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5 CROPLAND  118 

5.1 INTRODUCTION 119 

No Refinement 120 

5.2 CROPLAND REMAINING CROPLAND  121 

No Refinement 122 

5.2.1 Biomass 123 

5.2.1.1 CHOICE OF METHODS 124 

This section provides elaboration on methods, clarifying how to use updated factors.  125 

Carbon can be stored in the biomass of croplands that contain perennial woody vegetation including, but not 126 
limited to, monocultures such as tea, coffee, oil palm, coconut, rubber plantations, fruit and nut orchards, and 127 
polycultures such as agroforestry systems. The default methodology for estimating carbon stock changes in woody 128 
biomass is provided in Chapter 2, Section 2.2.1. This section elaborates this methodology with respect to 129 
estimating changes in carbon stocks in biomass in Cropland Remaining Cropland.  130 

The change in biomass is only estimated for perennial woody crops. For annual crops, increase in biomass stocks 131 
in a single year is assumed equal to biomass losses from harvest and mortality in that same year - thus there is no 132 
net accumulation of biomass carbon stocks.  133 

Changes in carbon in cropland biomass (∆CCCB) may be estimated from either: (a) annual rates of biomass gain 134 
and loss (Chapter 2, Equation 2.7) or (b) carbon stocks at two points in time (Chapter 2, Equation 2.8). The first 135 
approach (gain-loss method) provides the default Tier 1 method and can also be used at Tier 2 or 3 with refinements 136 
described below. The second approach (the stock-difference method) applies either at Tier 2 or Tier 3, but not Tier 137 
1. It is good practice to improve inventories by using the highest feasible tier given national circumstances. It is 138 
good practice for countries to use a Tier 2 or Tier 3 method if carbon emissions and removals in Cropland 139 
Remaining Cropland is a key category and if the sub-category of biomass is considered significant. It is good 140 
practice for countries to use the decision tree in Figure 2.2 in Chapter 2 to identify the appropriate tier to estimate 141 
changes in carbon stocks in biomass. 142 

Tier 1  143 
The default method is to multiply the area of perennial woody cropland by a net estimate of biomass accumulation 144 
from growth and subtract losses associated with harvest or gathering or disturbance (according to Equation 2.7 in 145 
Chapter 2). Losses are estimated by multiplying a carbon stock value by the area of cropland on which perennial 146 
woody crops are harvested.   147 

Default Tier 1 assumptions are: all carbon in perennial woody biomass removed (e.g., biomass cleared and 148 
replanted with a different crop) is emitted in the year of removal; and perennial woody crops accumulate carbon 149 
for an amount of time equal to a nominal harvest/maturity cycle. The latter assumption implies that perennial 150 
woody crops accumulate biomass for a finite period until they are removed through harvest or reach a steady state 151 
where there is no net accumulation of carbon in biomass because growth rates have slowed and incremental gains 152 
from growth are offset by losses from natural mortality, pruning or other losses. 153 

Under Tier 1, updated default factors shown in updated Table 5.1,Table 5.3 and Table 5.4, are applied to nationally 154 
derived estimates of land areas.   For perennial cropland C uptake, multiply unharvested area that is still younger 155 
than the age of maturity by the above-ground growth rate.  If harvest and immature areas are unknown, it is 156 
assumed that in cropland remaining cropland, the harvest area is equal to total area divided by rotation length.  For 157 
perennial cropland C losses, it should be noted that updated tables provide two types of carbon stocks of perennial 158 
woody biomass per area. One is maximum carbon stock at harvest/maturity state (Lmax). This is appropriate for 159 
estimating harvest loss due to crop renewal. The other is the mean carbon stock over the whole lifetime of the crop 160 
(Lmean). This is used for loss due to conversion to another land use where the age of converted cropland is unknown. 161 
These values should be used appropriately to calculate carbon losses following the guidance in 5.2.1.2.  162 

Tier 2  163 
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Two methods can be used for Tier 2 estimation of changes in biomass. Method 1 (also called the Gain-Loss 164 
Method) requires the biomass carbon loss to be subtracted from the biomass carbon increment for the reporting 165 
year (Chapter 2, Equation 2.7).  Method 2 (also called the Stock-Difference Method) requires biomass carbon 166 
stock inventories for a given land-use area at two points in time (Chapter 2, Equation 2.8). 167 

A Tier 2 estimate, in contrast, will generally develop estimates for the major woody crop types by climate zones, 168 
using country-specific carbon accumulation rates and stock losses where possible or country-specific estimates of 169 
carbon stocks at two points in time. Under Tier 2, carbon stock changes are estimated for above-ground and below-170 
ground biomass in perennial woody vegetation. Tier 2 methods involve country-specific or region-specific 171 
estimates of biomass stocks by major cropland types and management system, and estimates of stock change as a 172 
function of major management system (e.g., dominant crop, productivity management).  To the extent possible, it 173 
is good practice for countries to incorporate changes in perennial crop or tree biomass using country-specific or 174 
region-specific data.  Where data are missing, default data may be used.   175 

Tier 3  176 
A Tier 3 estimate will use a highly disaggregated Tier 2 approach or a country-specific method involving process 177 
modelling and/or detailed measurement. Tier 3 involves inventory systems using statistically-based sampling of 178 
carbon stocks over time and/or process models, stratified by climate, cropland type and management regime. For 179 
example, validated species-specific growth models that incorporate management effects such as harvesting and 180 
fertilization, with corresponding data on management activities, can be used to estimate net changes in cropland 181 
biomass carbon stocks over time. Models, perhaps accompanied by measurements like those in forest inventories, 182 
can be used to estimate stock changes and extrapolate to entire cropland areas, as in Tier 2. 183 

Key criteria in selecting appropriate models are that they are capable of representing all of the management 184 
practices that are represented in the activity data. It is critical that the model be validated with independent 185 
observations from country-specific or region-specific field locations that are representative of climate, soil and 186 
cropland management systems in the country. 187 

5.2.1.2 CHOICE OF EMISSION FACTORS 188 

This section has updated factors and an elaboration on the methods.  189 

Emission and removal factors required to estimate the changes in carbon stocks include (a) annual biomass 190 
accumulation or growth rate, and (b) biomass loss factors which are influenced by such activities as removal 191 
(harvesting), fuelwood gathering and disturbance.      192 

Above-ground woody biomass growth rate 193 

Tier 1  194 
Updated Tables 5.1 to 5.4 provide estimates of biomass stocks and biomass growth rates and losses for major 195 
climatic regions and agricultural systems. Updated Table 5.1 provides default values of biomass growth and losses 196 
applicable to agroforestry cropping systems in broad climate regions.  Agroforestry systems are defined in Table 197 
5.2. Updated Table 5.3 provides default sequestration rates in above- and below-ground biomass for agro-forestry 198 
systems by region and climate zone. Updated Table 5.4 provides default values of biomass growth and losses for 199 
perennial cropping monoculture systems.  Countries should use appropriate default values of above-ground 200 
biomass growth rate relative to each climate region and cropping system from updated Table 5.1, Table 5.3 or 201 
Table 5.4.  However, given the large variation in cropping systems, incorporating trees or tree crops, it is good 202 
practice to seek national data on above-ground woody biomass growth rate. 203 

Tier 2  204 
Annual woody biomass growth rate data can be, at a finer or disaggregated scale, based on national data sources 205 
for different cropping and agroforestry systems. Rates of change in annual woody biomass growth rate should be 206 
estimated in response to changes in specific management/land-use activities (e.g., fertilization, harvesting, 207 
thinning). Results from field research should be compared to estimates of biomass growth from other sources to 208 
verify that they are within documented ranges. It is important, in deriving estimates of biomass accumulation rates, 209 
to recognize that biomass growth rates will occur primarily during the first 20 years following changes in 210 
management, after which time the rates will tend towards a new steady-state level with little or no change occurring 211 
unless further changes in management conditions occur.  212 

Tier 3  213 
For Tier 3, highly disaggregated factors for biomass accumulation are needed. These may include categorisation 214 
of species, specific for growth models that incorporate management effects such as harvesting and fertilization. 215 
Measurement of above-ground biomass, similar to forest inventory with periodic measurement of above-ground 216 
biomass accumulation, is necessary. 217 
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 UPDATED1 - TABLE 5.1  
DEFAULT COEFFICIENTS FOR ABOVE-GROUND BIOMASS AND HARVEST/MATURITY CYCLES IN AGROFORESTRY SYSTEMS 

CONTAINING PERENNIAL SPECIES2 

Climate 
Region 

Agroforestry 
system3 N 

Tree 
density 

Maximum 
above-ground 
biomass carbon 
stock at harvest 
Lmax 

Harvest 
/Maturity 
cycle 

Biomass 
accumulatio
n rate (G) 

Mean 
biomass 
carbon 
loss 
(Lmean) 
(tonnes C 
ha-1 yr-1) 

 (tonnes C ha-1) (yr) (tonnes C 
ha-1 yr-1) 

 
 
 
 
Tropical 

Fallow 69 6074 22.1 ± 50% 5 ± 50% 4.42 ± 3% 11.1 ± 25% 

Hedgerow 3 4259 9.4 ± 81% 20 ± 50% 0.47 ± 64% 4.7 ± 40% 

Intercropping 90 8568 47.5 ± 50% 20 ± 50% 2.38 ± 3% 23.8 ± 25% 

Multistrata 51 929 64.8 ± 50% 20 ± 50% 3.24 ± 5% 32.4 ± 25% 

Parkland 7 152 11.8 ± 73% 20 ± 50% 0.59 ± 53% 5.9 ± 37% 

Shaded 
Perennial 

28 4236 
47.6 ± 51% 

20 ± 50% 2.38 ± 8% 
23.8 ± 25% 

Silvoarable 22 880 67.6 ± 51% 20 ± 50% 3.38 ± 9% 33.8 ± 25% 

Silvopasture 18 1609 58.2 ± 52% 20 ± 50% 2.91 ± 15% 29.1 ± 26% 

 
 
Temperate 

Hedgerow 12 400 26.1 ± 45% 30 ± 33% 0.87 ± 31% 13.1 ± 22% 

Silvoarable 14 202 26.7 ± 45% 30 ± 33% 0.89 ± 30% 13.4 ± 22% 

Silvopasture 10 854 68.4 ± 39% 30 ± 33% 2.28 ± 21% 34.2 ± 20% 

Source: Cardinael et al (in prep) 
1 Updated and replaced former Tables 5.1, 5.2 and 5.3 from the 2006 IPCC Guidelines 
2 See Table 5.4 for monocultures 
3 See Table 5.2 for agroforestry system definitions 
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UPDATED1 - TABLE 5. 2  
EXAMPLES OF CLASSIFICATION OF PERENNIAL CROP SYSTEMS 

  Crop system Description 

Agroforestry 

Fallows 

Land rested from cultivation, but comprises planted and managed trees, often 
leguminous, shrubs and herbaceous cover crops before it is cultivated again. 
Includes improved and natural fallows, and can be implemented before any of the 
following systems.   

Hedgerows Linear plantation around fields, including shelterbelts, windbreaks, boundary 
plantings and live fences. 

Intercropping / 
Alley cropping 

Fast-growing, usually leguminous, woody species (mainly shrubs) grown in crop 
fields, usually at high densities. The woody species are regularly pruned and the 
prunings are applied as mulch into the alleys as a source of organic matter and 
nutrients. 

Multistrata 
systems 

Multistorey combinations of a large number of various trees and perennial and 
annual crops. They include home gardens and agroforests. 

Parklands Intercropping of agricultural crops or grazing land under low density mature 
scattered trees. Typical of dry areas like Sahel (e.g. Faidherbia albida). 

Shaded 
perennial-crop 
systems 

Growing shade-tolerant species such as cacao and coffee under, or in between, 
overstorey shade trees that can be used for timber or other commercial tree products 

Silvoarable 
systems 

Woody species planted in parallel tree rows to allow mechanization and 
intercropped with an annual crop; usually used for timber (e.p. Juglans spp), but 
also for fuel (e.p. Populus spp). Usually low tree density per hectare. 

Silvopastoral 
systems Woody species planted on permanent grasslands, often grazed. 

  Plantations Monoculture plantation crops such as tea, coffee and cacao grown without shade 
trees, as well as oil palms, rubber and coconuts. 

Monoculture Vine systems A plantation of vines, typically producing grapes used for winemaking, but also 
kiwifruit or passionfruit. 

  
Orchards 
systems 

Land planted with woody vegetation, often fruit trees (eg. apple, pear, plum, nut 
trees). Understory vegetation is usually mowed or grazed. 

Source: Cardinael et al (in prep), adapted from Nair et al (2009) 
1Updated Table 5.4 in the 2006 IPCC Guidelines 
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UPDATED1 - TABLE 5.3  
DEFAULT COEFFICIENTS FOR ABOVE- AND BELOW-GROUND BIOMASS IN AGROFORESTRY SYSTEMS CONTAINING 

PERENNIAL SPECIES2 

Climate 
Region 

Region 
Agroforestry 
system N 

Tree 
density 

Above-ground 
biomass accumulation 
rate (G) 

Below-ground 
biomass accumulation 
rate  

  (tonnes C ha-1 yr-1) (tonnes C ha-1 yr-1) 

Cool 
Temperate 

Asia Silvoarable 2 833 2.97 0.77 

Europe Silvopasture 4 225 2.05 0.68 

 
North 
America 

Hedgerow 12 400 0.87 ± 31% 0.23 

Silvoarable 7 111 0.57 0.17 

Silvopasture 1 571 0.97 0.11 

South 
America Silvopasture 1 400 1.18 0.52 

 
All regions 

Hedgerow 12 400 0.87 ± 31% 0.23 

Silvoarable 9 271 1.10 0.30 

Silvopasture 6 312 1.72 0.56 

Warm 
Temperate 

Europe Silvoarable 5 76 0.52 0.14 

Silvopasture 4 1667 3.11 1.03 

 
Temperate 
(ALL) 

 
ALL 
Regions 

Hedgerow 12 400 0.87 ± 31% 0.23 

Silvoarable 14 202 0.89 ± 30% 0.24 

Silvopasture 10 854 2.28 ± 21% 0.75 

 
 
 
 
 
 
 
Tropical 
Dry 

 
 
Africa 

Fallow 22 - 5.61 ± 6% 2.54 

Hedgerow 2 5833 0.48 0.12 

Intercropping 20 1000 1.88 ± 12% 0.45 

Multistrata 3 2771 1.50 0.58 

Parkland 7 152 0.59 0.21 

 
 
Asia 

Fallow 9 1250 5.61 0.53 

Intercropping 15 10430 2.79 ± 11% 0.67 

Silvoarable 6 540 6.24 1.62 

Silvopasture 17 1609 3.07 ± 15% 0.84 

 
 
 
ALL 
Regions 

Fallow 31 1250 5.61 ± 5% 1.95 

Hedgerow 2 5833 0.48 0.12 

Intercropping 35 5041 2.27 ± 7% 0.54 

Multistrata 3 2771 1.50 0.58 

Parkland 7 152 0.59 0.21 

Silvoarable 6 540 6.24 1.62 

Silvopasture 17 1609 3.07 ± 15% 0.84 
 221 
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UPDATED1 - TABLE 5.3 (CONTINUED) 
DEFAULT COEFFICIENTS FOR ABOVE- AND BELOW-GROUND BIOMASS IN AGROFORESTRY SYSTEMS CONTAINING 

PERENNIAL SPECIES2 

Climate 
Region 

Region 
Agroforestry 
system N 

Tree 
density 

Above-ground 
biomass accumulation 
rate (G) 

Below-ground 
biomass accumulation 
rate  

  (tonnes C ha-1 yr-1) (tonnes C ha-1 yr-1) 

 
 
 
 
 
 
 
 
 
 
 
Tropical 
Moist 

 
 
Africa 

Intercroppin
g 28 7233 2.79 ± 8% 0.61 

Multistrata 3 1902 2.98 0.72 

Shaded 
Perennial 5 - 1.79 0.47 

Silvoarable 5 - 3.87 1.22 

 
 
Asia 

Fallow 1 - 5.30 1.27 

Multistrata 21 628 3.03 ± 10% 0.73 

Shaded 
Perennial 2 1481 1.95 0.62 

Silvoarable 11 1065 1.5 ± 23% 0.35 

Central 
America 

Intercroppin
g 15 25000 2.28 ± 12% 0.55 

South America Shaded 
Perennial 6 4131 3.06 0.71 

 
 
ALL 
Regions 

Fallow 1 - 5.30 1.27 

Intercroppin
g 43 13733 2.61 ± 5% 0.59 

Multistrata 24 802 3.02 ± 8% 0.73 

Shaded 
Perennial 13 3071 2.4 ± 16% 0.60 

Silvoarable 16 1065 2.24 ± 14% 0.62 

Tropical 
montane 

Africa Fallow 30 7521 3.12 ± 6% 1.12 

 

 

 

 

 

Tropical 
Wet 

 
 
Africa 

Fallow 3 - 6.21 1.49 

Multistrata 2 - 2.89 0.69 

Shaded 
Perennial 1 1477 3.16 0.71 

 
 
 
Asia 

Fallow 2 - 2.00 0.48 

Multistrata 11 - 4.83 ± 14% 1.16 

Shaded 
Perennial 2 1608 1.79 0.42 

Silvopasture 1 - 0.06 0.01 

 
 
Central 
America 

Hedgerow 1 1110 0.43 0.10 

Intercroppin
g 12 1203 1.88 ± 21% 0.45 

Multistrata 1 - 3.25 0.78 

Shaded 
Perennial 10 5967 2.28 ± 10% 0.51 
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UPDATED1 - TABLE 5.3 (CONTINUED) 
DEFAULT COEFFICIENTS FOR ABOVE- AND BELOW-GROUND BIOMASS IN AGROFORESTRY SYSTEMS CONTAINING 

PERENNIAL SPECIES2 

Climate 
Region 

Region 
Agroforestry 
system N 

Tree 
density 

Above-ground 
biomass accumulation 
rate (G) 

Below-ground 
biomass accumulation 
rate  

  (tonnes C ha-1 yr-1) (tonnes C ha-1 yr-1) 

Tropical 
Wet 

South America 

Fallow 2 - 4.76 1.14 

Multistrata 10 475 2.6 ± 18% 0.70 

Shaded 
Perennial 2 - 2.96 0.71 

ALL 
Regions 

Fallow 7 - 4.59 1.10 

Hedgerow 1 1110 - 0.10 

Intercropping 12 1203 1.88 ± 39% 0.45 

Multistrata 24 475 3.67 ± 19% 0.91 

Shaded 
Perennial 15 4766 2.36 ± 25% 0.54 

Silvopasture 1 - 0.06 0.01 

Tropical 
ALL 

ALL 
 Regions 

Fallow 69 6074 4.42 ± 3% 1.49 

Hedgerow 3 4259 0.47 ± 64% 0.11 

Intercroppin
g 90 8568 2.38 ± 3% 0.55 

Multistrata 51 929 3.24 ± 5% 0.80 

Parkland 7 152 0.59 ± 53% 0.21 

Shaded 
Perennial 28 4236 2.38 ± 8% 0.57 

Silvoarable 22 880 3.38 ± 9% 0.89 

Silvopasture 18 1609 2.91 ± 15% 0.79 

Source: Cardinael et al (in prep). 
1 Replaces Tables 5.2 and 5.3 from the 2006 IPCC Guidelines 
2 See Table 5.4 for monocultures. 

