individual stratum can have 517 
different sample sizes, and the weight would change in this case based on the total number of farms and number 518 
sampled in each stratum. 519 

With a two-stage sampling design, the population is first divided into primary sampling units, and each primary 520 
sampling unit is further divided into secondary sampling units. The primary sampling units are typically selected 521 
using simple random sampling, stratified or systematic sampling, while secondary sampling units within the 522 
sampled primary sampling units are typically selected using simple random sampling. Total estimates are made 523 
for each primary sampling unit, and then combined to estimate the total for the entire population. For example, the 524 
amount of waste transported to landfills may be determined by creating primary sampling units based on random 525 
selection of provinces, and then municipalities within provinces are randomly selected for the secondary sampling 526 
units. The total amount of waste is determined for the individual provinces in the first step given the total number 527 
of municipalities in a province and the number of municipalities that are sampled. In the second step, the total 528 
waste production for the entire country is determined based on the total number of provinces and the number of 529 
provinces that are sampled. This type of sampling design may be the best approach for optimizing the precision of 530 
activity data with limited funding.  531 

The variance calculations for total estimates from each survey design are given below based on Särndal et al. 532 
(1992). 533 

 534 

EQUATION 3.0 535 
VARIANCE CALCULATION FOR SIMPLE RANDOM SAMPLE DESIGN 536 
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 −  − 

∑
 537 

Where: 538 

N   = number of elements in the population;  539 

n  = number of elements in the sample n; 540 

iy  = value of the ith element in the sample; 541 

y  = average of elements in the population. 542 

 543 

 544 
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EQUATION 3.0A 545 
VARIANCE CALCULATION FOR SYSTEMATIC SAMPLE DESIGN 546 
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 547 

Where: 548 

N  = number of elements in the population; 549 

n  = number of elements in the sample; 550 

iy  = value of the ith element in the sample; 551 

y  = average of elements in the population. 552 

 553 

EQUATION 3.0B 554 
VARIANCE CALCULATION FOR RANDOM STRATIFIED DESIGN 555 

1

2 1 1 2H

h h h

N S
h n N h=

 
− 

 
∑  556 

Where: 557 

hN    = number of elements in the population in strata h; 558 

hn    = number of elements in the sample in strata h; 559 

H    = total number of strata; 560 

2S
h

= sample variance of stratum h. 561 

 562 

EQUATION 3.0C 563 
VARIANCE CALCULATION FOR TWO-STAGE DESIGN 564 
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Where: 568 

N  = number of primary units in the population; 569 

iM  = number of secondary elements in the population in the ith primary unit; 570 

n  = number of primary units sampled in the first stage; 571 

im  = number of secondary elements sampled in the 2nd stage in the ith primary unit; 572 
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it   = estimated total value for the ith primary unit; 573 

2S
u

 = sample variance of the i estimated total values;  574 

2S
i

 = sample variance of the j elements in the ith primary unit; 575 

ijy   = value of the jth element in the ith primary unit; 576 

iy   = average value of the j elements in ith primary unit.  577 

 578 

3.2.1.3 EXPERT JUDGEMENT AS A SOURCE OF INFORMATION 579 

No refinement. 580 

3.2.2 Techniques for quantifying uncertainties 581 

No refinement. 582 

3.2.3 Methods to combine uncertainties 583 

[Update of Section 3.2.3 of the 2006 IPCC Guidelines].  584 

It further elaborates on the two approaches to combine uncertainties: Approach 1, simple propagation of error 585 
equations, and Approach 2, Monte Carlo simulation. A tool for the implementation of Approach 1 is also included 586 
as an addendum.  587 

Once the uncertainties in activity data, emission factor or other parameters for a category have been determined, 588 
they may be combined to provide uncertainty estimates for the category emissions. Once the uncertainties for the 589 
categories have been determined, they may be combined to provide uncertainty estimates for the entire inventory 590 
in any year and the uncertainty in the overall inventory trend over time.  591 

Two approaches for the estimation of combined uncertainties are presented in the following sections: Approach 1 592 
uses simple error propagation equations, while Approach 2 uses Monte Carlo or similar techniques. Either 593 
Approach may be used for emission sources or sinks, subject to the assumptions and limitations of each Approach 594 
and availability of resources. 595 

Figure 3.2 flowchart shows a basic step-by-step suggestion on how the choice of approach could be made. In 596 
practice, however, the options are not always straightforward. 597 

Approach 1 is simpler to apply but requires assumptions that frequently are not entirely met, such as lack of 598 
significant correlations among the quantities used in the inventory, uncertainties that are less than ± 30% of the 599 
quantity value or uncertainties that are symmetrically distributed. Approach 2 requires more information on the 600 
probability distributions of the data involved in the calculations. As such, it also involves assumptions and more 601 
information on the underlying processes and its application depends on the capacity to acquire this information. 602 
In turn, approach 2 may provide a more representative confidence interval for the uncertainty in the category. 603 

Approach 2 will be particularly appropriate to use when uncertainties are large, their distribution are non-Gaussian 604 
and algorithms are complex functions. 605 

Biases should be addressed prior to applying either Approach 1 or 2, as these approaches focus on quantifying the 606 
random component of the uncertainty of the inventory results where known sources of bias have been removed. 607 
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3.2.3.1 APPROACH 1: PROPAGATION OF ERROR 608 

Approach 1 is based upon error propagation and is used to estimate uncertainty in individual categories, in the 609 
inventory as a whole, and in trends between a year of interest and a base year. The key assumptions, requirements, 610 
and procedures are described here.  611 