 224 
  225 
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UPDATED1 - TABLE 5. 4 
DEFAULT MAXIMUM AND TIME-AVERAGED MEAN ABOVE-GROUND BIOMASS AND ABOVE GROUND BIOMASS ACCUMULATION 

RATE FOR PERENNIAL CROPLAND MONOCULTURES (TONNES HA-1)   

Domain Cropping 
system 

Maximum 
above-ground 

biomass carbon 
stock at harvest 

(Lmax) 
(tonnes C ha-1) 

Harvest 
/Maturity 

cycle 
(yr) 

Above-ground 
biomass 

accumulation 
rate (G) 

(tonnes C ha-1 
yr-1) 

Mean 
biomass 

carbon stock 
(Lmean) 

(tonnes C 
ha-1) 

References 

Temperate 

Olive 9.1 ± 15% 20 ± 23% 0.46 ± 27% 6.9 ± 25% [1] 

Orchard  
e.g. apple 

8.5 ± 19% 20 ± 42% 0.43 ± 46% 6.4 ± 25% [1] 

Vine  
e.g. grape 

5.5 ± 18% 20 ± 18% 0.28 ± 26% 2.8 ± 25% [1] 

Short Rotation 
Coppice 12.69 ± 40% 4 3.2 ± 40% 6.35 ± 40% 

[2] + adjust-
ment from 

[3] 

Tropical 
 

Oil palm 
Elaeis 
guineensis 

60.0 ± 41% 25 2.4 ± 41% 30.0 ± 41% [4] 

Rubber Hevea 
brasiliensis 80.2 ± 15% 27 3.0 ± 13% 40.1 ± 15% [5] 

All Tea Camelia 
sinensis 20.7 ± 50% 30 0.7 ± 50% 18.3 ± 50% [6] 

[1] Canaveira,  P. et al  2018.  
[2] Hauk S, Knoke T, Wittkopf S 2013  
[3] Krasuska E, Rosenqvist H. 2012  
[4] Chave, J. 2015  
[5] Blagodatsky, S., Xu, J., Cadisch, G.  2016  
[6] Zhang M, et al. 2017 
 
1 Updated Table 5.1 from 2006 IPCC Guidelines 

 226 

Below-ground biomass accumulation 227 

Tier 1  228 
The default assumption is that there is no change in below-ground biomass of perennial trees in agricultural 229 
systems. There are limited below-ground biomass data for agricultural systems. 230 

Tier 2  231 
This includes the use of actually measured below-ground biomass data from perennial woody vegetation. 232 
Estimating below-ground biomass accumulation is recommended for Tier 2 calculation. Estimates are provided in 233 
Table 5.2. Root-to-shoot ratios show wide ranges in values at both individual species (e.g., Anderson et al., 1972) 234 
and community scales (e.g., Jackson et al., 1996; Cairns et al., 1997). Limited data is available for below ground 235 
biomass thus, as far as possible, empirically-derived root-to-shoot ratios specific to a region or vegetation type 236 
should be used.  237 

Tier 3  238 
This includes the use of data from field studies identical to forest inventories and modelling studies, if stock 239 
difference method is adopted.  240 

Biomass losses from removal,  fuelwood and disturbance 241 

Tier 1  242 
The default assumption is that all biomass lost is assumed to be emitted in the same year. Biomass removal, 243 
fuelwood gathering and disturbance loss data from cropland source are not available. FAO provides total 244 
roundwood and fuelwood consumption data, but not separated by source (e.g., Cropland, Forest Land, etc.). It is 245 
recognized that statistics on fuelwood are extremely poor and uncertain worldwide. Default removal and fuelwood 246 
gathering statistics (discussed in Chapter 4, Section 4.2) may include biomass coming from cropland such as when 247 
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firewood is harvested from home gardens. Thus, it is necessary to ensure no double counting of losses occurs. If 248 
no data are available for roundwood or fuelwood sources from Cropland, the default approach will include losses 249 
in Forest Land (Section 4.2) and will exclude losses from Cropland. Updated Tables 5.1 to 5.4 provides default 250 
values of maximum carbon stock per area (Lmax) and mean carbon stock per area (Lmean). Countries should use 251 
Lmax in updated Table 5.1 to 5.4 in the case that perennial woody biomass is replaced at or over the year of 252 
harvest/maturity under a nominal harvest/maturity cycle assuming that perennial cropland is harvested and 253 
regenerated back into perennial cropland. Carbon losses are estimated by multiplying annual area of 254 
harvested/replaced cropland by Lmax.  Countries should use Lmean in updated Table 5.1 to 5.4 in the case that carbon 255 
removal has occurred by land use change where the age of the perennial crop removed is unknown. Carbon losses 256 
are estimated by multiplying the annual area of land conversion by Lmean. When perennial cropland is converted 257 
to another type of cropland, losses are reported in cropland remaining cropland. When perennial cropland is 258 
converted to non-cropland land uses, losses are reported in relevant land converted categories 259 

Tiers 2  and 3  260 
National level data at a finer scale, based on inventory studies or production and consumption studies according 261 
to different sources, including agricultural systems, can be used to estimate biomass loss. These can be obtained 262 
through a variety of methods, including estimating density (crown coverage) of woody vegetation from air photos 263 
(or high resolution satellite imagery) and ground-based measurement plots. Species composition, density and 264 
above-ground vs. below-ground biomass can vary widely for different cropland types and conditions and thus it 265 
may be most efficient to stratify sampling and survey plots by cropland types. General guidance on survey and 266 
sampling techniques for biomass inventories is given in Chapter 3, Annex 3A.3.   267 

5.2.1.3 CHOICE OF ACTIVITY DATA 268 

This section has an elaboration on the methods.  269 

Activity data in this section refer to estimates of land areas of growing stock and harvested land with perennial 270 
woody crops. The area data are estimated using the approaches described in Chapter 3. They should be regarded 271 
as strata within the total cropland area (to keep land-use data consistent) and should be disaggregated depending 272 
on the tier used and availability of growth and loss factors. Examples of Cropland subcategories are given in 273 
updated Table 5.2. 274 

Tier 1  275 
Under Tier 1, annual or periodic surveys are used in conjunction with the approaches outlined in Chapter 3 to 276 
estimate the average annual area of established perennial woody crops and the average annual area of perennial 277 
woody crops that are harvested or removed. The area estimates are further sub-divided into general climate regions 278 
or soil types to match the default biomass gain and loss values. Under Tier 1 calculations, international statistics 279 
such as FAO databases, and other sources can be used to estimate the area of land under perennial woody crops. 280 

Tier 2  281 
Under Tier 2, more detailed annual or periodic surveys are used to estimate the areas of land in different classes 282 
of perennial woody biomass crops. Areas are further classified into relevant sub categories such that all major 283 
combinations of perennial woody crop types and climatic regions are represented with each area estimate. These 284 
area estimates must match any country-specific biomass carbon increment and loss values developed for the Tier 285 
2 method. If country-specific finer resolution data are only partially available, countries are encouraged to 286 
extrapolate to the entire land base of perennial woody crops using sound assumptions from best available 287 
knowledge.  288 

Tier 3  289 
Tier 3 requires high-resolution activity data disaggregated at sub-national to fine grid scales. Similar to Tier 2, 290 
land area is classified into specific types of perennial woody crops by major climate and soil categories and other 291 
potentially important regional variables (e.g., regional patterns of management practices). Furthermore, it is good 292 
practice to relate spatially explicit area estimates with local estimates of biomass increment, loss rates, and 293 
management practices to improve the accuracy of estimates. 294 

5.2.1.4 CALCULATION STEPS FOR TIER 1 AND TIER 2 295 

No Refinement 296 

5.2.1.5 UNCERTAINTY ASSESSMENT 297 

No Refinement 298 
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5.2.2  Dead organic matter 299 

No refinement 300 

5.2.3 Soil carbon 301 

No Refinement in the Introduction 302 

Cropland management modifies soil C stocks to varying degrees depending on how specific practices influence C 303 
input and output from the soil system (Paustian et al., 1997; Bruce et al., 1999; Ogle et al., 2005).  The main 304 
management practices that affect soil C stocks in croplands are the type of residue management, tillage 305 
management, fertilizer management (both mineral fertilizers and organic amendments), choice of crop and 306 
intensity of cropping management (e.g., continuous cropping versus cropping rotations with periods of bare fallow), 307 
irrigation management, and mixed systems with cropping and pasture or hay in rotating sequences.  In addition, 308 
drainage and cultivation of organic soils reduces soil C stocks (Armentano and Menges, 1986).  309 

General information and guidance for estimating changes in soil C stocks are found in Section 2.3.3 of Chapter 2 310 
(including equations).  That section should be read before proceeding with specific guidelines dealing with 311 
Cropland soil C stocks. The total change in soil C stocks for Cropland is estimated using Equation 2.24 (Chapter 312 
2), which combines the change in soil organic C stocks for mineral soils and organic soils; and stock changes 313 
associated with soil inorganic C pools (Tier 3 only).  This section provides specific guidance for estimating soil 314 
organic C stock changes. Soil inorganic C is fully covered by Section 2.3.3.1. 315 

To account for changes in soil C stocks associated with Cropland Remaining Cropland, countries need at a 316 
minimum, estimates of the Cropland area at the beginning and end of the inventory time period. If land-use and 317 
management data are limited, aggregate data, such as FAO statistics on Cropland, can be used as a starting point, 318 
along with expert knowledge about the approximate distribution of land management systems (e.g., medium, low 319 
and high input cropping systems, etc.). Cropland management classes must be stratified according to climate 320 
regions and major soil types, which can either be based on default or country-specific classifications.  This can be 321 
accomplished with overlays of land use on suitable climate and soil maps.   322 

5.2.3.1 CHOICE OF METHOD 323 

This section contains further elaboration on methods, updates and new guidance. 324 

Inventories can be developed using a Tier 1, 2, or 3 method, with each successive Tier requiring more detail and 325 
resources than the previous one.  It is also possible that countries will use different tiers to prepare estimates for 326 
the separate subcategories of soil C (i.e., soil organic C stocks changes in mineral soils and organic soils, and stock 327 
changes associated with soil inorganic C pools).  Decision trees are provided for mineral soils (Figure 2.5) and 328 
organic soils (Figure 2.6) in Section 2.3.3.1 (Chapter 2) to assist inventory compilers with selection of the 329 
appropriate tier for their soil C inventory.  330 

Mineral soils 331 

Tier 1  332 
For mineral soils, the estimation method is based on changes in soil organic C stocks over a finite period following 333 
changes in management that impact soil organic C.  Equation 2.25 (Chapter 2) is used to estimate change in soil 334 
organic C stocks in mineral soils by subtracting the C stock in the last year of an inventory time  period (SOC0) 335 
from the C stock at the beginning of the inventory time period (SOC(0 –T)) and dividing by the time dependence of 336 
the stock change factors (D).  In practice, country-specific data on land use and management must be obtained and 337 
classified into appropriate land management systems (e.g., high, medium and low input cropping), including tillage 338 
management, and then stratified by IPCC climate regions and soil types.  Soil organic C stocks (SOC) are estimated 339 
for the beginning and end of the inventory time period using default reference carbon stocks (SOCref) and default 340 
stock change factors (FLU, FMG, FI ).   341 

Tier 2  342 
Developing Country-Specific Factors for the Default Equations 343 

For Tier 2, the same basic equations are used as in Tier 1 (Equation 2.25), but country-specific information is 344 
incorporated to specify better the stock change factors and reference C stocks with more disaggregation of climate 345 
regions, soil types, and/or the land management classification.   346 

Three-Pool Steady-State C Model 347 
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The three-pool steady-state soil C model2 is based on estimating C inputs to soils and applying soil carbon pool 348 
specific decomposition rates that are modified by given environmental conditions and management practices. This 349 
model embraces more of the heterogeneity in soils, by subdividing soil C pool into different rates of turnover, i.e., 350 
fast (Active Pool), intermediate (Slow Pool) , and long turnover times (Passive Pool). 351 

Tier 3  352 
Tier 3 approaches may use dynamic models and/or detailed soil C inventory measurements as the basis for 353 
estimating annual stock changes. Estimates from models are computed using coupled equations that estimate the 354 
net change of soil C. A variety of models exist (e.g., see reviews by McGill et al., 1996; and Smith et al., 1997).  355 
Key criteria in selecting an appropriate model include its capability of representing all of the relevant management 356 
practices/systems for croplands; model inputs (i.e., driving variables) are compatible with the availability of 357 
country-wide input data; and verification against experimental data.   358 

A Tier 3 approach may also be developed using a measurement-based approach in which a monitoring network is 359 
sampled periodically to estimate soil organic C stock changes.  A much higher density of benchmark sites will 360 
likely be needed than with models to represent adequately the combination of land-use and management systems, 361 
climate, and soil types.  Additional guidance is provided in Section 2.3.3.1 of Chapter 2. 362 

Organic soils  363 
No Refinement 364 

The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands provides 365 
additional guidance that updates the 2006 Guidelines for national Greenhouse Gas Inventories. See section 2.2 of 366 
the 2013 Wetlands Supplement covers Tier 1, 2, and 3 approaches for drained organic soils in cropland.   367 

Biochar C Amendments to Mineral Soils  368 

Tier 1  369 
This methodology utilizes a top-down approach in which the total amount of biochar generated and added to 370 
mineral soil is used to estimate the change in soil organic C stocks.  Use Equation 2.27 to estimate the change in 371 
C stock from biochar amendments in Chapter 2, Section 2.3.3.1, Volume IV.   372 

Tier 2  373 
Tier 2 methods use the same definitions and equations as Tier 1, but with country-specific factors.  See Section 374 
2.3.3.1, Chapter 2, Volume IV for more information.  375 

If the Tier 2 emission factors address degradation of added biochar over time, then it will also be necessary to 376 
estimate  the biochar C stocks over time.  This is an important difference from Tier 1 where there is no requirement 377 
to estimate the biochar C stocks because only the amount of biochar C remaining after 1000 years is included in 378 
the C stock change calculation.   379 

Tier 3  380 
Tier 3 methods can be used to account for GHG sources and sinks not captured in Tiers 1 or 2, such as priming, 381 
changes to N2O or CH4 fluxes from soils, and changes to net primary production. More information on Tier 3 382 
methods is provided in Section 2.3.3.1 of Chapter 2, Volume IV.   383 

5.2.3.2 CHOICE OF STOCK CHANGE AND EMISSION FACTORS 384 

This section contains further elaboration on methods, updates and new guidance. 385 

Mineral soils 386 

Tier 1  387 
Table 5.5 provides Tier 1 approach default stock change factors for land use (FLU), input (FI) and management 388 
(FMG).  The method and studies that were used to derive the default stock change factors are provided in Annex 389 
5A.1 and References. The default time period for stock changes (D) is 20 years and management practice is 390 
assumed to influence stocks to a depth of 30 cm, which is also the depth for the reference soil C stocks in Table 391 
2.3 (Chapter 2). 392 

Tier 2  393 
Developing Country-Specific Factors for the Default Equations 394 

                                                           
2 The steady-state model is not a Tier 3 method because equations and a global set of default parameters are provided, similar 
to the gross energy intake model for livestock that is provided for estimating enteric methane emissions (See Volume IV, 
Chapter 10).  However, compilers can further develop and/or parameterize this model given appropriate datasets, which would 
be a Tier 3 method (See Section 2.5.2 for more information about developing a Tier 3 model-based approach). 
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A Tier 2 approach entails the estimation of country-specific stock change factors. Derivation of input (FI) and 395 
management factors (FMG) are based on comparisons to medium input and intensive tillage, respectively, because 396 
they are considered the nominal practices in the IPCC default management classification (see Choice of Activity 397 
Data).  It is good practice to derive values for a higher resolution classification of management, climate and soil 398 
types if there are significant differences in the stock change factors among more disaggregated categories based  399 
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UPDATED - TABLE 5.5 
Relative stock change factors (FLU, FMG, and FI) (over 20 years) for management activities on cropland   

Factor 
value 
type 

Level 
Temper-

ature 
regime 

Moisture 
regime1 

IPCC 
defaults  Error2,3 Description 

Land use 
(FLU) 

Long-
term 
culti-
vated 

Cool Tem-
perate/ 
Boreal 

Dry 0.82 ±14% 

Represents area that has been converted from native 
conditions and continuously managed for 
predominantly annual crops over 50 yrs. Land-use 
factor has been estimated under a baseline condition of 
full tillage and nominal (‘medium”) carbon input 
levels. Input and tillage factors are also applied to 
estimate carbon stock changes, which incudes changes 
from full tillage and medium input.   

Moist 0.73 ±12% 

Warm 
Temperate 

Dry 0.81 ±13% 

Moist 0.72 ±17% 

Tropical 

Dry 1.02 ±14% 

Moist/ 
Wet 0.90 ±11% 

Land use 
(FLU) 

Paddy 
rice All Dry and 

Moist/ Wet 1.35 ±4% 
Long-term (> 20 year) annual cropping of wetlands 
(paddy rice). Can include double-cropping with non-
flooded crops. For paddy rice, tillage and input factors 
are not used. 

Land use 
(FLU) 

Peren-
nial/ 
Tree 
Crop 

Temperate
/Boreal 

Dry and 
Moist 0.72 ±22% 

Long-term perennial tree crops such as fruit and nut 
trees, coffee and cacao. 

Tropical Dry and 
Moist/ Wet 1.01 ±25% 

Land use 
(FLU) 

Set 
aside 
(< 20 
yrs) 

Tempe-
rate/ 

Boreal and 
Tropical 

Dry 0.93 ±11% 
Represents temporary set aside of annually cropland 
(e.g., conservation reserves) or other idle cropland that 
has been revegetated with perennial grasses. 