Approach 1 should be implemented using Table 3.1, Approach 1 Uncertainty Calculation. A tool set up on a 612 
commercial spreadsheet software is provided, as an addendum to this chapter, to facilitate the implementation of 613 
Table 3.1. The table is completed at the category level using uncertainty ranges for activity data and emission 614 
factors consistent with the sectoral good practice guidance1. Different gases should be entered separately as CO2 615 
equivalents.  616 

KEY ASSUMPTIONS OF APPROACH 1 617 

In Approach 1 uncertainty in emissions or removals can be propagated from uncertainties in the activity data, 618 
emission factor and other estimation parameters through the error propagation equation (Mandel, 1984, Bevington 619 
and Robinson, 1992). If correlations exist, then either the correlation can be included explicitly or data can be 620 
aggregated to an appropriate level such that correlations become less important. Approach 1 also theoretically 621 
requires that the standard deviation divided by the mean value is less than 0.3. In practice, however, the approach 622 
will give informative results even if this criterion is not strictly met and some correlations remain. Approach 1 623 
assumes that the relative ranges of uncertainty in the emission and activity factors are the same in the base year 624 
and in year t. This assumption is often correct or approximately correct. If any of the key assumptions of Approach 625 
1 do not apply, then either an alternative version of Approach 1 can be developed (e.g., see Section 3.4) or 626 
Approach 2 can be used instead. 627 

Where the standard deviation divided by the mean is greater than 0.3 the reliability of Approach 1 can be improved. 628 
The section ‘Dealing with Large and Asymmetric Uncertainties in the Results of Approach 1’ in this section 629 
describes how to do this.  630 

KEY REQUIREMENTS OF APPROACH 1 631 

In order to quantify uncertainty using Approach 1, estimates of the uncertainty for each input are required, as well 632 
as the equation through which all inputs are combined to estimate an output. The simplest equations include 633 
statistically independent (uncorrelated) inputs. When inputs are known to be fully (or mostly) correlated, modified 634 
equations should be used or a preliminary step should be performed to combine these inputs before the application 635 
of the basic rules. 636 

Uncertainty of the inputs will represent a 95 percent confidence interval expressed as a percentage of the point 637 
estimate of the input (e.g. ± 20%). When the probability distribution function is known to be asymmetrical, upper 638 
and lower limits of the confidence interval need to be specified separately (e.g., -10%, +20%). In this case, 639 
approach 1 will provide only a rough approximation and in order to be used the interval needs to be replaced by a 640 
symmetrical interval built using the larger of the two quantities (e.g. ± 20%). When uncertainties are known to be 641 
large and asymmetrical, more elaborated techniques may be applied as described in Section 3.7.3 of the 2006 IPCC 642 
Guidelines. 643 

PROCEDURE OF APPROACH 1 644 

The Approach 1 analysis estimates uncertainties by using the error propagation equation in two steps. First, the 645 
Equation 3.1 approximation is used to combine emission factor, activity data and other estimation parameter ranges 646 
by category and greenhouse gas. Second, the Equation 3.2 approximation is used to arrive at the overall uncertainty 647 
in national emissions and the trend in national emissions between the base year and the current year. 648 

Uncertainty of  an Annual Estimate 649 

                                                           
1  Where estimates are derived from models, enter the uncertainty associated with the activity data used to drive the model, and 

enter the uncertainty associated with the model parameters instead of the emission factor uncertainty. It may be necessary to 
use expert judgement, or error propagation calculations associated with the model structure. If it is impractical to separate 
the uncertainty estimate obtained from a model for a category into separate activity and emission factor components, then 
enter the total uncertainty for the category in the emission factor column and assign zero uncertainty to the activity factor 
column. 
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The error propagation equation 2 yields two convenient rules for combining uncorrelated uncertainties under 650 
addition and multiplication: 651 

Where uncertain quantities are to be combined by multiplication a simple equation (Equation 3.1) can then be 652 
derived for the uncertainty of the product, expressed in percentage terms3. This rule is approximate for all random 653 
variables. Under typical circumstances, this rule is reasonably accurate as long as the percentage uncertainty is 654 
less than approximately 30%. This rule is not applicable to division. 655 

EQUATION 3.1 656 
COMBINING UNCERTAINTIES – APPROACH 1 – MULTIPLICATION 657 

2 2 2...
1 2totalU U U U

n
= + + +   658 

Where: 659 

totalU = the percentage uncertainty in the product of the quantities (half the 95 percent confidence interval 660 
divided by the total and expressed as a percentage); 661 

iU    = the percentage uncertainties associated with each of the quantities. 662 

Where uncertain quantities are to be combined by addition or subtraction, a simple equation (Equation 3.2) can be 663 
derived for the uncertainty of the sum, expressed in percentage terms. This rule is exact for uncorrelated variables. 664 

EQUATION 3.2 665 
COMBINING UNCERTAINTIES – APPROACH 1 – ADDITION AND SUBTRACTION  666 
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=
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  667 

Where: 668 

totalU = the percentage uncertainty in the sum of the quantities (half the 95 percent confidence interval 669 
divided by the total (i.e., mean) and expressed as a percentage);  670 

ix    = quantities to be added;  671 

iU    = the percentage uncertainties associated with each of the quantities. 672 

 673 

The GHG Inventory is principally the sum of products of emission factors, activity data and other estimation 674 
parameters. Therefore, Equations 3.1 and 3.2 can be used repeatedly to estimate the uncertainty of the total 675 
inventory. In practice, uncertainties found in inventory categories vary from a few percent to orders of magnitude 676 
and may be correlated. This is not consistent with the assumptions of Equations 3.1 and 3.2 that the variables are 677 
uncorrelated, and with the assumption of Equation 3.2 that the coefficient of variation is less than about 30 percent, 678 
but under these circumstances, Equations 3.1 and 3.2 may still be used to obtain an approximate result. 679 

Applying approach 1 ( level)  in practice 680 
Simple methods for estimation of the emissions of a category are usually based on the multiplication of activity 681 
data (AD) by an emission factor (EF). In many cases, it will be a reasonable assumption that these values are 682 
uncorrelated. The uncertainty associated with the emissions can then be calculated by Equation 3.2a: 683 

                                                           
2 As discussed more extensively in Annex 1 of the Good Practice Guidance and Uncertainty Management (GPG2000, IPCC, 

2000), and in Annex I of the Revised 1996 IPCC Guidelines (Reporting Instructions) (1996 IPCC Guidelines, IPCC, 1997). 
3 The option for expressing uncertainties in percent terms allows the results to be presented in a user-friendly way. However, 

caution should be exercised in the interpretation of the results in cases where the point estimate is very small when compared 
with the size of the confidence interval (e.g. a sector or inventory where removals and emissions are of similar sizes).   
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EQUATION 3.2A 684 
COMBINING UNCERTAINTIES – APPROACH 1 – AD • EF 685 

2 2
emissions AD EFU U U= +   686 

 687 

More generally, both AD and EF can be result of several different parameters and this frequently occurs for the 688 
EF (e.g. EF = a • b • c). The uncertainty of the EF will be calculated as: 689 

EQUATION 3.2B 690 
COMBINING UNCERTAINTIES – APPROACH 1 – EF = A • B • C 691 

2 2 2
EF a b cU U U U= + +   692 

 693 

The uncertainties associated with the emissions for each subcategory will be combined to obtain the uncertainty 694 
associated with a whole category and further combined to obtain the uncertainty of the whole inventory. In these 695 
steps the uncertainties as the quantities are combined through addition, Equation 3.2 should be applied. 696 

Particular attention should be given to the correlation in this step. The subcategories can be highly correlated, 697 
because either the ADs are derived from the same source or the EFs have parameters in common. A special 698 
situation occurs when an input is entirely dependent on a set of other inputs. As noted in the 2006 IPCC Guidelines 699 
this could occur, for example, if residential fuel is estimated as the difference between total consumption and usage 700 
in the transportation, industrial, and commercial sectors. Similarly, in the AFOLU sector, when land transitions 701 
are assessed, total area transitions depend on the total area of the country, resulting in less degrees of freedom for 702 
the variables. 703 

Approach 1 has limitations to the consideration of correlation as it only allows for full correlation or independency 704 
between the variables. Still broad sensibility can be implemented, either for correlation between variables in the 705 
same year or different years. This flexibility is included in the tool described in section 3.6.2. It is important to 706 
note that in the case of full correlation among categories, aggregation of these categories is the recommended 707 
procedure. When information is lacking for either uncertainties of AD or EF for subcategories of a category, pre-708 
processing by expert judgement may be necessary to either provide individual values to the subcategories or 709 
recommend their aggregation. Where partial correlations are known to exist and are relevant, approach 2 is 710 
recommended. 711 
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BOX 3.3 712 
EXAMPLE OF UNCERTAINTY CALCULATION: CH4 EMISSIONS FROM MANURE MANAGEMENT 713 

In accordance with the Tier 1A methodology described in Chapter 10 (section 10.4) of this 714 
methodology report CH4 emissions from manure management are estimate applying the equation 715 
below: 716 

( )4( ) ( ) ( ) ( , ) ( , )
,

/1000mm T T T S T S
T S

CH N VS AWMS EF
 

= • • • 
 
∑  717 

Where:  718 

CH4(mm)  = CH4 emissions from Manure Management in the country, kg CH4 yr-1; 719 

N(T)  = number of head of livestock species/category T in the country; 720 

VS(T)  = annual average VS excretion per head of species/category T, kg VS animal-1 721 
yr-1; 722 

AWMS(T,S) = fraction of total annual VS for each livestock species/category T that is 723 
managed in manure management system S in the country, dimensionless; 724 

EF(T,S)  = emission factor for direct CH4 emissions from manure management system 725 
S, by animal species/category in the country, g CH4 kg VS-1 in manure management system S. 726 

 727 

In addition, VS(T) is evaluated by the equation: 728 

( ) ( ) 365
1000T rate T
TAMVS VS= • •  729 

Where: 730 

VSrate(T)  = default VS excretion rate, kg VS (1000 kg animal mass)-1 day-1;  731 

TAM(T)  = typical animal mass for livestock category T, kg animal-1. 732 

 733 

If the choice is to apply a Tier 2 methodology both parameters VS and EF are evaluated through 734 
the equations: 735 

( ) 11
100 18.45
DC ASHVS GE UE GE −      = • − + • •              736 

Where: 737 

GE = gross energy intake, MJ day-1; 738 

DC% = digestibility of the feed in percent (e.g. 60%); 739 

(UE • GE) = urinary energy expressed as fraction of GE. 740 

ASH = the ash content of manure calculated as a fraction of the dry matter feed intake (e.g., 741 
0.08 for cattle). Use country-specific values where available. 742 
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∑  743 

Where: 744 

EF(T) = annual CH4 emission factor for livestock category T, g CH4 kg VS-1; 745 

Bo(T) = maximum methane producing capacity for manure produced by livestock category T, 746 
m3 CH4 kg-1 of VS excreted; 747 