Moist/ Wet 0.82 ±17% 

Tropical 
montane44 

n/a 0.88 ±50% 

Tillage 
(FMG) 

Full  All Dry and 
Moist/ Wet 1.00 n/a 

Substantial soil disturbance with full inversion and/or 
frequent (within year) tillage operations. At planting 
time, little (e.g., <30%) of the surface is covered by 
residues.  

Tillage 
(FMG) 

Re-
duced 

Cool Tem-
perate/ 
Boreal 

Dry 0.98 ±5% 

Primary and/or secondary tillage but with reduced soil 
disturbance (usually shallow and without full soil 
inversion). Normally leaves surface with >30% 
coverage by residues at planting.  

Moist 1.04 ±4% 

Warm 
Temperate 

Dry 0.99 ±3% 

Moist 1.05 ±4% 

Tropical 
Dry 

Moist/Wet 
0.99 ±7% 

Wet 1.04 ±7% 

Tillage 
(FMG) 

No-till 

Cool Tem-
perate/ 
Boreal 

Dry 1.03 ±4% 

Direct seeding without primary tillage, with only 
minimal soil disturbance in the seeding zone. 
Herbicides are typically used for weed control.  

Moist 1.09 ±4% 

Warm 
Temperate 

Dry 1.04 ±3% 

Moist 1.10 ±4% 

Tropical 
Dry 1.04 ±7% 

Moist/Wet 1.10 ±5% 
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UPDATED - TABLE 5.5  
Relative stock change factors (FLU, FMG, and FI) (over 20 years) for management activities on cropland   

Factor 
value 
type 

Level 
Temper-

ature 
regime 

Moisture 
regime1 

IPCC 
defaults  Error2,3 Description 

Input 
(FI) 

Low 

Tem-
perate/ 
Boreal 

Dry 0.95 ±13% 

Low residue return occurs when there is removal of 
residues (via collection or burning), frequent bare-
fallowing, production of crops yielding low residues 
(e.g., vegetables, tobacco, cotton), no mineral 
fertilization or N-fixing crops. 

Moist 0.92 ±14% 

Tropical 
Dry 0.95 ±13% 

Moist/ Wet 0.92 ±14% 

Tropical 
montane4 n/a 0.94 ±50% 

Input 
(FI) 

Med-
ium All Dry and 

Moist/ Wet 1.00 n/a 

Representative for annual cropping with cereals where 
all crop residues are returned to the field. If residues 
are removed then supplemental organic matter (e.g., 
manure) is added.  Also requires mineral fertilization 
or N-fixing crop in rotation. 

Input 
(FI) 

High 
with-
out 
manure 

Tem-
perate/ 

Boreal and 
Tropical 

Dry 1.04 ±13% Represents significantly greater crop residue inputs 
over medium C input cropping systems due to 
additional practices, such as production of high residue 
yielding crops, use of green manures, cover crops, 
improved vegetated fallows, irrigation, frequent use of 
perennial grasses in annual crop rotations, but without 
manure applied (see row below). 

Moist/ Wet 1.11 ±10% 

Tropical 
montane4 n/a 1.08 ±50% 

Input 
(FI) 

High – 
with 
manure 

Tem-
perate/ 

Boreal and 
Tropical 

Dry 1.37 ±12% 

Represents significantly higher C input over medium 
C input cropping systems due to an additional practice 
of regular addition of animal manure. 

Moist/ Wet 1.44 ±13% 

Tropical 
montane4 n/a 1.41 ±50% 

Long-term cultivation, perennial crops paddy rice and tillage management factors were derived using methods and studies provided in 
Annex 5A1.  
1Where data were sufficient, separate values were determined for temperate and tropical temperature regimes; and dry, moist, and wet 
moisture regimes. Temperate and tropical zones correspond to those defined in Chapter 3; wet moisture regime corresponds to the 
combined moist and wet zones in the tropics and moist zone in temperate regions.  
2+ two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to 
derive a default, uncertainty was assumed to be + 50% based on expert opinion. NA denotes ‘Not Applicable’, where factor values 
constitute defined reference values, and the uncertainties are reflected in the reference C stocks and stock change factors for land use. 
3 This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact 
for all regions of the world. 
4There were not enough studies to estimate some of the stock change factors for mineral soils in the tropical montane climate region.  As 
an approximation, the average stock change between the temperate and tropical regions was used to approximate the stock change for the 
tropical montane climate. 

 400 

on an empirical analysis and/or well tested model.  Reference C stocks can also be derived from country-specific 401 
data in a Tier 2 approach.  Additional guidance is provided in Chapter 2, Section 2.3.3.1.    402 

Reference C stocks can be derived from country-specific data in a Tier 2 approach.  Reference values in Tier 1 403 
correspond to non-degraded, unimproved lands under native vegetation, but other reference conditions can also be 404 
chosen for Tier 2. In general, reference C stocks should be consistent across the land uses (i.e., Forest Land, 405 
Cropland, Grassland, Settlements, Other Land) (see section 2.3.3.1). Therefore, the same reference stock should 406 
be used for each climate zone and soil type, regardless of the land use. The reference stock is then multiplied by 407 
land use, input and management factors to estimate the stock for each land use based on the set of management 408 
systems that are present in a country. In addition, the depth for evaluating soil C stock changes can be different 409 
with the Tier 2 method. However, this will require consistency with the depth of the reference C stocks (SOCREF) 410 
and stock change factors for all land uses (i.e., FLU, FI, and FMG) to ensure consistency. 411 

The carbon stock estimates may be improved when deriving country-specific factors for FLU and FMG, by 412 
expressing carbon stocks on a soil-mass equivalent basis rather than a soil-volume equivalent (i.e. fixed depth) 413 
basis. This is because the soil mass in a certain soil depth changes with the various operations associated with land 414 
use that affect the density of the soil, such as uprooting, land leveling, tillage, and rain compaction due to the 415 
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disappearance of the cover of tree canopy. However, it is important to realize that all data used to derive stock 416 
change factors across all land uses must be on an equivalent mass basis if this method is applied.  This will be 417 
challenging to do comprehensively for all land uses. See Box 2.2C in Chapter2, Section 2.3.3.1 for more 418 
information. 419 

Three-Pool Steady-State C Model 420 

Default parameters are provided for the three-pool steady-state C pool equations (Chapter 2, Section 2.3.3.1, Table 421 
2.6), but parameters may be revised if experimental data are available to test the model.  The average lignin and 422 
nitrogen contents of the C input is also required to estimate the size of the three C pools (See Table 5.5A). 423 

 424 
NEW GUIDANCE - TABLE 5. 5A  

DEFAULT VALUES FOR NITROGEN AND LIGNIN CONTENTS IN CROPS FOR THREE-POOL STEADY-STATE C MODEL  

Crops N content of residues1 Lignin content of residues2 

Generic value for crops not indicated 
below3 

0.010 0.073 

Generic Grains4 0.0075 0.074 

Winter Wheat 0.0075 0.053 

Spring Wheat 0.0075 0.053 

Barley 0.0105 0.046 

Oats 0.0075 0.047 

Maize 0.007 0.11 

Rye5 0.005 0.05 

Rice 0.007 0.125 

Millet 0.007 0.062 

Sorghum 0.007 0.06 

Beans and Pulses 0.008 0.075 

Soybeans 0.008 0.085 

Potatoes and Tubers 0.0165 0.073 

Peanuts 0.016 0.086 

Alfalfa and Legume Hay 0.0245 0.072 

Non-legume hay 0.0135 0.057 

1 Average of aboveground and belowground for each crop based on data in Table 11.1A in Volume IV, Chapter 11 of this report. 
2 Winter wheat, spring wheat, barley, oats, millet, beans and pulses, soybeans, peanuts, alfalfa and legume hay, and non-legume hay 
values from Equi-Analytical Laboratories (2018); maize, rice, and sorghum from Cornell University (2017); and potatoes and tubers 
from Zereu et al. (2014).  
3 Average of all crop values in table     4 Average of small grain values in table   5 Average of wheat, oats and barley 

 425 

Tier 3  426 
Constant stock change rate factors per se are less likely to be estimated in favor of variable rates that more 427 
accurately capture land-use and management effects. See Chapter 2, Section 2.3.3.1 for further discussion.   428 

Organic soils  429 
No Refinement 430 

The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands provides 431 
additional guidance that updates the 2006 Guidelines for national Greenhouse Gas Inventories. See section 2.2 of 432 
the 2013 Wetlands Supplement covers Tier 1, 2, and 3 approaches for drained organic soils in cropland.  433 

Biochar C Amendments to Mineral Soils  434 

Tier 1  435 
Default emission factors are provided in Section 2.3.3.1, Chapter 2, Volume IV.    436 
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Tier 2  437 
Tier 2 emission factors may be further disaggregated relative to the default factors based on variation in 438 
environmental conditions, such as the climate and soil types, in addition to variation associated with the biochar 439 
production methods. See Section 2.3.3.1, Chapter 2, Volume IV for more information.  440 

Tier 3  441 
Tier 3 methods are country-specific and may involve empirical or process-based models to account for a broader 442 
set of impacts of biochar amendments. More information on Tier 3 methods is provided in Section 2.3.3.1, Chapter 443 
2, Volume IV.    444 

5.2.3.3 CHOICE OF ACTIVITY DATA 445 

This section contains further elaboration on methods, updates and new guidance. 446 

Mineral soils 447 

Tier 1  448 
Cropland systems are classified by practices that influence soil C storage. The default management classification 449 
system is provided in Figure 5.1. Inventory compilers should use this classification to categorize management 450 
systems in a manner consistent with the default Tier 1 stock change factors.  This classification may be further 451 
developed for Tiers 2 and 3 approaches. In general, practices that are known to increase C storage, such as irrigation, 452 
mineral fertilization, organic amendments, cover crops and high residue yielding crops, have higher inputs, while 453 
practices that decrease C storage, such as residue burning/removal, bare fallow, and low residue crop varieties, 454 
have lower inputs.  These practices are used to categorize management systems and then estimate the change in 455 
soil organic C stocks. Practices should not be considered that are used in less than 1/3 of a given cropping sequence 456 
(i.e., crop rotation), which is consistent with the classification of experimental data used to estimate the default 457 
stock change factors.  Rice production, perennial croplands, and set-aside lands (i.e., lands removed from 458 
production) are considered unique management systems (see below). 459 

Each of the annual cropping systems (low input, medium input, high input, and high input w/organic amendment) 460 
are further subdivided based on tillage management.  Tillage practices are divided into no-till (direct seeding 461 
without primary tillage and only minimal soil disturbance in the seeding zone; herbicides are typically used for 462 
weed control), reduced tillage (primary and/or secondary tillage but with reduced soil disturbance that is usually 463 
shallow and without full soil inversion; normally leaves surface with >30% coverage by residues at planting) and 464 
full tillage (substantial soil disturbance with full inversion and/or frequent, within year tillage operations, while 465 
leaving <30% of the surface covered by residues at the time of planting).  It is good practice only to consider 466 
reduced and no-till if they are used continuously (every year) because even an occasional pass with a full tillage 467 
implement will significantly reduce the soil organic C storage expected under the reduced or no-till regimes (Pierce 468 
et al., 1994; Smith et al., 1998).  Assessing the impact of rotational tillage systems (i.e., mixing reduced, no-till 469 
and/or full tillage practices) on soil C stocks will require a Tier 2 method.  470 

The main types of land-use activity data are: i) aggregate statistics (Approach 1), ii) data with explicit information 471 
on land-use conversions but without specific geo-referencing (Approach 2), or iii) data with explicit information 472 
on land-use conversions and geo-referencing (Approach 3), such as land-use and management inventories making 473 
up a statistically-based sample of a country’s land area (see Chapter 3 for discussion of approaches). At a minimum, 474 
globally available land-use and crop production statistics, such as FAO databases (http://faostat.fao.org/), provide 475 
annual compilations of total land area by major land-uses, select management data (e.g., irrigated vs. non-irrigated 476 
cropland), land area in ‘perennial’ crops (i.e., vineyards, perennial herbaceous crops, and tree-based crops such as 477 
orchards) and annual crops (e.g., wheat, rice, maize, sorghum, etc.). FAO databases would be an example of 478 
aggregate data (Approach 1). 479 

Management activity data supplement the land-use data, providing information to classify management systems, 480 
such as crop types and rotations, tillage practices, irrigation, manure application, residue management, etc.  These 481 
data can also be aggregate statistics (Approach 1) or information on explicit management changes (Approach 2 or 482 
3).  Where  483 

possible, it is good practice to determine the specific management practices for land areas associated with cropping 484 
systems (e.g., rotations and tillage practice), rather than only area by crop.  Remote sensing data are a valuable 485 
resource for land-use and management activity data, and potentially, expert knowledge is another source of 486 
information for cropping practices.  It is good practice to elicit expert knowledge using methods provided in 487 
Volume 1, Chapter 2 (eliciting expert knowledge). 488 

National land-use and resource inventories, based on repeated surveys of the same locations, constitute activity 489 
data gathered using Approach 2 or 3, and have some advantages over aggregated land-use and cropland   490 
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Figure 5. 1 Classification scheme for cropping systems. In order to classify cropland management systems, 491 
the inventory compiler should start at the top and proceed through the diagram answering questions 492 
(move across branches if answer is yes) until reaching a terminal point on the diagram.  The classification 493 
diagram is consistent with default stock change factors in Table 5.5. C input classes (i.e., low, medium, 494 
high and high with organic amendment) are further subdivided by tillage practice. 495 

. 496 

 497 
 498 

management data (Approach 1).  Time series data can be more readily associated with a particular cropping system 499 
(i.e., combination of crop type and management over a series of years), and the soil type can be determined by 500 
sampling or by referencing the location to a suitable soil map. Inventory points that are selected based on an 501 
appropriate statistical design also enable estimates of the variability associated with activity data, which can be 502 
used as part of a formal uncertainty analysis. An example of a survey using Approach 3 is the National Resource 503 
Inventory in the U.S. (Nusser and Goebel, 1997). 504 
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Activity data require additional in-country information to stratify areas by climate and soil types. If such 505 
information has not already been compiled, an initial approach would be to overlay available land cover/land-use 506 
maps (of national origin or from global datasets such as IGBP_DIS) with soil and climate maps of national origin 507 
or global sources, such as the FAO Soils Map of the World and climate data from the United Nations 508 
Environmental Program. A detailed description of the default climate and soil classification schemes is provided 509 
in Chapter 3, Annex 3A.5.  The soil classification is based on soil taxonomic description and textural data, while 510 
climate regions are based on mean annual temperatures and precipitation, elevation, occurrence of frost, and 511 
potential evapotranspiration. 512 

Tier 2  513 
Developing Country-Specific Factors for the Default Equations 514 
Tier 2 approaches are likely to involve a more detailed stratification of management systems than in Tier 1 (see 515 
Figure 5.1) if sufficient data are available. This can include further within country subdivisions of annual cropping 516 
input categories (i.e., low, medium, high, and high with amendment), rice cultivation, perennial cropping systems, 517 
and set-asides.  It is good practice to further subdivide default classes based on empirical data that demonstrates 518 
significant differences in soil organic C storage among the proposed categories.  In addition, Tier 2 approaches 519 
can involve a finer stratification of climate regions and soil types. 520 

For Tier 2, the specific definitions of management and input factors are typically made to match available activity 521 
data on how an activity affects C stocks.  For example, if a country has management factors related to specific 522 
tillage practices that involve a mix of intensities over time, then the country will also need activity data on those 523 
specific tillage practices to apply the country-specific factors. 524 

Three-Pool Steady-State C Model 525 
This method requires soil C input data based on the amount of biomass that is converted to dead organic matter 526 
annually. This rate will vary depending on the crop production, management activity, and other environmental 527 
variables.  Removals or reductions in dead organic matter are subtracted from the C input amount, which could 528 
occur with livestock grazing, grassland burning, or harvesting of grass for feed or bioenergy. Additions of C, 529 
particularly organic amendments such as manure, are included in the estimate of C input.  530 

It is good practice to estimate C input using country-specific factors in order to produce more accurate estimates.  531 
If country-specific factors are not available, Equation 5.1 can be used to estimate C inputs with factors provided 532 
in Section 11.2.1.2 of Chapter 11, Volume 4 (See Section 11.2.1.2 for more information). 533 

EQUATION 5. 0A  534 
CROPLAND LITTER CARBON INPUT FOR THREE-POOL STEADY-STATE C MODEL  535 

 536 

( ) ( ) ( ) ( )( ) ( ) ( ) 1 (input fT AG T Remove T Burnt T T BG T
T

C AGR C Frac Frac C BGR C   = − − • • +   •∑  537 

 ( ) ( ) ( ) ( ) ( )T T AG T T Renew TAGR Crop R Area Frac= • • •  538 

 ( )( ) ( ) ( )1 :T T AG T T TBGR Crop R R S Area• •= + •  539 

Where: 540 

inputC  = annual amount of C in crop residues (above and below ground), kg C yr-1 541 

( )TAGR  = annual total amount of above-ground crop residue for crop T, kg d.m. ha-1. (Use factors in Table 542 

11.2, Chapter 11, or alternatively, the amount can be calculated using the method and data in Table 543 
11.3, Chapter 11) 544 

( )AG TC  = C content of above-ground residues for crop T, kg C (kg d.m.) -1 (Default: 0.42 kg C (kg d.m.) -1) 545 

( )Remove TFrac  = fraction of above-ground residues of crop T removed annually for purposes such as feed, 546 

bedding and construction, dimensionless. Survey of experts in country is required to obtain data. If 547 
data for FracRemove are not available, assume no removal 548 

( )Burnt TFrac  = fraction of annual harvested area of crop T burnt, dimensionless 549 

Cf = combustion factor (dimensionless) (refer to Chapter 2, Table 2.7) 550 
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( )TBGR  = annual total amount of belowground crop residue for crop T, kg d.m. ha-1 551 

( )BG TC  = C content of below-ground residues for crop T, kg C (kg d.m.)-1, (Default: 0.42 kg C (kg d.m.) -552 
1) 553 

Crop(T) = harvested annual dry matter yield for crop T, kg d.m. ha-1 554 

RAG(T) = ratio of above-ground residues dry matter (AGDM(T)) to harvested yield for crop T (Crop(T)), kg 555 
d.m. (kg d.m.)-1, (Table 11.2) 556 