MCF(S,k) = methane conversion factors for each manure management system S by climate region 748 
k, %. 749 
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Essentially, by these equations, the CH4 emissions are estimated by a sum of products of 750 
parameters and, as such, Equations 3.1 and 3.2 apply and can be successively used, always under 751 
usual assumptions. The parameters may be classified as AD or EF, although this is not really 752 
necessary and sometimes artificial.   753 

In order to estimate the uncertainty, a point estimate and a confidence interval are necessary for 754 
each of the parameters. Note that for some of them this may be a complex task as the equations for 755 
calculation are not always linear. This is the case for gross energy intake (GE). In this situation, 756 
application of the approach 2 for the estimation of the confidence interval of the parameter is 757 
recommended. 758 

As an example, the formulas are applied for the Tier 1 method for calculation of methane 759 
emissions from manure management from dairy cows. Data are from Volume 4, Chapter 10 and 760 
(Monni et al., 2007). Three types of manure management systems (pasture, slurry and solid 761 
storage) are considered.  762 

( )
3

4 ( , ) ,
1

/1000d d d i d i
i

CH N VS AWMS EF
=

 = • • •  
∑  763 

 764 

Data:  Ndairy  =350 000   (-3%, +3%)  765 

  VSrate,dairy  = 7.1 kg/t animal mass/day (-20%,+20%)  766 

  TAMdairy  = 570 kg    (-4%,+4%)  767 

  EFdairy,pasture = 0.60 g CH4/kg VS  (-30%,+30%)   768 

  EFdairy, slurry = 34 g CH4/kg VS  (-30%,+30%) 769 

  EFdairy, solid = 3.2 g CH4/kg VS  (-30%,+30%) 770 

  AWMSdairy,pasture = 0.28    (-20%,+20%) 771 

  AWMSdairy, slurry = 0.25    (-20%,+20%) 772 

  AWMSdairy, solid = 0.47    (-20%,+20%) 773 

 774 

It is important to note that AWMSi are not independent quantities, as AWMS1+AWMS2 775 

+AWMS3=1. This is an example where the variables have one less degree of freedom. Before 776 
calculating the uncertainty, AWMSdairy,3 would need to be replaced by (1-AWMSdairy,1-777 
AWMSdairy,2). 778 

However, the terms of the resulting equation will not be all independent and this contradicts the 779 
assumptions behind Equations 3.1 and 3.2. To correctly consider the correlation between the 780 
values of AWMSi, Approach 2 is recommended to be used. 781 

Aware of the implying approximation, the results of application of Approach 1 are shown below: 782 

Point estimates for CH4: 783 

CH4,pasture = 0.09 Gg CH4,slurry = 4.39 Gg CH4,solid = 0,78 Gg 784 

CH4,Total = 5,26 Gg 785 

 786 

Recalling that: 787 

6
4, , ( , ) , 365 /10pasture d rate d d d pasture d pastureCH N VS TAM AWMS EF = • • • • •    788 

2 2 2 2 2
4, , , ,( )

d d d dpasture N VSrate d TAM AWMS pasture EF pastureU CH U U U U U= + + + +   789 

In the example:  790 

( )4, 9 400 16 400 900 41.5%pastureU CH = + + + + =   791 
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Similarly: ( ) ( )4, 4, 41.5%slurry solidU CH U CH= =   792 

And then:  
( ) ( ) ( )

4

2 2 241.5 0.09 41.5 4.39 41.5 0.78
35.25%

5.26CHU
• + • + •

= =  793 

In order to compare this result with the result of Approach 2 two cases of Monte Carlo simulation 794 
have been developed, assuming normal distribution for all parameters. In the first one the 795 
correlation between the share of systems (AWMS) was disregarded. In the second one the 796 
correlation between the systems was taken into consideration. The results obtained were: 797 

Case without correlations: UMC = 37.03 Case with correlations: UMC2 = 36.24  798 

The results show that if correlation is disregarded the uncertainty result is higher than when the 799 
correlation is considered. The results also show that, in this example, the Approach 1 800 
underestimates the uncertainty. 801 

However, it is interesting to note that, although the result of Approach 2 will be more accurate than 802 
the result of Approach 1, the result of Approach 1 is not too far apart from the result of Approach 2. 803 
Therefore, Approach 1 can be still qualified as a tool for QA/QC and for directing priorities of 804 
improving the inventory if there are not enough data and resources for using Approach 2. 805 

 806 

Uncertainty in the Trend 807 
The trend of the net emissions of a category is expressed as a percentage calculated in relation to the emissions in 808 
the base year. The uncertainty in the trend will be a function of the uncertainties of the emissions in both the base 809 
year and the current year. As a direct consequence, the uncertainty of the trend will be a function of the 810 
uncertainties of the activity data and the emission factors at both these points in time. 811 

Similar to the level uncertainty, Approach 1 for the trend uncertainty applies a simple propagation method based 812 
on the uncertainties of the input data (activity data and emission factors) for both the base year and the current 813 
year. In addition to the assumptions already described, the approach for calculating the trend uncertainty requires 814 
assumptions on data correlation between the base year and the current year.  815 

In general, emission factors (and other estimation parameters) uncertainties will tend to be correlated between 816 
years while activity data will tend to be uncorrelated between years. The basic approach presented assumes full 817 
correlation between emission factors in the base year and the current year and independence between activity data 818 
in the base year and the current year. The method allows for change in case the activity data for a category is full 819 
correlated between years or emission factor for a category is independent between years reflecting national 820 
circumstances. However, as for the level approach, the method does not provide for partial correlations. 821 

The uncertainty in the trend in total emissions from the country is estimated as: 822 