Area(T) = total annual area harvested of crop T, ha yr-1 557 

R:S(T) = ratio of below-ground root biomass to above-ground biomass for crop T, kg d.m. (kg d.m.)-1, (Table 558 
11.2) 559 

T = crop or forage type 560 

Data on crop yield statistics (yields and area harvested, by crop) may be obtained from national sources. If such 561 
data are not available, FAO publishes data on crop production: (http://faostat.fao.org/). Tillage management data 562 
are also required (proportion of full tillage, reduced tillage and no-till), and irrigation data for any lands that are 563 
provided supplement water (proportion of land). Monthly average temperature, precipitation and potential 564 
evapotranspiration is needed for each grid cell or region.  This information is available from global datasets, such 565 
as the CRU climate dataset (https://crudata.uea.ac.uk/cru/data/hrg/), if country-specific data are not available. The 566 
average sand content is needed for each grid cell or region, which is available from Harmonized World Soil 567 
Database (http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/).  568 

Tier 3  569 
For application of dynamic models and/or a direct measurement-based inventory in Tier 3, similar or more detailed 570 
data on the combinations of climate, soil, topographic and management data are needed, relative to the Tiers 1 and 571 
2 methods, but the exact requirements will depend on the model or measurement design. 572 

Organic soils  573 
No Refinement 574 

The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands provides 575 
additional guidance that updates the 2006 Guidelines for national Greenhouse Gas Inventories. See section 2.2 of 576 
the 2013 Wetlands Supplement covers Tier 1, 2, and 3 approaches for drained organic soils in cropland.   577 

Biochar C Amendments to Mineral Soils  578 

Tier 1  579 
The activity data required for the Tier 1 method includes the total quantities of biochar distributed for amendment 580 
to mineral soils. These data must be disaggregated by production type, where production type is defined as a 581 
process utilizing a specific feedstock type, and a specific conversion process (gasification, or high-, medium-, or 582 
low-temperature pyrolysis; Tables 2.4 and 2.5). In case data on the temperature of pyrolysis are unavailable, default 583 
factors for uncontrolled or unspecified pyrolysis temperatures are provided in Section 2.3.3.1 of Chapter 2, Volume 584 
IV.  Changes in soil C associated with biochar amendments is considered to occur where it is incorporated into 585 
soil. However, due to the distributed nature of the land sector in which this can take place, inventory compilers 586 
may not have access to data on when or where biochar C amendments occur. Therefore, for the purposes of Tier 587 
1 method, inventory compilers can rely on centralized records from biochar producers, importers, exporters or 588 
distributors, recording the quantity of biochar that has been provided to the land use sector for use as a soil 589 
amendment in the country. Note that exported biochar is not included in the total amount of biochar amended to 590 
soils in the country. Inventory compilers may further disaggregate amendments by land use if the data are available.     591 

Tier 2  592 
Tier 2 methods have the same activity data requirements as Tier 1 (quantities of biochar distributed for 593 
incorporation into mineral soils, disaggregated by production type). Additionally, activity data on the amount of 594 
biochar amendments may be disaggregated by climate zones and/or soil types if country-specific factors are 595 
disaggregated by these environmental variables. The additional climate and soil activity data may be obtained with 596 
a survey of biochar distributors and land managers.  597 

Tier 3  598 
The additional activity data required to support a Tier 3 method will depend on which processes are represented 599 
and environmental variables that are required as input to the model.  Priming, soil GHG emissions, and plant 600 
production responses to biochar all vary with biochar type, climate, and soil type. Furthermore, soil GHG 601 
emissions and plant production responses also vary with crop type and management. Therefore, Tier 3 methods 602 

http://faostat.fao.org/
https://crudata.uea.ac.uk/cru/data/hrg/
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/
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may require environmental data on climate zones, soil types, crop types and crop management systems (such as 603 
nitrogen fertilizer application rates, and whether soils are flooded for paddy rice production), in addition to the 604 
amount of biochar amendments in each of the individual combinations of strata for the environmental variables. 605 
More detailed activity data specifying the process conditions for biochar production or the physical and chemical 606 
characteristics of the biochar may also be required (such as surface area, cation exchange capacity, pH, and ash 607 
content). 608 

5.2.3.4 CALCULATION STEPS FOR TIER 1 609 

This section provides new guidance and updates. 610 

Mineral soils 611 
The steps for estimating SOC0 and SOC(0-T) and net soil C stock change per ha for Cropland Remaining Cropland 612 
on mineral soils are as follows: 613 

Step 1: Organize data into inventory time periods based on the years in which activity data were collected (e.g., 614 
1990 to 1995, 1995 to 2000, etc.) 615 

Step 2: Determine the amount Cropland Remaining Cropland by mineral soil types and climate regions in the 616 
country at the beginning of the first inventory time period.  The first year of the inventory time period will depend 617 
on the time step of the activity data (0-T; e.g., 5, 10 or 20 years ago). 618 

Step 3: Classify each Cropland into the appropriate management system using Figure 5.1.   619 

Step 4: Assign a native reference C stock values (SOCREF) from Table 2.3 based on climate and soil type.   620 

Step 5: Assign a land-use factor (FLU), management factor (FMG) and C input levels (FI) to each Cropland based 621 
on the management classification (Step 2).  Values for FLU, FMG and FI are given in Table 5.6.  622 

Step 6: Multiply the factors (FLU, FMG, FI) by the reference soil C stock (SOCREF) to estimate an ‘initial’ soil 623 
organic C stock (SOC(0-T)) for the inventory time period.    624 

Step 7: Estimate the final soil organic C stock (SOC0) by repeating Steps 1 to 5 using the same native reference 625 
C stock (SOCREF), but with land-use, management and input factors that represent conditions for each cropland in 626 
the last (year 0) inventory year.  627 

Step 8: Estimate the average annual change in soil organic C stocks for Cropland Remaining Cropland (∆CMineral) 628 
by subtracting the ‘initial’ soil organic C stock (SOC(0-T)) from the final soil organic C stock (SOC0), and then 629 
dividing by the time dependence of the stock change factors (i.e., 20 years using the default factors).  If an inventory 630 
time period is greater than 20 years, then divide by the difference in the initial and final year of the time period.  631 

Step 9: Repeat steps 2 to 8 if there are additional inventory time periods (e.g., 1990 to 2000, 2001 to 2010, 632 
etc.). 633 

A numerical example is given below for Cropland Remaining Cropland on mineral soils, using Equation 2.25 and 634 
default reference C stocks (Table 2.3) and stock change factors (Table 5.6). 635 
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Example: The following example shows calculations for aggregate areas of cropland soil carbon 636 
stock change. In a warm temperate wet climate on  high activity clay soils there are 1Mha of 637 
permanent annual cropland. The native reference carbon stock (SOCREF) for the region is 64 tonnes 638 
C ha-1. At the beginning of the inventory calculation period (in this example, 10 yrs earlier in 1990), 639 
the distribution of cropland systems were 400,000 ha of annual cropland with low carbon input levels 640 
and full tillage and 600,000 ha of annual cropland with medium input levels and full tillage. Thus, 641 
initial soil carbon stocks for the area were:  642 

400,000 ha ● (64  tonnes C ha-1 ● 0.75 ● 1 ● 0.92) + 600,000 ha ● (64 tonnes C ha-1 ● 0.75 ● 1 ● 643 
1) = 46.46 million tonnes C.  644 

In the last year of the inventory time period (in this example, the last year is 2000), there are: 200,000 645 
ha of annual cropping with full tillage and low C input, 700,000 ha of annual cropping with reduced 646 
tillage and medium C input, and 100,000 ha of annual cropping with no-till and medium C input. 647 
Thus, total soil carbon stocks based on the inventory year are:  648 

200,000 ha ● (64 tonnes C ha-1 ● 0.75 ● 1 ● 0.92) + 700,000 ha ● (64 tonnes C ha-1 ● 0.75 ● 1.01 649 
● 1) + 100,000 ha ● (64 tonnes C ha-1 ● 0.75 ● 1.11 ● 1) = 49.06 million tonnes C.  650 

Thus, the average annual stock change over the period for the entire area is: 49;06 – 46.46 = 2.60 651 
million tonnes/20 yr = 130000 tonnes C per year soil C stock increase (Note: 20 years is the time 652 
dependence of the stock change factor, i.e., factor represents annual rate of change over 20 years).  653 

Organic soils  654 
No Refinement 655 

The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands provides 656 
additional guidance that updates the 2006 Guidelines for national Greenhouse Gas Inventories. See section 2.2 of 657 
the 2013 Wetlands Supplement covers Tier 1, 2, and 3 approaches for drained organic soils in cropland.   658 

Biochar C Amendments to Mineral Soils  659 

Step 1: Organize data of the annual amount of biochar applied to cropland by feedstock type and,pyrolysis 660 
production method according to divisions described for biochar in Vol. 4, Chapter 2, Section 2.3.3.1.   661 

Step 2: Calcuate the annual change in biochar C stocks.      662 

A numerical example is given below for Cropland Remaining Cropland on mineral soils, using Vol. 4 Chapter 2, 663 
Equation 2.25A and default values for carbon content (Table 2.3A) and for fraction of biochar remaining after 664 
1000 years (Table 2.3B)  665 

Example: The following example shows calculations for biochar additions to cropland.  The 666 
following amounts and types of biochar are applied:  2,000 tonnes of biochar produced from 667 
meditum temperature pyrolysis of animal mauure, 50,000 tonnes per year of biochar from high-668 
temperature gasification of wood chips, and 15,000 tonnes of per year of biochar from low 669 
temperature pyrolysis of rice husks.   The annual change in biochar C stocks is: 670 

2000 ● 0.38 ● 0.24  +  50000 ● 0.52 ● 0.38 + 15000 ● 0.49 ● 0.09 = 10,723.9 tonnes  C   671 

5.2.3.5 UNCERTAINTY ASSESSMENT 672 

No Refinement 673 

5.2.4 Non-CO2 greenhouse gas emissions from biomass 674 

burning 675 

No Refinement  676 
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5.3 LAND CONVERTED TO CROPLAND 677 

No Refinement in the Introduction 678 

5.3.1 Biomass 679 

5.3.1.1 CHOICE OF METHOD 680 

This section provides elaboration on how to calculate ∆CG. 681 

This section provides guidance on methods for calculating carbon stock change in biomass due to the conversion 682 
of land from natural conditions and other uses to Cropland, including deforestation and conversion of pasture and 683 
grazing lands to Cropland. The methods require estimates of carbon in biomass stocks prior to and following 684 
conversion, based on estimates of the areas of lands converted during the period between land-use surveys. As a 685 
result of conversion to Cropland, it is assumed (in Tier 1) that the dominant vegetation is removed entirely leading 686 
to emissions, resulting in near zero amounts of carbon remaining in biomass. Some type of cropping system is 687 
planted soon thereafter increasing the amount of carbon stored in biomass. The difference between initial and final 688 
biomass carbon pools is used to calculate carbon stock change from land-use conversion;  and in subsequent years 689 
accumulations and losses in perennial woody biomass in Cropland are counted using methods in Section 5.2.1 690 
(Cropland Remaining Cropland).  691 

It is good practice to consider all carbon pools (i.e., above ground and below ground biomass, dead organic matter, 692 
and soils) in estimating changes in carbon stocks in Land Converted to Cropland. Currently, there is insufficient 693 
information to provide a default approach with default parameters to estimate carbon stock change in dead organic 694 
matter (DOM) pools3. DOM is unlikely to be important except in the year of conversion. It is assumed that there 695 
will be no DOM in Cropland. In addition, the methodology below considers only carbon stock change in above-696 
ground biomass since limited data are available on below-ground carbon stocks in perennial Cropland. 697 

The IPCC Guidelines describe increasingly sophisticated alternatives that incorporate greater detail on the areas 698 
of land converted, carbon stocks on lands, and loss of carbon resulting from land conversions. It is good practice 699 
to adopt the appropriate tier depending on key source analysis, data availability and national circumstances. All 700 
countries should strive for improving inventory and reporting approaches by advancing to the highest tier possible 701 
given national circumstances. It is good practice for countries to use a Tier 2 or Tier 3 approach if carbon emissions 702 
and removals in Land Converted to Cropland is a key category and if the sub-category of biomass is considered 703 
significant based on principles outlined in Volume 1, Chapter 4. Countries should use the decision tree in Figure 704 
1.3 to help with the choice of method. Land Converted to Cropland is likely to be a key category for many countries 705 
and further biomass is likely to be a key source.  706 

Tier 1  707 
The Tier 1 method follows the approach in Chapter 4 (Forest Land) where the amount of biomass that is cleared 708 
for cropland is estimated by multiplying the area converted in one year by the average carbon stock in biomass in 709 
the Forest Land or Grassland prior to conversion. It is good practice to account completely for all land conversions 710 
to Cropland. Thus, this section elaborates on the method such that it includes different initial uses, including but 711 
not limited to forests.  712 

Equation 2.15 in Chapter 2 summarises the major elements of a first-order estimation of carbon stock change from 713 
land-use conversion to Cropland. Average carbon stock change on a per hectare basis is estimated for each type 714 
of conversion. The average carbon stock change is equal to the carbon stock change due to the removal of biomass 715 
from the initial land use (i.e., carbon in biomass immediately after conversion minus the carbon in biomass prior 716 
to conversion), plus carbon stocks from one year of growth in Cropland following conversion. It is necessary to 717 
account only for any woody vegetation that replaces the vegetation that was cleared during land-use conversion. 718 
The GPG-LULUCF combines carbon in biomass after conversion and carbon in biomass that grows on the land 719 
following conversion into a single term. In this method, they are separated into two terms, BAFTER and ∆CG to 720 
increase transparency.  721 

As described in section 5.3.1.1., at Tier 1, carbon stocks in biomass immediately after conversion (BAFTER) are 722 
assumed to be zero, since the land is cleared of all vegetation before planting crops. Average carbon stock change 723 
per hectare for a given land-use conversion is multiplied by the estimated area of lands undergoing such a 724 
conversion in a given year. In subsequent years, change in biomass of annual crops is considered zero because 725 
                                                           
3 Any litter and dead wood pools (estimated using the methods described in Chapter 2, Section 2.3.2) should be assumed 

oxidized following land conversion. 
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carbon gains in biomass from annual growth are offset by losses from harvesting. Changes in biomass of perennial 726 
woody crops are counted following the methodology in Section 2.3.1.1 (Change in carbon stocks in biomass in 727 
land remaining in a land-use category) and Section 5.2.1 (Change in carbon stocks in biomass in cropland 728 
remaining cropland).  Thus, carbon gain of an annual crop is estimated only for the first year following a conversion, 729 
whereas, carbon gains and losses of perennial woody crop may also occur in subsequent years up to 20 years (at 730 
maximum).  731 

The default assumption for Tier 1 is that all carbon in biomass removed is lost to the atmosphere through burning 732 
or decay processes either on-site or off-site. Tier 1 calculations do not differentiate immediate emissions from 733 
burning and other conversion related losses.   734 

Tier 2  735 
The Tier 2 calculations are structurally similar to Tier 1, with the following distinctions. First, Tier 2 relies largely 736 
on country-specific estimates of the carbon stocks in initial and final land uses rather than the default data. Area 737 
estimates for Land Converted to Cropland are disaggregated according to original vegetation (e.g., from Forest 738 
Land or Grassland) at finer spatial scales to capture regional and crop systems variations in country-specific carbon 739 
stocks values. 740 

Second, Tier 2 may modify the assumption that carbon stocks immediately following conversion are zero. This 741 
enables countries to take into account land-use transitions where some, but not all, vegetation from the original 742 
land use is removed. 743 

Third, under Tier 2, it is good practice to apportion carbon losses to burning and decay processes if applicable. 744 
Emissions of carbon dioxide occur as a result of burning and decay in land-use conversions. Further, non-CO2 745 
trace gas emissions occur as a result of burning. By partitioning losses to burning and decay, countries can also 746 
calculate non-CO2 trace gas emissions from burning (Section 5.3.4).  747 

The immediate impacts of land conversion activities on the five carbon stocks can be summarized in a disturbance 748 
matrix, which describes the retention, transfers and releases of carbon in the pools in the original ecosystem 749 
following conversion to Cropland. A disturbance matrix defines for each pool the proportion that remains in that 750 
pool and the proportion that is transferred to other pools.  A small number of transfers are possible, and are outlined 751 
in a disturbance matrix in Table 5.7.  The disturbance matrix ensures consistency of the accounting of all carbon 752 
pools. 753 

Biomass transfers to dead wood and litter can be estimated using Equation 2.20. 754 

Tier 3  755 
The Tier 3 method is similar to Tier 2, with the following distinctions: i) rather than relying on average annual 756 
rates of conversion, countries can use direct estimates of spatially disaggregated areas converted annually for each 757 
initial and final land use; ii) carbon densities and soil carbon stock change are based on locally specific information, 758 
which makes possible a dynamic link between biomass and soil; and iii) biomass volumes are based on actual 759 
inventories. The transfer of biomass, to dead wood and litter following land-use conversion can be estimated using 760 
Equation 2.20. 761 

5.3.1.2 CHOICE OF EMISSION FACTORS 762 

This section provides elaboration on methods and updates. 763 

The emission/removal factors needed for the default method are: carbon stocks before conversion in the initial 764 
land use and after conversion to Cropland; and growth in biomass carbon stock from one year of cropland growth. 765 

Tier 1  766 
Default biomass carbon stock in initial land-use categories (BBEFORE) mainly Forest Land and Grassland are 767 
provided in Updated Table 5.8. Initial land-use based carbon stocks should be obtained for different Forest Land 768 
or Grassland categories based on biome type, climate, soil management systems, etc. It is assumed that all biomass 769 
is cleared when preparing a site for cropland use, thus, the default for BAFTER is 0 tonne C ha-1.  770 

 771 

 772 

 773 

 774 

 775 

 776 
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 777 

TABLE 5. 7  
EXAMPLE OF A SIMPLE DISTURBANCE MATRIX (TIER 2) FOR THE IMPACTS OF LAND CONVERSION ACTIVITIES ON CARBON 

POOLS  

To 
 
From 

Above-
ground 
biomass 

 

Below-
ground 
biomass 

 

Dead 
wood 

Litter Soil 
organ-

ic 
matter 

Harvest-
ed wood 
products 

Atmo-
sphere 

Sum of 
row 

(must 
equal 1) 

Above-ground 
biomass 

        

Below-ground 
biomass 

        

Dead wood 
        

Litter 
        

Soil organic 
matter 

        

Enter the proportion of each pool on the left side of the matrix that is transferred to the pool at the top of each column.  All of the pools 
on the left side of the matrix must be fully accounted, so the values in each row must sum to 1. 
Impossible transitions are blacked out. 

 778 

In addition, a value is needed for carbon stocks after one year of growth in crops planted after conversion (∆CG). 779 
Updated Table 5.9 provides general defaults for annual and perennial crop for ∆CG  while updated Table 5.4 780 
provides defaults for specific perennial crops. Separate defaults are provided for annual non-woody crops and 781 
perennial woody crops. For lands planted in annual crops, the default value of ∆CG is 4.7 tonnes of C per hectare, 782 
based on the original IPCC Guidelines recommendation of 10 tonnes of dry biomass per hectare (dry biomass has 783 
been converted to tonnes carbon in Table 5.9). The total accumulation of carbon in perennial woody biomass will, 784 
over time, exceed that of the default carbon stock for annual cropland. However, default values provided in this 785 
section are for one year of growth immediately following conversion, which usually give lower carbon stocks for 786 
perennial woody crops compared to annual crops.  787 

UPDATED1 - TABLE 5. 8  
DEFAULT BIOMASS CARBON STOCKS REMOVED DUE TO LAND CONVERSION TO CROPLAND  

Land-use category 
Carbon stock in biomass* before conversion (BBefore) 

(tonnes C ha-1)  
Error range # 

Forest Land 

See Chapter 4 Tables 4.7 to 4.12 for carbon stocks in a range of forest types 
by climate regions. Stocks are in terms of dry matter. Multiply values by a 
carbon fraction (CF) in Table 4.3 consistent with what used in forest land 
estimation to convert dry matter to carbon. 

See Section 4.3 
(Land Converted to 

Forest Land) 

Grassland 

See Chapter 6 Table 6.4 for carbon stocks in a range of grassland types by 
climate regions. Multiply default carbon fraction (CF) 0.47 (for herbaceous 
biomass for Grassland, see page 6.29, Chapter 6 of the 2006 guidelines to 
convert dry matter to carbon. 

+ 75% 
[This range may 
change based on 

updated Table 6.4] 
1 Updates Table 5.8 from the IPCC 2006 Guidelines. 
* Note that the condition of forests that are converted to grassland or cropland is not likely to be typical of the forest type in general, i.e. the 
carbon stocks are probably lower than average (Carter et al. 2017; Puhlick et al 2017). Specific values for disturbed forest may be 
appropriate. 
# Represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean. 

 788 

 789 

 790 

 791 

 792 
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 793 

UPDATED1 - TABLE 5. 9 
DEFAULT BIOMASS CARBON STOCKS PRESENT ON LAND CONVERTED TO CROPLAND IN THE YEAR FOLLOWING 

CONVERSION   

Crop type by 
climate region 

Ecological 
zone Continent Cropping system 

Carbon stock in 
biomass after one 

year (∆CG) 
(tonnes C ha-1) 

Error 
range# 

Annual cropland All All Annual cropland 4.7 + 75% 

Perennial 
cropland 

All All Agroforestry See G in Tables 5.1 
and 5.3  

All All Monocultures See G in Table 5.4  
1 Update to Table 5.9 in the 2006 IPCC Guidelines   
# Represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean. 

 794 

 795 

Tier 2  796 
Tier 2 methods should include some country-specific estimates for biomass stocks and removals due to land 797 
conversion, and also include estimates of on-site and off-site losses due to burning and decay following land 798 
conversion to Cropland. These improvements can take the form of systematic studies of carbon content and 799 
emissions and removals associated with land uses and land-use conversions within the country and a re-800 
examination of default assumptions in light of country-specific conditions. In general, the condition of forests that 801 
are converted to grassland or cropland is not likely to be typical of the forest type, i.e. the carbon stocks are 802 
probably lower than average. It is good practice for countries to evaluate country specific values for disturbed 803 
forest under Tier 2. 804 

Default parameters for emissions from burning and decay are provided. However, countries are encouraged to 805 
develop country-specific coefficients to improve the accuracy of estimates. The IPCC Guidelines use a general 806 
default of 0.5 for the proportion of biomass burnt on-site for both Forest Land and Grassland conversions. Research 807 
studies suggest that the fraction is highly variable and could be as low as 0.2 (Fearnside, 2000; Barbosa and 808 
Fearnside, 1996; and Fearnside, 1990). Updated default proportions of biomass burnt on-site are provided in 809 
Chapter 4 (Forest Land) for a range of forest vegetation classes. These defaults should be used for transitions from 810 
Forest Land to Cropland. For non-forest initial land uses, the default proportion of biomass left on-site and burnt 811 
is 0.35. This default takes into consideration research, which suggests the fraction should fall within the range 0.2 812 
to 0.5 (e.g., Fearnside, 2000; Barbosa and Fearnside, 1996; and Fearnside, 1990). It is good practice for countries 813 
to use 0.35 or another value within this range, provided that the rationale for the choice is documented. There is 814 
no default value for the amount of biomass taken off-site and burnt; countries will need to develop a proportion 815 
based on national data sources. In Chapter 4 (Forest Land), the default proportion of biomass oxidized as a result 816 
of burning is 0.9, as originally stated in the GPG-LULUCF. 817 

The method for estimating emissions from decay assumes that all biomass decays over a period of 10 years. For 818 
reporting purposes countries have two options: 1) report all emissions from decay in one year, recognizing that in 819 
reality they occur over a 10 year period, and 2) report all emission from decay on an annual basis, estimating the 820 
rate as one tenth of the totals. If countries choose the latter option, they should add a multiplication factor of 0.10 821 
to the equation. 822 

Tier 3  823 
Under Tier 3, all parameters should be country-defined using measurements and monitoring for more accurate 824 
values rather than the defaults. Process based models and decay functions can also be used. 825 

5.3.1.3 CHOICE OF ACTIVITY DATA 826 

This section provides an elaboration clarifying the activity data required for carbon gain estimation. 827 

All tiers require estimates of land areas converted to Cropland. The same area estimates should be used for both 828 
biomass and soil C calculations on Land Converted to Cropland. Higher tiers require greater specificity of areas. 829 
At a minimum, the area of Forest Land and natural Grassland converted to Cropland should be identified separately 830 
for all tiers. This implies at least some knowledge of the land uses prior to conversion. This may also require expert 831 
judgment if Approach 1 in Chapter 3 of these guidelines is used for land area identification.  832 
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Tier 1  833 
Separate estimates are required of areas converted to Cropland from initial land uses (i.e., Forest Land, Grassland, 834 
Settlements, etc.) to final crop land type (i.e., annual or perennial) (ATO_OTHERS). For example, countries should 835 
estimate separately the area of tropical moist forest converted to annual cropland, tropical moist forest converted 836 
to perennial cropland, tropical moist Grassland converted to perennial cropland, etc. Although, to allow other pools 837 
to equilibrate and for consistency with land area estimation overall, land areas should remain in the conversion 838 
category for 20 years (or other period reflecting national circumstances) following conversion. The methodology 839 
assumes that area estimates are based on a one-year time frame, which is likely to require estimation on the basis 840 
of average rates on land-use conversion, determined by measurements estimates made at longer intervals. If 841 
countries do not have these data, partial samples may be extrapolated to the entire land base or historic estimates 842 
of conversions may be extrapolated over time based on the judgement of country experts. Under Tier 1 calculations, 843 
international statistics such as FAO databases, IPCC GPG Reports and other sources, supplemented with sound 844 
assumptions, can be used to estimate the area of Land Converted to Cropland from each initial land use. For higher 845 
tier calculations, country-specific data sources are used to estimate all possible transitions from initial land use to 846 
final crop type.  For perennial woody cropland, the total area of planted perennial woody crops for the age classes 847 
within the maturing/harvesting cycle (up to 20 years) is required to estimate all biomass carbon change (∆CG). See 848 
section 5.2.1.3 for details. 849 

 850 

Tier 2  851 
It is good practice for countries to use actual area estimates for all possible transitions from initial land use to final 852 
crop type. Full coverage of land areas can be accomplished either through analysis of periodic remotely sensed 853 
images of land-use and land cover patterns, through periodic ground-based sampling of land-use patterns, or hybrid 854 
inventory systems. If finer resolution country-specific data are partially available, countries are encouraged to use 855 
sound assumptions from best available knowledge to extrapolate to the entire land base. Historic estimates of 856 
conversions may be extrapolated over time based on the judgment of country experts.  857 

Tier 3  858 
Activity data used in Tier 3 calculations should be a full accounting of all land-use transitions to Cropland and be 859 
disaggregated to account for different conditions within a country. Disaggregation can occur along political 860 
(county, province, etc.), biome, climate, or on a combination of such parameters. In many cases, countries may 861 
have information on multi-year trends in land conversion (from periodic sample-based or remotely sensed 862 
inventories of land use and land cover). Periodic land-use change matrix need to be developed giving the initial 863 
and final land-use areas at disaggregated level based on remote sensing and field surveys. 864 

5.4.1.4 CALCULATION STEPS FOR TIER 1 AND TIER 2 865 

No Refinement 866 

5.4.1.5 UNCERTAINTY ASSESSMENT 867 

No Refinement 868 

5.3.2 Dead Organic Matter 869 

No Refinement 870 

5.3.3 Soil carbon 871 

No Refinement in the Introduction 872 

Land is typically converted to Cropland from native lands, managed Forest Land and Grassland, but occasionally 873 
conversions can occur from Wetlands and seldom Settlements.  Regardless of soil type (i.e., mineral or organic), 874 
the conversion of land to Cropland will, in most cases, result in a loss of soil C for some years following conversion 875 
(Mann, 1986; Armentano and Menges, 1986; Davidson and Ackerman, 1993). Possible exceptions are irrigation 876 
of formerly arid lands and conversion of degraded lands to Cropland.  877 

General information and guidance for estimating changes in soil C stocks are provided in Section 2.3.3 of Chapter 878 
2 (including equations), and that section needs to be read before proceeding with a consideration of specific 879 
guidelines dealing with cropland soil C stocks. The total change in soil C stocks for Land Converted to Cropland 880 
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is estimated using Equation 2.24 (Chapter 2), which combines the change in soil organic C stocks (SOC stocks) 881 
for mineral soils and organic soils; and stock changes associated with soil inorganic C pools (Tier 3 only).  This 882 
section provides specific guidance for estimating soil organic C stock changes; see Section 2.3.3.1 for discussion 883 
on soil inorganic C (no additional guidance is provided in the Cropland section below). 884 

To account for changes in soil C stocks associated with Land Converted to Cropland, countries need to have, at a 885 
minimum, estimates of the areas of Land Converted to Cropland during the inventory time period. If land-use and 886 
management data are limited, aggregate data, such as FAO statistics, can be used as a starting point, along with 887 
knowledge of country experts of the approximate distribution of land-use types being converted and their 888 
associated management. If the previous land uses and conversions are unknown, SOC stocks changes can still be 889 
computed using the methods provided in Cropland Remaining Cropland, but the land base area will likely be 890 
different for croplands in the current year relative to the initial year in the inventory.  It is critical, however, that 891 
the total land area across all land-use sectors be equal over the inventory time period (e.g., 7 million ha may be 892 
converted from Forest Land and Grassland to Cropland during the inventory time period, meaning that croplands 893 
will have an additional 7 Million ha in the last year of the inventory, while grasslands and forests will have a 894 
corresponding loss of 7 Million ha in the last year).  Land Converted to Cropland is stratified according to climate 895 
regions and major soil types, which could either be based on default or country-specific classifications. This can 896 
be accomplished with overlays of climate and soil maps, coupled with spatially-explicit data on the location of 897 
land conversions. 898 

5.3.3.1 CHOICE OF METHOD 899 

This section contains elaboration on methods and new guidance. 900 

Inventories can be developed using a Tier 1, 2 or 3 approach with each successive tier requiring more detail and 901 
resources than the previous one.  It is also possible that countries will use different tiers to prepare estimates for 902 
the separate subcategories of soil C (i.e., soil organic C stocks changes in mineral soils and organic soils; and stock 903 
changes associated with soil inorganic C pools).  Decision trees are provided for mineral soils (Figure 2.5) and 904 
organic soils (Figure 2.6) in Section 2.3.3.1 (Chapter 2) to assist inventory compilers with selection of the 905 
appropriate tier for their soil C inventory. 906 

Mineral soils 907 

Tier 1  908 
Soil organic C stock changes for mineral soils can be estimated for land-use conversion to Cropland using Equation 909 
2.25 in Chapter 2.  For Tier 1, the initial (pre-conversion) soil organic C stock (SOC(0-T)) and C stock in the last 910 
year of the inventory time period (SOC0) are computed from the default reference soil organic C stocks (SOCREF) 911 
and default stock change factors (FLU, FMG, FI).  Annual rates of stock changes are estimated as the difference in 912 
stocks (over time) divided by the time dependence (D) of the Cropland stock change factors (default is 20 years).   913 

Tier 2  914 
Developing Country-Specific Factors for the Default Equations 915 
The Tier 2 method for mineral soils also uses Equation 2.25, but involves country-specific or region-specific 916 
reference C stocks and/or stock change factors and may include disaggregated land-use activity and environmental 917 
data.  918 

Three-Pool Steady-State C Model 919 
The three-pool steady-state soil C model is based on estimating C inputs to soils and applying soil carbon pool 920 
specific decomposition rates that are modified by given environmental conditions and management practices. This 921 
model embraces more of the heterogeneity in soils, by subdividing soil C pool into different rates of turnover, i.e., 922 
fast (Active Pool), intermediate (Slow Pool) , and long turnover times (Passive Pool). 923 

Tier 3  924 
Tier 3 methods will involve more detailed and country-specific models and/or measurement-based approaches 925 
along with highly disaggregated land-use and management data. Tier 3 approaches estimate soil C change from 926 
land-use conversions to Cropland, and may employ models, data sets and/or monitoring networks.  If possible, it 927 
is recommended that Tier 3 methods be integrated with estimates of biomass removal and the post-clearance 928 
treatment of plant residues (including woody debris and litter), as variation in the removal and treatment of residues 929 
(e.g., burning, site preparation) will affect C inputs to soil organic matter formation and C losses through 930 
decomposition and combustion. It is important that models be evaluated with independent observations from 931 
country-specific or region-specific field locations that are representative of the interactions of climate, soil and 932 
cropland management on post-conversion change in soil C stocks. 933 

Organic soils  934 
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No Refinement 935 

The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands provides 936 
additional guidance that updates the 2006 Guidelines for national Greenhouse Gas Inventories. See section 2.2 of 937 
the 2013 Wetlands Supplement covers Tier 1, 2, and 3 approaches for drained organic soils in cropland.   938 

Biochar C Amendments to Mineral Soils  939 

Tier 1  940 
This methodology utilizes a top-down approach in which the total amount of biochar generated and added to 941 
mineral soil is used to estimate the change in soil organic C stocks.  Use Equation 2.27 to estimate the change in 942 
C stock from biochar amendments in Chapter 2, Section 2.3.3.1, Volume IV.   943 

Tier 2  944 
Tier 2 methods use the same definitions and equations as Tier 1, but with country-specific factors.  See Section 945 
2.3.3.1, Chapter 2, Volume IV for more information.  946 

Tier 3  947 
Tier 3 methods can be used to account for GHG sources and sinks not captured in Tiers 1 or 2, such as priming, 948 
changes to N2O or CH4 fluxes from soils, and changes to net primary production. More information on Tier 3 949 
methods is provided in Section 2.3.3.1 of Chapter 2, Volume IV. 950 

5.3.3.2 CHOICE OF STOCK CHANGE AND EMISSION FACTORS 951 

This section contains elaboration on methods and new guidance. 952 

Mineral soils 953 

Tier 1  954 
For native unmanaged land, as well as for managed forest lands, settlements and nominally managed grasslands 955 
with low disturbance regimes, soil C stocks are assumed equal to the reference values (i.e., land-use, disturbance 956 
(forests only), management and input factors equal 1), while it will be necessary to apply the appropriate stock 957 
change factors to represent previous land-use systems that are not the reference condition, such as improved and 958 
degraded grasslands.  It will also be necessary to apply the appropriate stock change factor to represent input and 959 
management effects on soil C storage in the new cropland system.  Default reference C stocks are found in Table 960 
2.3 (Chapter 2).  See the appropriate land-use chapter for default stock change factors. 961 

In the case of transient land-use conversions to Cropland, the stock change factors are given in Table 5.10, and 962 
depend on the length of the fallow (vegetation recovery) cycle in a shifting cultivation system, representing an 963 
average soil C stock over the crop-fallow cycle. Mature fallow denotes situations where the non-cropland 964 
vegetation (e.g., forests) recovers to a mature or near mature state prior to being cleared again for cropland use, 965 
whereas in shortened fallow, vegetation recovery is not attained prior to re-clearing. If land already in shifting-966 
cultivation is converted to permanent Cropland (or other land uses), the stock change factors representing shifting 967 
cultivation would provide the ‘initial’ C stocks (SOC(0-T)) in the calculations using Equation 2.25 (Chapter 2).  968 

 969 

TABLE 5. 10 
SOIL STOCK CHANGE FACTORS  (FLU, FMG, FI) FOR LAND-USE CONVERSIONS TO CROPLAND   

Factor value 
type Level Climate 

regime 
IPCC 

default 
Error

# Definition 
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Land use 
Native forest or 

grassland 
 (non-degraded) 

All 1 NA Represents native or long-term, non-
degraded and sustainably managed forest 

and grasslands. Tropical 1 NA 

Land use 

Shifting cultivation 
– Shortened fallow Tropical 0.64 + 50% Permanent shifting cultivation, where 

tropical forest or woodland is cleared for 
planting of annual crops for a short time 
(e.g., 3-5 yr) period and then abandoned 

to regrowth.  
Shifting cultivation 

– Mature fallow Tropical 0.8 + 50% 

Land-use, 
Management, 
& Input 

Managed forest (default value is 1) 

Land-use, 
Management, 
& Input 

Managed grassland (See default values in Table 6.2) 

Land-use, 
Management, 
& Input 

Cropland (See default values in Table 5.5) 

# Represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean. NA denotes ‘Not 
Applicable’, where factor values constitute defined reference values. 