 823 

EQUATION 3.2C 824 
APPROACH 1 - TREND UNCERTAINTY 825 

( )2 2
, ,T Te i Ta i

i
U U U= +∑   826 

Where: 827 

TU   =  uncertainty in the trend in total emissions from the country;  828 

,Te iU  =  trend uncertainty introduced by the uncertainty associated with the emission factor of the 829 
category/gas i; 830 

,Ta iU  =  trend uncertainty introduced by the uncertainty associated with the activity data of the 831 
category/gas i. 832 
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It is important to note that while the level uncertainty is reported as a confidence interval expressed as percentage 833 
uncertainties in relation to the point estimate, the uncertainty of the trend is reported as a confidence interval 834 
expressed in percentage points to be added or subtracted to the trend estimation. 835 

In order to know how the uncertainty of the emission factors and activity data affects the trend in the emissions 836 
we will need to develop type A and type B sensitivities as follows: 837 

• Type A sensitivity: the change in the difference in overall emissions between the base year and the current 838 
year, expressed as a percentage, resulting from a 1 percent increase in emissions or removals of a given 839 
category and gas in both the base year and the current year. 840 

EQUATION 3.2D 841 
CALCULATION OF TYPE A SENSITIVITY 842 

, , , , , ,

,
, ,

0.01 0.01
100 100

0.01

x t i t x BY i BY i t i BY
i i i i

x
i BY

x BY i BY i
i

E E E E E E
A

EE E

 • + − • + − 
 = • − •

 • + 
 

∑ ∑ ∑ ∑
∑∑

  843 

Where: 844 

xA   = the type A sensitivity for category/gas x; 845 

,i tE  = emissions/removals for category/gas i in the year t;  846 

,i BYE  = emissions/removals for category/gas i in the base year. 847 

 848 

• Type B sensitivity: the change in the difference in overall emissions between the base year and the current 849 
year, expressed as a percentage, resulting from a 1 percent increase in emissions or removals of a given 850 
category and gas in the current year only. 851 

EQUATION 3.2E 852 
CALCULATION OF TYPE B SENSITIVITY 853 

,

,

x t
x

i BY
i

E
B

E
=
∑  854 

Where: 855 

xB   = the type B sensitivity for category/gas x;  856 

,x tE  = emissions/removals for category/gas x in the year t;  857 

,i BYE   = emissions/removals for category/gas i in the base year. 858 

 859 

Under the assumption that the emission factors are fully correlated, to a variation in the base year emission factor 860 
will correspond the same variation in the current year emission factor. Hence, the emission factor uncertainty will 861 
be propagated to the trend through a Type A sensibility. 862 

 863 
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EQUATION 3.2F 864 
TREND UNCERTAINTY DUE TO EMISSION FACTOR 865 

, ,Te i i EF iU A U= •  866 

Where: 867 

,Te iU   = trend uncertainty introduced by the uncertainty associated with the emission factor of 868 
the category/gas i; 869 

iA   = the type A sensitivity for category/gas i; 870 

,EF iU    = uncertainty of the emission factor for category/gas i. 871 

 872 

Under the assumption that the activity data in the base year and the current year are independent both the 873 
uncertainties have to be taken into consideration. Hence, the activity data uncertainty will be propagated to the 874 
trend through a Type B sensibility that shows the sensitivity to a random uncertainty error in the emissions estimate.  875 
The additional factor of √2 is introduced because an uncorrelated uncertainly might affect either the base year or 876 
the current year. 877 

EQUATION 3.2G 878 
TREND UNCERTAINTY DUE TO ACTIVITY DATA 879 

, , 2Ta i i AD iU B U= • •   880 

Where: 881 

,Ta iU  = trend uncertainty introduced by the uncertainty associated with the activity data of the 882 
category/gas i; 883 

iB  = the type B sensitivity for category/gas i; 884 

,AD iU  = uncertainty of the activity data for category/gas i. 885 

 886 

Worksheet for Approach 1 Uncertainty Calculation 887 
The columns of Table 3.1, Approach 1 Uncertainty Calculation, are labelled A to Q and contain the following 888 
information, of which the derivation of key equations is given in Section 3.7.1 in Section 3.7, Technical 889 
Background Information. 890 

• A shows the sector of the IPCC category. 891 

• B shows the code of the IPCC category. 892 

• C shows the name of the IPCC category. 893 

• D shows the greenhouse gas. 894 

• E and F are the inventory estimates in the base year and the current year4 respectively, for the category and 895 
gas specified in Columns C and D, expressed in CO2 equivalents. 896 

• G and I contain the uncertainties for the activity data and emission factors respectively, derived from a mixture 897 
of empirical data and expert judgement as previously described in this chapter, entered as half the 95 percent 898 
confidence interval divided by the mean and expressed as a percentage. The reason for halving the 95 percent 899 
confidence interval is that the value entered in Columns G and I corresponds to the familiar plus or minus 900 
value when uncertainties are loosely quoted as ‘plus or minus x percent’, so expert judgements of this type 901 

                                                           
4 The current year is the most recent year for which inventory data are available. 
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can be directly entered in the spreadsheet. If uncertainty is known to be highly asymmetrical, enter the larger 902 
percentage difference between the mean and the confidence limit. 903 

• H indicates if the uncertainty in activity data is correlated across years 904 

• J indicates if the uncertainty in emission factor is correlated across years 905 

• K is the combined uncertainty by category derived from the data in Columns G and I using the error 906 
propagation equation (Equation 3.2). The entry in Column K is therefore the square root of the sum of the 907 
squares of the entries in Columns G and I.  908 