Tier 2  970 
Developing Country-Specific Factors for the Default Equations 971 
Estimation of country-specific stock change factors is probably the most important development associated with 972 
the Tier 2 approach.  Differences in soil organic C stocks among land uses are computed relative to a reference 973 
condition, using land-use factors (FLU).  Input factors (FI) and management factors (FMG) are then used to further 974 
refine the C stocks of the new cropland system.  Additional guidance on how to derive these stock change factors 975 
is given in Croplands Remaining Croplands, Section 5.2.3.2. See the appropriate chapter for specific information 976 
regarding the derivation of stock change factors for other land-use categories (Forest Land in Section 4.2.3.2, 977 
Grassland in 6.2.3.2, Settlements in 8.2.3.2, and Other Land in 9.3.3.2).  978 

Reference C stocks can be derived from country-specific data in a Tier 2 approach.  Reference values in Tier 1 979 
correspond to non-degraded, unimproved lands under native vegetation, but other reference conditions can also be 980 
chosen for Tier 2. In general, reference C stocks should be consistent across the land uses (i.e., Forest Land, 981 
Cropland, Grassland, Settlements, Other Land) (see section 2.3.3.1). Therefore, the same reference stock should 982 
be used for each climate zone and soil type, regardless of the land use. The reference stock is then multiplied by 983 
land use, input and management factors to estimate the stock for each land use based on the set of management 984 
systems that are present in a country. In addition, the depth for evaluating soil C stock changes can be different 985 
with the Tier 2 method. However, this will require consistency with the depth of the reference C stocks (SOCREF) 986 
and stock change factors for all land uses (i.e., FLU, FI, and FMG) to ensure consistency. 987 

The Tier 1 method may over- or under-estimate soil C stock changes on an annual basis, particularly with land use 988 
change (e.g., Villarino et al., 2014). Therefore, land use change, such as Croplands converted to Grasslands, may 989 
include development of factors that estimate changes over longer periods of time than the default of 20 years, and 990 
may better match the period of time over which carbon accumulates of is lost from soils due to land use change.  991 

The carbon stock estimates may be improved when deriving country-specific factors for FLU and FMG, by 992 
expressing carbon stocks on a soil-mass equivalent basis rather than a soil-volume equivalent (i.e. fixed depth) 993 
basis. This is because the soil mass in a certain soil depth changes with the various operations associated with land 994 
use that affect the density of the soil, such as uprooting, land leveling, tillage, and rain compaction due to the 995 
disappearance of the cover of tree canopy. However, it is important to realize that all data used to derive stock 996 
change factors across all land uses must be on an equivalent mass basis if this method is applied.  This will be 997 
challenging to do comprehensively for all land uses. See Box 2.2C in Chapter2, Section 2.3.3.1 for more 998 
information. 999 

 1000 

 1001 

Three-Pool Steady-State C Model 1002 
Default parameters are provided for the three-pool steady-state C pool equations (Chapter 2, Section 2.3.3.1, Table 1003 
2.6), but parameters may be revised if experimental data are available to test the model.  Lignin and nitrogen 1004 
contents are also needed for the C input data (See Section 5.2.3.2 for crop data, and Section 6.2.3.2 for grass data). 1005 

Tier 3  1006 
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Constant stock change rate factors per se are less likely to be estimated in favor of variable rates that more 1007 
accurately capture land-use and management effects. See Chapter 2, Section 2.3.3.1 for further discussion.  1008 

Organic soils  1009 
No Refinement 1010 

The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands provides 1011 
additional guidance that updates the 2006 Guidelines for national Greenhouse Gas Inventories. See section 2.2 of 1012 
the 2013 Wetlands Supplement covers Tier 1, 2, and 3 approaches for drained organic soils in cropland.   1013 

Biochar C Amendments to Mineral Soils  1014 

Tier 1  1015 
Default emission factors are provided in Chapter 2, Section 2.3.3.1, Volume IV.    1016 

Tier 2  1017 
Tier 2 emission factors may be further disaggregated relative to the default factors based on variation in 1018 
environmental conditions, such as the climate and soil types, in addition to variation associated with the biochar 1019 
production methods. See Section 2.3.3.1, Chapter 2, Volume IV for more information.  1020 

If country-specific emission factors (i.e., degradation or permenance factors) for biochar C for croplands are 1021 
different from the past land use for Land Converted to Cropland, these degradation differences need to be 1022 
addressed in the calculations.  This requires estimating the biochar carbon stocks from past biochar carbon 1023 
additions that remain in Land Converted to Cropland after conversion. The biochar C stocks are then subject to 1024 
the degradation for cropland, which may lead some additional loss of biochar C. 1025 

Tier 3  1026 
Tier 3 methods are country-specific and may involve empirical or process-based models to account for a broader 1027 
set of impacts of biochar amendments. These methods will likely estimate biochar C stocks and associated changes 1028 
over time so the biochar C stocks in Land Converted to Cropland will need to be tracked through the land use 1029 
change process. More information on Tier 3 methods is provided in Section 2.3.3.1, Chapter 2, Volume IV. 1030 

5.3.3.3 CHOICE OF ACTIVITY DATA 1031 

This section contains elaboration on methods and new guidance. 1032 

Mineral soils 1033 

Tier 1  and Tier 2  -  Default  Equations  1034 
For purposes of estimating soil carbon stock change, area estimates of Land Converted to Cropland should be 1035 
stratified according to major climate regions and soil types. This can be based on overlays with suitable climate 1036 
and soil maps and spatially-explicit data of the location of land conversions. Detailed descriptions of the default 1037 
climate and soil classification schemes are provided in Chapter 3, Annex 3A.5. Specific information is provided 1038 
in the each of the land-use chapters regarding treatment of land-use/management activity data (Forest Land in 1039 
Section 4.2.3.3, Cropland in 5.2.3.3, Grassland in 6.2.3.3, Settlements in 8.2.3.3, and Other Land in 9.3.3.3).   1040 

One critical issue in evaluating the impact of Land Converted to Cropland on soil organic C stocks is the type of 1041 
land-use and management activity data.  Activity data gathered using Approach 2 or 3 (see Chapter 3 for discussion 1042 
about approaches) provide the underlying basis for determining the previous land use for Land Converted to 1043 
Cropland.  In contrast, aggregate data (Approach 1, Chapter 3) only provide the total amount of area in each land 1044 
at the beginning and end of the inventory period (e.g., 1985 and 2005).  Approach 1 data are not sufficient to 1045 
determine specific transitions. In this case all Cropland will be reported in the Cropland Remaining Cropland 1046 
category and in effect transitions become step changes across the landscape. This makes it particularly important 1047 
to achieve coordination among all land sectors to ensure that the total land base is remaining constant over time, 1048 
given that some land area will be lost and gained within individual sectors during each inventory year due to land-1049 
use change. 1050 

Tier 2  –  Three-Pool Steady-State C Model  1051 
This method requires soil C input data based on the amount of biomass that is converted to dead organic matter 1052 
annually.  This rate will vary depending on plant production, management activity, natural disturbances, and other 1053 
environmental variables. Removals or reductions in dead organic matter are subtracted from the C input , which 1054 
could occur with practices such as collection of coarse woody debris or crop residues, burning of grasslands, field 1055 
burning of agricultural residues, livestock grazing, and other practices. Disturbance events, such as pest outbreaks, 1056 
may increase the dead organic matter, and therefore the C input to soils.  It is good practice to use country-specific 1057 
methods for estimating C input to soils, but defaults approaches are provided for cropland (Section 5.2.3.3) and 1058 
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grassland (Section 6.2.3.3). Tillage management data are also required (proportion of full tillage, reduced tillage 1059 
and no-till), and irrigation data for any lands that are provided supplement water (proportion of land). 1060 

Additional ancillary data for this method include monthly weather data and soil texture (i.e., sand content), which 1061 
are available from global weather and soils datasets if country-specific data are not available, such as the CRU 1062 
climate dataset (https://crudata.uea.ac.uk/cru/data/hrg/), and the Harmonized World Soil Database 1063 
(http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/), respectively. 1064 

Tier 3  1065 
For application of dynamic models and/or a direct measurement-based inventory in Tier 3, similar or more detailed 1066 
data on the combinations of climate, soil, topographic and management data are needed, relative to Tier 1 or 2 1067 
methods, but the exact requirements will be dependent on the model or measurement design.    1068 

Organic soils  1069 
No Refinement 1070 

The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands provides 1071 
additional guidance that updates the 2006 Guidelines for national Greenhouse Gas Inventories. See section 2.2 of 1072 
the 2013 Wetlands Supplement covers Tier 1, 2, and 3 approaches for drained organic soils in cropland.   1073 

Biochar C Amendments to Mineral Soils  1074 

Tier 1  1075 
The activity data required for the Tier 1 method includes the total quantities of biochar distributed for amendment 1076 
to mineral soils. These data must be disaggregated by production type, where production type is defined as a 1077 
process utilizing a specific feedstock type, and a specific conversion process (gasification, or high-, medium-, or 1078 
low-temperature pyrolysis; Tables 2.4 and 2.5). In case data on the temperature of pyrolysis are unavailable, default 1079 
factors for uncontrolled or unspecified pyrolysis temperatures are provided in Section 2.3.3.1 of Chapter 2, Volume 1080 
IV.  Changes in soil C associated with biochar amendments is considered to occur where it is incorporated into 1081 
soil. However, due to the distributed nature of the land sector in which this can take place, inventory compilers 1082 
may not have access to data on when or where biochar C amendments occur. Therefore, for the purposes of Tier 1083 
1 method, inventory compilers can rely on centralized records from biochar producers, importers, exporters or 1084 
distributors, recording the quantity of biochar that has been provided to the land use sector for use as a soil 1085 
amendment in the country. Note that exported biochar is not included in the total amount of biochar amended to 1086 
soils in the country.  Inventory compilers may further disaggregate amendments by land use if the data are available.  1087 

Tier 2  1088 
Tier 2 methods have the same activity data requirements as Tier 1 (quantities of biochar distributed for 1089 
incorporation into mineral soils, disaggregated by production type). Additionally, activity data on the amount of 1090 
biochar amendments may be disaggregated by climate zones and/or soil types if country-specific factors are 1091 
disaggregated by these environmental variables. The additional climate and soil activity data may be obtained with 1092 
a survey of biochar distributors and land managers.   1093 

Country-specific factors may incorporate a change in degradation over time following biochar additions or there 1094 
is a difference in degradation associated with land use.  In these cases, biochar C stocks will be tracked for Land 1095 
Converted to Cropland in order to estimate the change in rate of degradation over time or with the change in land 1096 
use. 1097 

Tier 3  1098 
The additional activity data required to support a Tier 3 method will depend on which processes are represented 1099 
and environmental variables that are required as input to the model.  Priming, soil GHG emissions, and plant 1100 
production responses to biochar all vary with biochar type, climate, and soil type. Furthermore, soil GHG 1101 
emissions and plant production responses also vary with crop type and management. Therefore, Tier 3 methods 1102 
may require environmental data on climate zones, soil types, crop types and crop management systems (such as 1103 
nitrogen fertilizer application rates, and whether soils are flooded for paddy rice production), in addition to the 1104 
amount of biochar amendments in each of the individual combinations of strata for the environmental variables. 1105 
More detailed activity data specifying the process conditions for biochar production or the physical and chemical 1106 
characteristics of the biochar may also be required (such as surface area, cation exchange capacity, pH, and ash 1107 
content). 1108 

5.3.3.4 CALCULATION STEPS FOR TIER 1 1109 

This section  provides updates and new guidance. 1110 

Mineral soils 1111 

https://crudata.uea.ac.uk/cru/data/hrg/
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/
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The steps for estimating SOC0 and SOC(0-T) and net soil C stock change per ha of Land Converted to Cropland on 1112 
mineral soils are as follows: 1113 

Step 1: Organize data into inventory time periods based on the years in which activity data were collected (e.g., 1114 
1990 to 1995, 1995 to 2000, etc.) 1115 

Step 2: Determine the amount of Land Converted to Cropland by mineral soil types and climate regions in the 1116 
country at the beginning of the first inventory time period.  The first year of the inventory time period will depend 1117 
on the time step of the activity data (0-T; e.g., 5, 10 or 20 years ago). 1118 

Step 3: For Grassland converted to Cropland, classify previous grasslands into the appropriate management 1119 
system using Figure 6.1.  No classification is needed for other land uses at the Tier 1 level. 1120 

Step 4: Assign native reference C stock values (SOCREF) from Table 2.3 based on climate and soil type.   1121 

Step 5: Assign a land-use factor (FLU), management factor (FMG) and C input levels (FI) to each grassland based 1122 
on the management classification (Step 2).  Values for FLU, FMG and FI are given in Table 6.2 for grasslands.  1123 
Values are assumed to be 1 for all other land uses.  1124 

Step 6: Multiply the factors (FLU, FMG, FI) by the reference soil C stock to estimate an ‘initial’ soil organic C 1125 
stock (SOC(0-T)) for the inventory time period.    1126 

Step 7: Estimate the final soil organic C stock (SOC0) by repeating Steps 1 to 5 using the same native reference 1127 
C stock (SOCREF), but with land-use, management and input factors that represent conditions for the cropland in 1128 
the last (year 0) inventory year.  1129 

Step 8: Estimate the average annual change in soil organic C stocks for land converted to Cropland (∆CMineral) by 1130 
subtracting the ‘initial’ soil organic C stock (SOC(0-T)) from the final soil organic C stock (SOC0), and then 1131 
dividing by the time dependence of the stock change factors (i.e., 20 years using the default factors).  Note: if an 1132 
inventory time period is greater than 20 years, then divide by the difference in the initial and final year of the time 1133 
period.  1134 

Step 9: Repeat Steps 2 to 8 if there are additional inventory time periods (e.g., 1990 to 2000, 2001 to 2010, etc.).  1135 
Note that Land Converted to Cropland will retain that designation for 20 years.  Therefore, inventory time periods 1136 
that are less than 20 years may need to refer to the previous inventory time period to evaluate if a parcel of land is 1137 
considered Land Converted to Cropland or Cropland Remaining Cropland. 1138 

A numerical example is given below for Forest Land converted to Cropland on mineral soils, using Equation 2.25 1139 
and default reference C stocks (Table 2.3) and stock change factors (Table 5.6). 1140 

Example:    For a forest on volcanic soil in a tropical moist environment: SOCRef = 70 tonnes C  ha-1141 
1. For all forest soils (and for native grasslands) default values for stock change factors (FLU , FMG , 1142 
FI) are all 1; thus SOC(0-T) is 70 tonnes C ha-1. If the land is converted into annual cropland, with 1143 
intensive tillage and low residue C inputs then: 1144 

 SOC0 = 70 tonnes C ha-1 ● 0.48 ● 1 ● 0.92 = 30.9 tonnes C ha-1.  1145 

Thus the average annual change in soil C stock for the area over the inventory time period is 1146 
calculated as: 1147 

 (30.9 tonnes C ha-1 – 70 tonnes C ha-1) / 20 yrs =    -2.0 tonnes C ha-1 yr-1.  1148 

Organic soils  1149 
No Refinement 1150 

The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands provides 1151 
additional guidance that updates the 2006 Guidelines for national Greenhouse Gas Inventories. See section 2.2 of 1152 
the 2013 Wetlands Supplement covers Tier 1, 2, and 3 approaches for drained organic soils in cropland. 1153 

Biochar C Amendments to Mineral Soils  1154 

Step 1: Organize data of the annual amount of biochar applied to cropland by feedstock type and,pyrolysis 1155 
production method according to divisions described for biochar in Vol. 4, Chapter 2, Section 2.3.3.1.   1156 

Step 2: Calcuate the annual change in biochar C stocks.  An example is provided in Section 5.2.3.4.    1157 

5.3.3.5 UNCERTAINTY ASSESSMENT 1158 

No Refinement 1159 
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5.3.4 Non-CO2 greenhouse gas emissions from biomass 1160 

burning 1161 

No Refinement 1162 

5.4 COMPLETENESS, TIME SERIES, QA/QC, AND 1163 

REPORTING 1164 

No Refinement  1165 
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5.5 METHANE EMISSIONS FROM RICE 1166 

CULTIVATION 1167 

No Refinement in the Introduction. 1168 

Anaerobic decomposition of organic material in flooded rice fields produces methane (CH4 ), which escapes to the 1169 
atmosphere primarily by transport through the rice plants  (Takai, 1970; Cicerone and Shetter, 1981; Conrad, 1989; 1170 
Nouchi et al., 1990). The annual amount of CH4 emitted from a given area of rice is a function of the number and 1171 
duration of crops grown, water regimes before and during cultivation period, and organic and inorganic soil 1172 
amendments (Neue and Sass, 1994; Minami, 1995). Soil type, temperature, and rice cultivar also affect CH4 1173 
emissions. 1174 

5.5.1 Choice of method 1175 

Elaboration of methods with information about Tier 3 model applications. 1176 

The basic equation to estimate CH4 emissions from rice cultivation is shown in Equation 5.2. CH4 emissions are 1177 
estimated by multiplying daily emission factors by cultivation period4 of rice and annual harvested areas5. In its 1178 
most simple form, this equation is implemented using national activity data (i.e., national average cultivation period 1179 
of rice and area harvested) and a single emission factor. However, the natural conditions and agricultural 1180 
management of rice production may be highly variable within a country. It is good practice to account for this 1181 
variability by disaggregating national total harvested area into sub-units (e.g., harvested areas under different water 1182 
regimes). Harvested area for each sub-unit is multiplied by the respective cultivation period and emission factor 1183 
that is representative of the conditions that define the sub-unit (Sass, 2002). With this disaggregated approach, total 1184 
annual emissions are equal to the sum of emissions from each sub-unit of harvested area. 1185 

 1186 

EQUATION 5.1 1187 
CH4 EMISSIONS FROM RICE CULTIVATION 1188 

 1189 

∑ −•••=
kji

kjikjikjiRice AtEFCH
,,

6
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 1190 

 1191 

Where:  1192 

CH4 Rice = annual methane emissions from rice cultivation, Gg CH4 yr-1 1193 

EF ijk = a daily emission factor for i, j, and k conditions, kg CH4 ha-1 day-1 1194 

t ijk = cultivation period of rice for i, j, and k conditions, day  1195 

Aijk = annual harvested area of rice for i, j, and k conditions, ha yr-1  1196 

i, j, and k = represent different ecosystems, water regimes, type and amount of organic amendments, and 1197 
other conditions under which CH4 emissions from rice may vary 1198 

The different conditions that should be considered include rice ecosystem type, flooding pattern before and during 1199 
cultivation period, and type and amount of organic amendments. Other conditions such as soil type, and rice 1200 
cultivar can be considered for the disaggregation if country-specific information about the relationship between 1201 
these conditions and CH4 emissions are available. The rice ecosystem types and water regimes during cultivation 1202 
period are listed in Table 5.12. If the national rice production can be subdivided into climatic zones with different 1203 
production systems )e.g., flooding patterns(, Equation 5.2 should be applied to each region separately. The same 1204 
applies if rice statistics or expert judgments are available to distinguish management practices or other factors 1205 
along administrative units (district or province(. In addition, if more than one crop is harvested during a given year, 1206 