• L shows the uncertainty in Column K as a percentage of total national emissions in the current year. The entry 909 
in each row of Column L is the square of the entry in Column K multiplied by the square of the entry in 910 
Column F, divided by the square of total at the foot of Column F. The value at the foot of Column L is an 911 
estimate of the percentage uncertainty in total national net emissions in the current year, calculated from the 912 
entries above using Equation 3.1. This total is obtained by summing the entries in Column L and taking the 913 
square root. 914 

• M shows how the percentage difference in emissions between the base year and the current year changes in 915 
response to a one percent increase in category emissions/removals for both the base year and the current year. 916 
This shows the sensitivity of the trend in emissions to a systematic uncertainty in the estimate (i.e., one that is 917 
correlated between the base year and the current year). This is the Type A sensitivity as defined above.  918 

• N shows how the percentage difference in emissions between the base year and the current year changes in 919 
response to a one percent increase in category emissions/removals in the current year only. This shows the 920 
sensitivity of the trend in emissions to random error in the estimate (i.e., one that is not correlated, between 921 
the base year and the current year). This is the Type B sensitivity as described above.  922 

• O shows the uncertainty introduced into the trend in emissions by emission factor uncertainty. If the 923 
uncertainty in emission factors is correlated between years (J = Y) the result is the product of the information 924 
in Columns M and I. If the emission factor uncertainties are not correlated between years (J = N) then the 925 
entry in Column N should be used in place of that in Column M and the result multiplied by √2.  926 

• P shows the uncertainty introduced into the trend in emissions by activity data uncertainty. If the uncertainty 927 
in activity data is not correlated between years (H = N) the result is the product of the information in Columns 928 
N and G multiplied by √2. If the activity data uncertainties are correlated between years (H = Y) then the entry 929 
in Column M should be used in place of that in Column N and the √2 factor does not then apply.  930 

• Q is an estimate of the uncertainty introduced into the trend in national emissions by the category in question. 931 
Under Approach 1, this is derived from the data in Columns O and P using Equation 3.2. The entry in Column 932 
Q is therefore the sum of the squares of the entries in Columns O and P. The total at the foot of this column is 933 
an estimate of the total uncertainty in the trend, calculated from the entries above using the error propagation 934 
equation. This total is obtained by summing the entries in Column Q and taking the square root. The 935 
uncertainty in the trend is a percentage point range relative to the inventory trend. For example, if the current 936 
year emissions are 10 percent greater than the base year emissions, and if the trend uncertainty at the foot of 937 
Column Q is reported as 5 percent, then the trend uncertainty is 10%±5% (or from 5% to 15% increase) for 938 
the current year emissions relative to the base year emissions. 939 

• Explanatory footnotes go at the bottom of the table and give documentary references of uncertainty data 940 
(including measured data) or other relevant comments. 941 

An example of the spreadsheet with all the numerical data completed is provided in Section 3.6, Approach 1 942 
uncertainty calculation example. Details of this approach are given in Section 3.7.1 and derivation of the 943 
uncertainty in the trend is in Section 3.7.2. 944 
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  945 

TABLE 3.2 
APPROACH 1 UNCERTAINTY CALCULATION 

A B C D E F G H I J K L M N O P Q 

Inventory 
sector 

IPCC 
category 
code 

IPCC 
category 
name 

GHG Base year 
emissions 
or 
removals 
 
 

Year t 
emissions 
or 
removals 
 
 

Activity 
data 
uncertainty 
 
 

AD 
uncertainty 
correlated 
across 
years? 

Emission 
factor / 
estimation 
parameter 
uncertainty 

EF 
uncertainty 
correlated 
across 
years? 

Combined 
uncertainty 
 
 
 

Contribution 
to Variance 
by Category 
in Year t  

Type A 
sensitivity 

Type B 
sensitivity 

Uncertainty 
in trend in 
national 
emissions 
introduced 
by emission 
factor / 
estimation 
parameter 
uncertainty 

Uncertainty in 
trend in 
national 
emissions 
introduced by 
activity data 
uncertainty 

Uncertainty 
introduced 
into the 
trend in 
total 
national 
emissions 

    Input data Input data Input data 
Note A 

Input data 
Default: N 

Input data 
Note A 

Input data 
Default: Y 

22 IG +  ( )
( )2F

FK 2

∑

•
 

Note B 

∑E

F
 

If J = Y 

IM •  
If J = N  

2IN ••  

If H = N 

2GN ••  

If H = Y 

GM •  

22 PO +  

    Gg CO2 
equivalent 

Gg CO2 
equivalent % Y/N % Y/N %  % % % % % 

e.g. 
Energy   

e.g. 
1.A.1 

e.g.  
Energy 
Industries 
Fuel 1 

CO2              

e.g.  
 

e.g. 
1.A.1 

e.g.  
Energy 
Industries 
Fuel 2 

CO2              

Etc... Etc. Etc... …              

Total    ∑E  ∑ F       ∑L      ∑Q  

 

  

    

  

 

Percentage 
uncertainty 
in total 
inventory: 

∑ L     Trend 
uncertainty: ∑Q  
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Note A: If only total uncertainty is known for a category (not for emission factor and activity data separately), 946 
then: 947 

• If uncertainty is correlated across years, enter the uncertainty into Column I, and enter 0 in Column G; it is 948 
suggested to assume correlation across years if some of the parameters used in the estimates are the same in 949 
both years or derived from the same source. 950 

• If uncertainty is not correlated across years, enter the uncertainty into Column G, and enter 0 in Column I; it 951 
is suggested to assume no correlation between years if the estimates for the two years are independent from 952 
each other, for example based on independent measurements. 953 