                                                           
4 In the case of a ratoon crop, ‘cultivation period’ should be extended by the respective number of days. 

5 In case of multiple cropping during the same year, ‘harvested area’ is equal to the sum of the area cultivated for each cropping. 
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emissions should be estimated for each cropping season taking into account possible differences in cultivation 1207 
practice (e.g., use of organic amendments, flooding pattern before and during the cultivation period).  1208 

The decision tree in Figure 5.2 guides inventory agencies through the process of applying the good practice IPCC 1209 
approach. Implicit in this decision tree is a hierarchy of disaggregation in implementing the IPCC method. Within 1210 
this hierarchy, the level of disaggregation utilised by an inventory agency will depend upon the availability of 1211 
activity and emission factor data, as well as the importance of rice as a contributor to its national greenhouse gas 1212 
emissions. The specific steps and variables in this decision tree, and the logic behind it, are discussed in the text 1213 
that follows the decision tree. 1214 

Tier 1 1215 
Tier 1 applies to countries in which either CH4 emissions from rice cultivation are not a key category or country-1216 
specific emission factors do not exist. The disaggregation of the annual harvest area of rice needs to be done for at 1217 
least three baseline water regimes including irrigated, rainfed, and upland. It is encouraged to incorporate as many 1218 
of the conditions (i, j, k, etc.) that influence CH4 emissions (summarized in Box 5.2) as possible. Emissions for each 1219 
sub-unit are adjusted by multiplying a baseline default emission factor (for field with no pre-season flooding for 1220 
less than 180 days prior to rice cultivation and continuously flooded fields without organic amendments, EFc) by 1221 
various scaling factors as shown in Equation 5.2. The calculations are carried out for each water regime and organic 1222 
amendment separately as shown in Equation 5.3. 1223 

 1224 

EQUATION 5.2 1225 
ADJUSTED DAILY EMISSION FACTOR 1226 

 1227 

rsopwci SFSFSFSFEFEF ,••••=
 1228 

 1229 

 1230 

Where: 1231 

EFi = adjusted daily emission factor for a particular harvested area 1232 

EFc = baseline emission factor for continuously flooded fields without organic amendments 1233 

SFw = scaling factor to account for the differences in water regime during the cultivation period (from Table 1234 
5.12)  1235 

SFp = scaling factor to account for the differences in water regime in the pre-season before the cultivation 1236 
period (from Table 5.13)  1237 

SFo = scaling factor should vary for both type and amount of organic amendment applied (from Equation 1238 
5.3 and Table 5.14)  1239 

SFs,r = scaling factor for soil type, rice cultivar, etc., if available 1240 

Tier 2 1241 
Tier 2 applies the same methodological approach as Tier 1, but country-specific emission factors and/or scaling 1242 
factors should be used. These country-specific factors are needed to reflect the local impact of the conditions (i, j, 1243 
k, etc.) that influence CH4 emissions, preferably being developed through collection of field data. As for Tier 1 1244 
approach, it is encouraged to implement the method at the most disaggregated level and to incorporate the 1245 
multitude of conditions (i, j, k, etc.) that influence CH4 emissions.  1246 

Tier 3 1247 
Tier 3 includes models and monitoring networks tailored to address national circumstances of rice cultivation, 1248 
repeated over time, driven by high-resolution activity data and disaggregated at sub-national level. Models can be 1249 
empirical or mechanistic, but must in either case be validated with independent observations from country or 1250 
region-specific studies that cover the range of rice cultivation characteristics (Cai et al., 2003b; Li et al., 2004; 1251 
Huang et al., 2004). A few countries have used Tier methdods in their submitted national communications to 1252 
UNFCCC (UNFCCC, 2017), such as China with an application of the CH4MOD model (Huang et al., 2004), USA 1253 
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with the DAYCENT model (Cheng et al., 2014), and Japan with the DNDC-Rice model (Katayanagi et al., 2016). 1254 
Proper documentation of the validity and completeness of the data, assumptions, equations and models used is 1255 
therefore critical. Tier 3 methodologies may also take into account inter-annual variability triggered by typhoon 1256 
damage, drought stress, etc. Ideally, the assessment should be based on recent satellite data. 1257 

Figure 5 .  2  Decision tree for CH 4  emissions from rice production 1258 

 1259 
 1260 

 1261 

Start

Are country-
specific methods,

including modelling or direct
measurement approach,

available?

Are
country-specific

emission factors available for 
different water 

regime?

Is rice
production a key source 

category1?

Collect data for
Tier 2 or Tier 3

method.

Calculate emissions using
country-specific methods for

higher level of
disaggregation as basis for

the Tier 3 method.

Calculate emissions using
the Tier 2 method.

Calculate emissions using the
Tier 1 default emission factor and

scaling factors together with
activity data for harvested area

and cultivation period.

Yes

No

Yes

No

No

Box 3: Tier 3

Box 2: Tier 2

Box 1: Tier 1

Yes

Note:
1: See Volume 1 Chapter 4, "Methodological Choice and Identification of Key Categories" (noting Section 4.1.2 on limited resources), for 
discussion of key categories and use of decision trees.

Calculate emissions for each
cropping (i.e., dry season-,
wet season-, early-, single-,

late-cropping).

Calculate emissions for each
agro-ecological zone.

Are there
multiple rice cropping

during the same
year?

Are
there different

agroecological zones in
the country?

No

No

Yes

Yes



DO NOT CITE OR QUOTE   Chapter 5, Volume 4 (AFOLU) 
 
  Second Order Draft 
 

DRAFT 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 5.43 

BOX 5. 1 1262 
CONDITIONS INFLUENCING CH4 EMISSIONS FROM RICE CULTIVATION  1263 

The following rice cultivation characteristics should be considered in calculating CH4 emissions as 1264 
well as in developing emission factors: 1265 

Regional differences in rice cropping practices: If the country is large and has distinct agricultural 1266 
regions with different climate and/or production systems (e.g., flooding patterns), a separate set of 1267 
calculations should be performed for each region. 1268 

Multiple crops: If more than one crop is harvested on a given area of land during the year, and the 1269 
growing conditions vary among cropping seasons, calculations should be performed for each season. 1270 

Water regime: In the context of this chapter, water regime is defined as a combination of (i) ecosystem 1271 
type and (ii) flooding pattern. 1272 

Ecosystem type: At a minimum, separate calculations should be undertaken for each rice ecosystem 1273 
(i.e., irrigated, rainfed, and deep water rice production). 1274 

Flooding pattern: Flooding pattern of rice fields has a significant effect on CH4 emissions (Sass et al., 1275 
1992; Yagi et al., 1996; Wassmann et al., 2000). Rice ecosystems can further be distinguished into 1276 
continuously and intermittently flooded (irrigated rice), and regular rainfed, drought prone, and deep 1277 
water (rainfed), according to the flooding patterns during the cultivation period. Also, flooding pattern 1278 
before cultivation period should be considered (Yagi et al., 1998; Cai et al., 2000; 2003a; Fitzgerald 1279 
et al., 2000). 1280 

Organic amendments to soils: Organic material incorporated into rice soils increases CH4 emissions 1281 
(Schütz et al., 1989; Yagi and Minami, 1990; Sass et al., 1991). The impact of organic amendments 1282 
on CH4 emissions depends on type and amount of the applied material which can be described by a 1283 
dose response curve (Denier van der Gon and Neue, 1995; Yan et al., 2005). Organic material 1284 
incorporated into the soil can either be of endogenous (straw, green manure, etc.) or exogenous origin 1285 
(compost, farmyard manure, etc.). Calculations of emissions should consider the effect of organic 1286 
amendments. 1287 

Other conditions: It is known that other factors, such as soil type (Sass et al., 1994; Wassmann et al., 1288 
1998; Huang et al., 2002), rice cultivar (Watanabe and Kimura, 1998; Wassmann and Aulakh, 2000), 1289 
sulphate containing amendments (Lindau et al., 1993; Denier van der Gon and Neue, 2002), etc., can 1290 
significantly influence CH4 emissions. Inventory agencies are encouraged to make every effort to 1291 
consider these conditions if country-specific information about the relationship between these 1292 
conditions and CH4 emissions is available. 1293 

5.5.2 Choice of emission and scaling factors 1294 

This section contains updates and new guidance. 1295 

Tier 1 1296 
Scaling factors are used to adjust the baseline emission factor (EFc), as provided in Table 5.11, to account for the 1297 
various conditions discussed in Box 5.2, which result in adjusted daily emission factors (EFi) for a particular sub-1298 
unit of disaggregated harvested area according to Equation 5.3. The most important scaling factors, namely water 1299 
regime during and before cultivation period and organic amendments, are represented in Tables 5.12, 5.13 and 5.14, 1300 
respectively, through default values.  Country-specific scaling factors should only be used if they are based on well-1301 
researched and documented measurement data. It is encouraged to consider soil type, rice cultivar, and other factors 1302 
if available. 1303 

 1304 
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UPDATED - TABLE 5.11 
DEFAULT CH4 BASELINE EMISSION FACTOR ASSUMING NO FLOODING FOR LESS THAN 180 DAYS PRIOR TO RICE 

CULTIVATION, AND CONTINUOUSLY FLOODED DURING RICE CULTIVATION WITHOUT ORGANIC AMENDMENTS 

World Regional 

Emission factor 
(kg CH4 ha-1 d-1) 

Error range 
(kg CH4 ha-1 d-1) 

Region Emission factor 
(kg CH4 ha-1 d-1) 

Error range 
(kg CH4 ha-1 d-1) 

1.19 0.80 – 1.76 

Africa 1 1.19 0.80 – 1.76 

East Asia 1.32 0.89 – 1.96 

Southeast Asia 1.22 0.83 – 1.81 

South Asia 0.85 0.58 – 1.26 

Europe 1.56 1.06 – 2.31 

North America 0.65 0.44 – 0.96 

South America 1.27 0.86 – 1.88 

Source: Emission factors and error ranges (based on 95% confidential interval) were determined using statistical model and updated 
database; See Annex 5A.2 for more information. 

Note: 
1 For Africa, the global estimate is used due to lack of data. 

 1305 

Water regime during the cultivation period (SFw):Table 5.12 provides default scaling factors and error ranges 1306 
reflecting different water regimes. The aggregated case refers to a situation when activity data are only available 1307 
for rice ecosystem types, but not for flooding patterns (see Box 5.2). In the disaggregated case, flooding patterns 1308 
can be distinguished in the form of three subcategories as shown in Table 5.12. It is good practice to collect more 1309 
disaggregated activity data and apply disaggregated case SFw whenever possible. 1310 
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UPDATED - TABLE 5. 12  

DEFAULT CH4 EMISSION SCALING FACTORS FOR WATER REGIMES DURING THE CULTIVATION PERIOD RELATIVE TO 
CONTINUOUSLY FLOODED FIELDS   

Water regime 

Aggregated case Disaggregated case 

Scaling 
factor 
)SFw( 

Error 
range  

Scaling 
factor 
)SFw( 

Error 
range  

Upland a 0 - 0 – 

Irrigated b 

Continuously flooded 

0.6 0.44 – 0.78 

1 0.73 – 1.27 

Intermittently flooded – single aeration 0.71 0.53 – 0.94 

Intermittently flooded – multiple aeration 0.55 0.41 – 0.72 

Rainfed and 
deep water c 

Regular rainfed 
0.45 0.32 –  0.62 

0.54 0.39 – 0.74 

Drought prone 0.16 0.11 – 0.24 

Deep water 0.06 0.03 – 0.12 0.06 0.03 – 0.12 

Source: Scaling factors and error ranges (based on 95% confidential interval) were determined using statistical model and updated 
database; see Annex 5A.2 for more information. 
Notes: 
a Fields are never flooded for a significant period of time.  
b Fields are flooded for a significant period of time and water regime is fully controlled.  
 • Continuously flooded: Fields have standing water throughout the rice growing season and may only dry out for harvest )end-season 
drainage(. 
 • Intermittently flooded : Fields have at least one aeration period of more than 3 days during the cropping season. 
 - Single aeration: Fields have a single aeration during the cropping season at any growth stage )except for end-season drainage(. 
 - Multiple aeration: Fields have more than one aeration period during the cropping season except for end-season drainage, including 
alternate wetting and drying (AWD). 
c Fields are flooded for a significant period of time and water regime depends solely on precipitation.  
 • Regular rainfed: The water level may rise up to 50 cm during the cropping season. 
 • Drought prone: Drought periods occur during every cropping season. 
 • Deep water rice: Floodwater rises to more than 50 cm for a significant period of time during the cropping season. 
Other rice ecosystem categories, like swamps and inland, saline or tidal wetlands may be discriminated within each sub-category. 

 1311 

Water regime before the cultivation period (SFp): Table 5.13 provides default scaling factors for water regime 1312 
before the cultivation period which can be used when country-specific data are unavailable. This table distinguishes 1313 
four different water regimes prior to rice cultivation, namely:  1314 

1. Non-flooded pre-season < 180 days, which often occurs under double cropping of rice;   1315 

2. Non-flooded pre-season > 180 days, e.g., single rice crop following a dry fallow period;  1316 

3. Flooded pre-season in which the minimum flooding interval is set to 30 days; i.e., shorter flooding periods 1317 
(usually done to prepare the soil for ploughing) will not be included in this category; and 1318 

4. Non-flooded pre season in which the rice fields are wet but never flooded for any period of time.  1319 

When activity data for the pre-season water status are not available, aggregated case factors can be used. It is good 1320 
practice to collect more disaggregated activity data and apply disaggregated case of SFp . Scaling factors for 1321 
additional water regimes can be applied if country-specific data are available. 1322 
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UPDATED - TABLE 5. 13  

DEFAULT CH4 EMISSION SCALING FACTORS FOR WATER REGIMES BEFORE THE CULTIVATION PERIOD  

Water regime prior to rice cultivation (schematic 
presentation showing flooded periods as shaded) 

Aggregated case Disaggregated case 

Scaling 
factor (SFp ) 

Error 
range  

Scaling 
factor (SFp ) 

Error 
range  

Non flooded pre-

season <180 d 
 

1.22 1.08 –  1.37 

1 0.88 – 1.12 

Non flooded pre-

season >180 d 
 0.89 0.80 – 0.99 

Flooded pre-season 
(>30 d)a,b 

 
2.41 2.13 – 2.73 

Non-flooded pre-

season >365 d 
 

0.59 0.41 – 0.84 

Source: Scaling factors and error ranges (based on 95% confidential interval) were determined using statistical model and updated 
database; see Annex 5A.2 for more information. 
a Short pre-season flooding periods of less than 30 d are not considered in selection of SFp 
b For calculation of pre-season emission see below (section on completeness) 

 1323 

Organic amendments (SFo): It is good practice to develop scaling factors that incorporate information on the type 1324 
and amount of organic amendment applied (compost, farmyard manure, green manure, and rice straw). On an equal 1325 
mass basis, more CH4 is emitted from amendments containing higher amounts of easily decomposable carbon and 1326 
emissions also increase as more of each organic amendment is applied. Equation 5.3 and Table 5.14 present an 1327 
approach to vary the scaling factor according to the amount of different types of amendment applied. Rice straw is 1328 
often incorporated into the soil after harvest. In the case of a long fallow after rice straw incorporation, CH4 1329 
emissions in the ensuing rice-growing season will be less than the case that rice straw is incorporated just before 1330 
rice transplanting (Fitzgerald et al., 2000). Therefore, the timing of rice straw application was distinguished. An 1331 
uncertainty range of 0.54-0.64 can be adopted for the exponent 0.59 in Equation 5.3. 1332 

 1333 

EQUATION 5.3 1334 
ADJUSTED CH4 EMISSION SCALING FACTORS FOR ORGANIC AMENDMENTS 1335 

59.0

1 







•+= ∑

i
iio CFOAROASF

 1336 
 1337 

 1338 

Where: 1339 

SFo = scaling factor for both type and amount of organic amendment applied 1340 

ROAi = application rate of organic amendment i, in dry weight for straw and fresh weight for others, tonne 1341 
ha-1 1342 

CFOAi = conversion factor for organic amendment i (in terms of its relative effect with respect to straw 1343 
applied shortly before cultivation) as shown in Table 5.14. 1344 

CROP
> 30 d

CROP
> 180 d

CROP
< 180 d
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UPDATED - TABLE 5. 14 
 DEFAULT CONVERSION FATORS FOR DIFFERENT TYPES OF ORGANIC AMENDMENTS 

Organic amendment 
Conversion factor 

(CFOA) Error range 

Straw incorporated shortly (<30 days) before cultivationa 1 0.85 – 1.17   

Straw incorporated long (>30 days) before cultivationa 0.19 0.11 –  0.28 

Compost 0.17 0.09 –  0.29 

Farm yard manure 0.21 0.15 – 0.28 

Green manure 0.45 0.36 –  0.57 

Source: Conversion factors and error ranges (based on 95% confidential interval) were determined using statistical model and updated 
database; see Annex 5A.2 for more information. 
a Straw application means that straw is incorporated into the soil, it does not include case that straw just placed on the soil surface, nor 
that straw was burnt on the field. 