Note B: Absolute value of:  954 

( )0.01 0.01
100 100

0.01
x i x i i i

x i i

F F E E F E
E E E

• + − • + −
• − •

• +
∑ ∑ ∑ ∑

∑ ∑   955 

Where:  956 

,x xE F = entry from row x of the table from the corresponding column, representing a specific category; 957 

,i iE F∑ ∑  = sum over all categories (rows) of the inventory of the corresponding column. 958 

 959 

DEALING WITH LARGE AND ASSYMMETRIC UNCERTAINTIES 960 

No refinement. 961 

3.2.3.2 APPROACH 2: MONTE CARLO SIMULATION 962 

No refinement. 963 

3.2.3.3 HYBRID COMBINATIONS OF APPROACHES 1 AND 2 964 

No refinement. 965 

3.2.3.4 COMPARISON BETWEEN APPROACHES 966 

No refinement. 967 

3.2.3.5 GUIDANCE ON CHOICE OF APPROACH 968 

No refinement. 969 

3.3 UNCERTAINTY AND TEMPORAL 970 

AUTOCORRELATION  971 

No refinement. 972 

3.4 USE OF OTHER APPROPRIATE TECHNIQUES 973 

No refinement. 974 

3.5 REPORTING AND DOCUMENTATION 975 

No refinement. 976 

 977 
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3.6 EXAMPLES 978 

[Elaboration of section 3.6 of the 2006 IPCC Guidelines]. 979 

Chapter 3 of Volume 1 of the 2006 IPCC Guidelines includes two examples of uncertainty estimates for inventories, 980 
both based upon the Finnish 2003 greenhouse gas inventory. 981 

These examples illustrate that the results from Approaches 1 and 2 can be very similar when the overall uncertainty 982 
is relatively small. However, Approach 2 is a more flexible approach that enables quantification of asymmetry in 983 
probability ranges, such as for the year t inventory. 984 

Step-by-step example for Approach 2 based on the Italian GHG Inventory (CH4 emissions from enteric 985 
fermentation in the Agriculture sector) is provided below. This example focusses on the process of obtaining the 986 
data for all parameters involved and the analysis of results. CH4 emissions are estimated by a Tier 2 approach. 987 

Step 1 988 

A list of selected parameters used in the CH4 emission factors estimation process is indicated below. For each 989 
parameter, the choices of distributions and underlying assumptions are described and whether they can be modeled 990 
by Monte Carlo. 991 

 992 

Parameter Description MCA Range Source 

Animal number  Average annual population 
within a country by animal 
species (include all livestock 
categories) 

Yes The uncertainty 
associated with 
populations vary 
depending on the source, 
but should be within +-
20%. The National 
Institute of Statistics has 
estimated an uncertainty 
of 5-6% associated with 
data. Expert judgment 
(ISPRA) assumed 10% 
uncertainty 

IPCC, 2006; National 
Institute of Statistics; 
ISPRA  

Milk 
production 

Total average annual milk 
production (dairy and 
buffalo) 

Yes Expert judgment, 
assuming the same value 
as for animal number 
(10%) 

ISPRA 

Methane 
conversion 
factor (Ym) 

Ym is the fraction of gross 
energy in feed converted to 
methane (dairy cattle and 
buffalo) 

Yes IPCC expert group 
judgment assumed for 
dairy cattle and buffalo a 
conversion factor equal to 
6.5%+1%  

IPCC, 2006 

Weight  Live-weight data should be 
collected for each animal 
sub-category, and the data 
should be based on weight 
measurements of live animals 
(dairy cattle, buffalo, and 
non-dairy) 

Yes Expert judgment, 
assuming the same value 
as for animal number 
(10%)  

ISPRA 

% animal 
grazing 

Animals graze open range 
land or hilly terrain and 
expend significant energy to 
acquire feed (dairy cattle and 
buffalo) 

Yes Expert judgment; for 
emission estimates 10% 
of grazing animals were 
assumed while based on 
actual statistics it has been 
calculated to be around 
5% (uncertainty 50%) 

ISPRA 

Fat content  Average fat content of milk 
is required for dairy cattle 
and buffalo 

Yes Expert judgment, 
assuming the same value 
as for animal number 
(10%) 

ISPRA 
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 993 

For each parameter, the choice of distribution and distribution parameters (mean, median, range etc.) is based on 994 
actual information if available (literature, distribution of measurements, past data information) or/and expert 995 
judgment. The shape of distribution may vary from the classical normal or lognormal distributions to more 996 
sophisticated ones. Whenever assumptions or constraints on variables are known, this information is reflected on 997 
the choice of type and shape of distributions (e.g. variability, asymmetry and multimodal). 998 

Examples of selected distributions for some parameters are shown in the following figure. 999 

          
               

% giving birth Percent of females that give 
birth in a year for dairy cattle 
and buffalo  

Yes Expert judgment, 
assumed 5%  

ISPRA 

Feed 
digestibility 
(DE) 

The proportion of energy in 
the feed not excreted in the 
feces is known as feed 
digestibility, expressed as a 
percentage (dairy cattle and 
buffalo) 

Yes Default 12 to 20%. Expert 
judgement 18% 

IPCC, 2006 
ISPRA 

EF for Tier 1 
approach 

The EF is assumed for an 
animal category for an entire 
year (365 days): Swine (sows 
and other swine), sheep, 
goats, horses, mules and 
asses, rabbits 

 

Yes All estimates have an 
uncertainty of +30-50%. 
EFs estimated using the 
Tier 1 method are 
unlikely to be known 
more accurately than 
+30% and may be 
uncertain to +50%. 
Assumed 50%. 
 

IPCC, 2006  
ISPRA 

Dry matter 
intake (DMI) 

DMI establishes the amount 
of nutrients available to an 
animal for health and 
production. Important for the 
formulation of diets 

Yes The same error in 
estimating DE between 
12-20%. Assumed 20% 

IPCC, 2006 
ISPRA 

Coefficient for 
NEm (CFi) 

Coefficient for calculating 
NEm 

No   

Weight gain 
(kg/d) 

Average weight gain (or loss) 
per day, kg/d (for cattle and 
buffalo)  

No   

NEm 
 

= net energy required by the 
animal for maintenance 
(Equation 4.1 IPCC 2000), 
MJ/day 

No   

NEa  
 

= net energy for animal 
activity (Equations 4.2a and 
4.2b IPCC 2000), MJ/day 

No   

NEg  
 

= net energy needed for 
growth (Equations 4.3a and 
4.3b IPCC 2000), MJ/day 

No   

NEl  
 

= net energy for lactation, 
MJ/day 

No   

Gross energy 
(GE) 

Amount of energy (MJ/day) 
an animal needs to perform 
activities such as growth, 
lactation, and pregnancy  

No   

….     

…..     
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Assumption: number of dairy cattle       
      

 

 

  Normal distribution with parameters:   
  Mean  1,878,421   
  Standard Dev. 375,684   
       
 Selected range is from -Infinity to +Infinity   
           

          
   

 

 
Assumption: weight (kg)   

 

   
      

 

 
  Normal distribution with parameters:   
  Mean  603   
  Standard Dev. 60   
       
 Selected range is from 0 to +Infinity   
 
Assumption: digestibility of feed    

 

  
      

 

 
  Normal distribution with parameters:   
  Mean  65   
  Standard Dev. 6.5   
       
 Selected range is from 0 to 84.44   
                 

      
       
Assumption: portion of cows giving birth    

 

   
      

 

 
  Lognormal distribution with parameters:   
  Mean  0.90123   
  Standard Dev. 0.09012   
       
 Selected range is from 0.00000 to 1.00000   
              

          
Step 2 1000 

A description of the statistics resulting from the Monte Carlo analysis is reported.   1001 

Statistics of the Monte Carlo analysis for CH4 emissions from enteric fermentation, year 2009 1002 

    Value 

Trials 5000 

Mean 519,226 

Median 512,480 

Standard Deviation 71,264 

Range Minimum 340,639 

Range Maximum 869,092 

Uncertainty (%) -21.8; +31.7 

 1003 

The application of Approach 1 to this category results in an uncertainty equal to 20.2%.  1004 

The probability density function resulting from the Monte Carlo assessment is shown in the following figure. 1005 

 1006 

751,368 1,314,895 1,878,421 2,441,947 3,005,474

B23

422 512 603 693 784

weight (kg)

45.50 55.25 65.00 74.75 84.50

U25

0.66483 0.80102 0.93722 1.07341 1.20960

Q25
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  1007 
Step 3 1008 

The most relevant parameters for the uncertainty of CH4 emissions from enteric fermentation, measured by the 1009 
rank correlation coefficient have been individuated from the application of Monte Carlo. These are the number of 1010 
dairy cattle, digestibility and the weight of animals. As far as feasible, it is important to reduce the associated 1011 
uncertainty. 1012 

The results of this analysis are shown in the following chart. 1013 

Frequency Chart

 um

.000

.006

.012

.017

.023

371,815 460,618 549,420 638,222 727,024

5,000 Trials    4,935 Di

Forecast: P24

Mg CH4  
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 1014 
 1015 

Target Forecast:  B24

B23 .72

U25 -.50

 .36

weight (kg) .12

N25 .08

G68 .04

I68 .03

E24 -.03

Peso vivo medio (kg) -.03

K23 .03

C76 -.02

H23 .02

J74 .02

I74 -.02

D74 .02

M23 .02

F23 -.02

F76 -.02

O23 -.02

H74 -.02

H76 .02

F74 -.02

L23 -.01

H24 .01

D76 .01

J68 .01

I24 .01

E76 -.01

I23 -.01

N68 -.01

G74 .01

Q25 -.01

Consumo Sostanza Secca (kg/capo*giorno) .01

J23 .01

F68 .01

G76 .01

G23 .01

D68 .01

C74 .01

B68 -.01

E23 .01

J76 .01

K68 -.01

I76 -.01

% pasture .01

G24 .00

N23 -.00

H68 -.00

C68 -.00

P23 .00

M24 .00

E74 -.00

F24 .00

H25 .00

N24 -.00

E68 -.00

-1 -0.5 0 0.5 1

Measured by Rank Correlation

Sensitivity Chart

digestibility of feed

fat content in milk

daily dry matter intake 

average live weight

number of dairy cattle

weight of dairy 

number of other cattle (male >2years)

number of other cattle (female >2years)
EF sheep

number of hens
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3.7 TECHNICAL BACKGROUND INFORMATION 1016 

No refinement. 1017 

3.7.1 Approach 1 variables and equations 1018 

No refinement. 1019 

3.7.2 Approach 1 – details of the equations for trend 1020 

uncertainty 1021 

No refinement. 1022 

3.7.3 Dealing with large and asymmetric uncertainties in 1023 

the results of Approach 1 1024 

No refinement. 1025 

3.7.4 Methodology for calculation of the contribution to 1026 

uncertainty 1027 

No refinement. 1028 
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