 1345 

Soil type (SFs ) and rice cultivar (SFr): In some countries emission data for different soil types and rice cultivar 1346 
are available and can be used to derive SFs and SFr, respectively. Both experiments and mechanistic knowledge 1347 
confirm the importance of these factors, but large variations within the available data do not allow one to define 1348 
reasonably accurate default values. It is anticipated that in the near future simulation models will be capable of 1349 
producing specific scaling factors for SFs and SFr .  1350 

Tier 2 1351 
Inventory agencies can use country-specific emission factors from field measurements that cover the conditions of 1352 
rice cultivation in their respective country.  Box 5.2A provides information about measuring methane emissions 1353 
for developing a baseline emission factor for rice cultivation. It is good practice to compile country-specific data 1354 
bases on available field measurements which supplement the Emission Factor database6 by other measurement 1355 
programs (e.g., national) not yet included in this data base. However, certain standard QA/QC requirements apply 1356 
to these field measurements (see Section 5.5.5).  1357 

In Tier 2, inventory agencies can define the baseline management according to the prevailing conditions found in 1358 
their respective country and determine country-specific emission factors for such a baseline. Then, inventory 1359 
agencies can also determine country-specific scaling factors for management practices other than the baseline. In 1360 
case where country-specific scaling factors are not available, default scaling factors can be used.  However, this 1361 
may require some recalculation of the scaling factors given in Tables 5.12 to 5.14 if the condition is different from 1362 
the baseline. 1363 

Tier 3 1364 
Tier 3 approaches do not require choice of emission factors, but are instead based on a thorough understanding of 1365 
drivers and parameters (see above). 1366 

 1367 

                                                           
5 https://www.ipcc-nggip.iges.or.jp/EFDB/main.php 
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NEW INFORMATION - BOX 5. 2A 1368 
GOOD PRACTICE GUIDANCE FOR DEVELOPING BASELINE EMISSION FACTORS )EF( FOR METHANE EMISSION 1369 

FROM RICE CULTIVATION 1370 

The following information provides good practices in performing manual measurement of methane 1371 
emissions using the closed-chamber technique for continuously flooded rice fields with 1372 
recommended fertilizer application and no organic amendment. The data can be used to develop 1373 
country- and region-specific EFc. 1374 

Chamber Design: It is good practice to use lightweight material that is break resistant and inert to 1375 
reactions with CH4 )e.g., acrylic and PVC(. It may be a rectangular or cylindrical chamber, covering 1376 
at least two rice hills. The chamber height must be higher than the rice plant. If necessary, use a base 1377 
with a grove that can be filled with water to ensure a gas-tight closure. The chamber is equipped 1378 
with a small fan, a thermometer, a vent hole with a stopper, and a gas sampling port )e.g., a flexible 1379 
tube connected to a valve(. 1380 

Field set up and Experimental Design: Select a field that is homogeneous with respect to soil 1381 
properties. Use an appropriate experimental design with at least 3 replications.  1382 

Sampling Strategies:  Sampling can be done 1 or 2 times per day between mid-morning and late 1383 
morning period, and at least once a week for the whole growing period. More frequent measurements 1384 
are needed during agricultural management events )e.g., irrigation, drainage, and N fertilization(. 1385 
All treatments would have to be measured at the same time. At each sampling time, it is good practice 1386 
to obtain 3 to 4 gas samples within 30 minutes after closure of the chamber.   1387 

For gas sampling, the use of a syringe or a pump is recommended depending on the required sample 1388 
volume. Plastic or glass containers can be used for collecting samples and should be transferred to a 1389 
laboratory and analyzed within the allowable storage period. 1390 

Gas Analysis: Use gas chromatograph )GC( equipped with a flame ionization detector (FID) for 1391 
analysis. Calibrate the GC before every analysis, using certified standard gases. 1392 

Data Processing: Use linear regression of the gas concentration inside the chamber against time to 1393 
calculate the hourly flux. Identify the reasons of non-linearity )if exists( for the validation and 1394 
correction of calculated flux. Use trapezoidal integration to calculate cumulative gas emissions from 1395 
the hourly flux data. 1396 

Deriving Emission Factor:  Flux data from several sites, regions, or environmental conditions that 1397 
conform to the requirements for a continuously flooded rice system with no organic amendments, 1398 
can be used to derive region- or country-specific EFs using a simple average and standard deviation.  1399 
The compiler could also derive disaggregated EFs using regressions models to predict the values for 1400 
different regions and/or environmental conditions. 1401 

For more details refer to Minamikawa et al. 2015, and Sanders and Wassmann, 2014. 1402 

5.5.3 Choice of activity data  1403 

No refinement 1404 

In addition to the essential activity data requested above, it is good practice to match data on organic amendments 1405 
and soil types to the same level of disaggregation as the activity data. It may be necessary to complete a survey of 1406 
cropping practices to obtain data on the type and amount of organic amendments applied. 1407 

Activity data are primarily based on harvested area statistics, which should be available from a national statistics 1408 
agency as well as complementary information on cultivation period and agronomic practices. The activity data 1409 
should be broken down by regional differences in rice cropping practices or water regime (see Box 5.2). Harvested 1410 
area estimates corresponding to different conditions may be obtained on a countrywide basis through accepted 1411 
methods of reporting. The use of locally verified areas would be most valuable when they are correlated with 1412 
available data for emission factors under differing conditions such as climate, agronomic practices, and soil 1413 
properties. If these data are not available in-country, they can be obtained from international data sources: e.g., 1414 
IRRI (1995) and the World Rice Statistics on the website of IRRI7 (International Rice Research Institute), which 1415 
include harvest area of rice by ecosystem type for major rice producing counties, a rice crop calendar for each 1416 

                                                           
7 http://www.irri.org/science/ricestat/ 
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country, and other useful information, and the FAOSTAT on the website of FAO8. The use of locally verified 1417 
areas would be most valuable when they are correlated with available data for emission factors under differing 1418 
conditions such as climate, agronomic practices, and soil properties. It may be necessary to consult local experts 1419 
for a survey of agronomic practices relevant to methane emissions (organic amendments, water management, etc.). 1420 

Most likely, activity data will be more reliable as compared to the accuracy of the emission factors. However, for 1421 
various reasons the area statistics may be biased and a check of the harvested area statistics for (parts of) the 1422 
country with remotely sensed data is encouraged.  1423 

In addition to the essential activity data requested above, it is good practice, particularly in Tiers 2 and 3 1424 
approaches, to match data on organic amendments and other conditions, e.g., soil types, to the same level of 1425 
disaggregation as the activity data.  1426 

5.5.4 Example Calculation for Tier 1 1427 

This section contains an elaboration on methods. 1428 

 An example of how to estimate methane emission from rice cultivation using Tier 1 method is provided, to guide 1429 
inventory compilers on how to use the equations, emission factors, and scaling factor.   1430 

In this section, an example is provided for estimating methane emission from rice cultivation.  Here is the 1431 
background information for the example:  1432 

A country in Southeast Asia has rice area of 3 million hectares, with 50% of the area classified as irrigated, 30% 1433 
rainfed, 15% upland, and 5% deep water. Irrigated areas are planted for 2 growing seasons annually. Rice growing 1434 
periods are 120 days, except for deep water rice which has 220 days. For irrigated areas, 50% is continuously 1435 
flooded and 50% is managed with multiple aerations. All irrigated areas are not flooded for less than 180 days prior 1436 
to cultivation, while rainfed and upland areas are not flooded for more than 180 days prior to cultivation. Deepwater 1437 
rice areas are flooded for 30 days prior to cultivation. For irrigated areas, 2 tonnes/ha of straw residues are 1438 
incorporated long before cultivation (less than 30 days). 1439 

Table 5.14A shows the calculation for total rice area harvested in a given year. Cropping season refers to the number 1440 
of times rice is harvested per year. The calculation for adjusted daily emission factor is presented in Table 5.14B 1441 
using Equation 5.2. The scaling factor for organic amendment (SFo), for irrigated rice field, is computed using 1442 
Equation 5.3 for rice straw application rate of 2 tonnes/ha and conversion factor (CFOA) of 1.0 as provided in Table 1443 
5.14. Based on Equation 5.1, the total methane emission is 481.01 Gg CH4 /yr, as shown in Table 5.14C. 1444 

NEW GUIDANCE - TABLE 5.14A  

CALCULATION FOR TOTAL HARVESTED AREA  

Rice Ecosystem 
  

Rice Area 
(ha) 

% of Total 
Area 

Cropping 
Season 
(per year) 

Harvested Area 
(ha yr-1) 

A B C D =  (A x C) 

Irrigated     
- Irrigated, continuously flooded 750,000  25  2  1,500,000  
- Irrigated, with multiple aeration 750,000  25  2  1,500,000  
Rainfed 900,000  30  1  900,000  
Upland 450,000  15  1  450,000  
Deepwater 150,000  5  1  150,000  
Total 3,000,000  100    4,500,000  

 1445 
  1446 

                                                           
8 http://faostat.fao.org/ 
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NEW GUIDANCE - TABLE 5.14B  

CALCULATION FOR ADJUSTED DAILY EMISSION FACTOR 

Rice Ecosystem 
  

Baseline 
Emission 
Factor (EFc) 

(kg CH4 ha-1 
d-1) 

[from Table 
5.13] 

Scaling 
Factor for 
Water 
Regime 
During 
Cultivation 
(SFw) 

[from Table 
5.14] 

Scaling 
Factor for 
Pre-season 
Water 
Regime 
(SFp) 

[from Table 
5.15] 

Scaling 
Factor for 
Organic 
Amendment 
(SFo) 

[using 
Equation 5.4 
and Table 
5.16] 

Adjusted Daily 
Emission Factor  
(EFi) 

[kg CH4 ha-1 d-1] 

 

E F G H I= (E x F x G x H) 

Irrigated 
    

 

- Irrigated, continuously flooded 1.22 1.0 1.0 1.21 1.48 

- Irrigated, with multiple aeration 1.22 0.55 1.0 1.21 0.81 

Rainfed 1.22 0.54 0.89 1.00 0.59 

Upland 1.22 0 0.89 1.00 0.00 

Deepwater 1.22 0.06 2.41 1.00 0.18 

 1447 
 1448 

NEW GUIDANCE - TABLE 5.14C  

CALCULATION FOR TOTAL METHANE EMISSION FROM RICE CULTIVATION 

Rice Ecosystem 
  

Harvested 
Area 
(ha yr-1) 

[from Table 
5.17] 

Adjusted Daily 
Emission Factor  
(EFi) 

[kg CH4 ha-1 d-1] 

[from Table 5.18] 

 

Cultivation 
Period 
(days) 

Methane Emission 
(Gg Ch4 y-1) 

D I J K= [(D x I x J)/106] 

Irrigated  
 

  
- Irrigated, continuously flooded 1,500,000  1.48 120  265.72  

- Irrigated, with multiple aeration 1,500,000  0.81 120  146.14  

Rainfed 900,000  0.59 120  63.32  

Upland 450,000  0.00 120  - 

Deepwater 150,000  0.18 220  5.82  

Total 4,500,000    481.01  

 1449 

5.5.5 Uncertainty assessment 1450 

No Refinement 1451 

5.5.6 Completeness, time series, QA/QC, and reporting 1452 

No Refinement 1453 

 1454 

 1455 
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Annex 5A.1 Estimation of default stock change factors for 1853 

mineral soil C emissions/removals for cropland 1854 

Long-Term Cultivation, Perennial Crops and Tillage Management Factors: 1855 

Default stock change factors have been updated in Table 5.5 based on an analysis of a global dataset of 1856 
experimental results for tillage long-term cultivation, and perennial crops to a 30cm depth. The land-use factor for 1857 
long-term cultivation and perennial crops represents the change in carbon that occurs after 20 or more years of 1858 
continuous cultivation or perennial crop production, respectively. Tillage factors represent the effect on C stocks 1859 
at 20 years following the management change. Data were compiled from published literature based on the 1860 
following criteria: a) must be an experiment with a control and treatment; b) provide soil organic C stocks or the 1861 
data needed to compute soil organic C stocks (bulk density, OC content, gravel content); c) provide depth of 1862 
measurements; d) provide the number of years from the beginning of the experiment to C stock sample collection; 1863 
and c) provide location information. 1864 

There were 303 published studies with 2383 observations for long-term cultivation and perennial tree/woody crops, 1865 
and 212 published studies with 2046 observations for reduced tillage and no-tillage. The histograms below provide 1866 
summaries of the distribution of published studies for climate regions. 1867 
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Tillage Management
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 1870 
Semi-parametric mixed effect models were developed to estimate the new factors (Breidt et al., 2007). Several 1871 
variables were tested including depth, number of years since the management change, climate, the type of 1872 
management change (e.g., reduced tillage vs. no-till), and the first-order interactions among the variables.  1873 
Variables and interactions terms were retained in the model if they met an alpha level of 0.05 and decreased the 1874 
Akiake Information Criterion by two. For depth, data were not aggregated to a standardized set of depths but rather 1875 
each of the original depth increments were used in the analysis (e.g., 0-5 cm, 5-10 cm, and 10-30 cm) as separate 1876 
observations of stock changes. Similarly, time series data were not aggregated, even though those measurements 1877 
are taken from the same plots. Consequently, random effects were included to account for the dependencies in 1878 
times series data and among data points representing different depths from the same study. 1879 

Special consideration was given to representing depth increments in order to avoid aggregating data across 1880 
increments from the original experiments.  Data are collected by researchers at various depths that do not match 1881 
among studies. We created a custom set of covariates, which are functions of the increment endpoints. These 1882 
functions come from integrating the underlying quadratic function over the increments. This approach was needed 1883 
in order to make statistically valid inferences with the semi-parametric mixed effect model techniques, and to 1884 
avoid errors associated with aggregating data into a uniform set of depth increments.  1885 

Using this customized approach, we estimated land use and management factors to a 30 cm depth.  Uncertainty 1886 
was quantified based on the prediction error for the model, and represents a 95% confidence interval for each of 1887 
the factor values. The resulting confidence intervals can be used to construct probability distribution functions 1888 
with a normal density for propagating error through the inventory calculations. 1889 

Paddy Rice Factors: 1890 

Evidence from chronosequences with up to 2000 years of rice cultivation history show rice paddy production 1891 
accumulates soil organic carbon at a fast rate during the first few decades, and then continues to accumulate carbon 1892 
at a slower rate until a steady-state is reached at about 300 years (Huang et al., 2015; Kölbl et al., 2014). To update 1893 
this land use factor for paddy rice, we therefore conducted a literature review and collected the field experiment 1894 
data of soil carbon stock changes in paddy rice fields that are available in peer-reviewed journals. For each long-1895 
term experiment site, data were compiled for conventional management (e.g., normal levels for N, P, K chemical 1896 
fertilizer applications, rice straw residue management and organic amendments). We calculated the ratio of soil 1897 
organic carbon (tonne C ha-1 for 0-30 cm soil depth) between survey years for the paired comparisons between 1898 
paddy rice and corresponding native vegetation.  The length of time ranged from 15 to 25 years. The resulting 1899 
estimates capture the large increase in carbon in the first few decades after rice cultivation, and therefore, are 1900 
considered conservative because carbon can still increase at a slower rate for several more years (Huang et al., 1901 
2015; Kölbl et al., 2014). The land use factor for paddy rice is estimated as the average of these ratios, and 1902 
uncertainty is based on the 2.5 percentile to 97.5 percentile of the distribution of ratios. 1903 
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Annex 5A.2 Scientific background for developing emission factors 3160 

and scaling factors for methane emission from paddy field from the 3161 

scientific literature 3162 

1. Collection of data  3163 
• Since 2004, there exists a large body of field measurements of CH4 emission from rice fields across the 3164 

world. The data set of Yan et al., 2005 (which is the data set used in developing emission factor and scaling 3165 
factors in the IPCC 2006 Guidelines) was updated with all studies conducted through 31 June 2017, 3166 
expanding the dataset with observations of CH4 emission from rice fields around the world.  3167 

• A comprehensive search was performed of published literature, which report field measurements of CH4, 3168 
as described previously in the paper by Yan et al., 2005. This included a keyword search for topics such 3169 
as rice or paddy*; methane or CH4 or greenhouse gas*; and flux* or emission*, in the ISI Web of Science 3170 
(Thomson Reuters, New York, NY, USA) and Google Scholar (Google, Mountain View, CA, USA).  3171 

• From this comprehensive search, the following information were compiled: (i) the average CH4 flux in the 3172 
rice-growing season; (ii) integrated seasonal emission; (iii) water regime during and before the rice-growing 3173 
season; (iv) the timing, type and amount of organic amendment; (v) soil properties (i.e., SOC and soil pH); 3174 
(vi) location, agroecological zone, and year of experiment or studies; and (viii) duration and season of 3175 
measurement. 3176 

• The following information describe the criteria for selecting data that were included in the data set:  3177 

o As suggested previously by Yan et al., 2005, hourly or daily flux is used in the compilation 3178 
because it has a better index of emission strength than the integrated seasonal emission. When 3179 
the average daily CH4 flux was not directly reported, the value is estimated using data of 3180 
integrated seasonal emissions divided by the measurement period. 3181 

o Water regime were categorized into following conditions: (i) continuous flooding; (ii) single 3182 
drainage; (iii) multiple drainage; (iv) rainfed; and (v) deep water. The pre-season water regime was 3183 
classified as: (i) non flooded pre-season for less than 180 days; (ii) non flooded pre-season for more 3184 
than 180 days; (iii) flooded pre-season for more than 30 days; and (iv) non-flooded pre-season for 3185 
more than 365 days. See Table 5.15 for the illustration of the water regimes before the cultivation 3186 
period. 3187 

o For organic amendments, the data were classified as (i) straw incorporated shortly (i.e. less than 3188 
30 days) before cultivation; (ii) straw incorporated long (i.e. more than 30 days) before cultivation; 3189 
(iii) compost; (iv) farmyard manure; and (v) green manure.  Data for rice straw are expressed in dry 3190 
weight, while for other organic materials data are expressed in fresh weight.  3191 

o To account for the spatial variability of CH4 emissions on the global scale, experimental sites 3192 
were classified into different zones based on their climatic conditions. Using IRRI’s climatic 3193 
classification (IRRI, 2002), Asian rice fields were categorized into six agro-ecological zone: (i) 3194 
warm arid and semi-arid tropics; (ii) warm sub-humid tropics; (iii) warm humid tropics; (iv) warm 3195 
arid and semi-arid sub-tropics with summer rainfall; (v) warm sub-humid sub-tropics with summer 3196 
rainfall; and (vi) warm/cool humid sub-tropics with summer rainfall. Rice fields in the other region 3197 
of the world were grouped into three regions, i.e., Latin America, Europe and United States . 3198 

o On soil properties, because of the limited availability of information, only soil organic carbon 3199 
(SOC), and soil pH (as continuous variables), were included in the data set. If soil organic matter 3200 
content rather than SOC was reported, it was converted to SOC using a Bemmelen index value 3201 
of 0.58. To meet the requirement of the statistical model, measurements without information for 3202 
three continuous variables (i.e. SOC data, soil pH and the amount of organic amendment), were 3203 
excluded. The final dataset used in the analysis included 1089 measurements, from 122 rice fields 3204 
across the world. In this data set, measurements from Asian rice fields increased from 554 (Yan 3205 
et al., 2005) to 942. In addition, 147 measurements from other regions of the world were added 3206 
to the datasets (dataset provided in Wang et al., 2018). 3207 
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2. Processing and compilation of data  3208 
 3209 

 Consistent with previous study by Yan et al., (2005), the following linear mixed model, suitable for 3210 
analyzing unbalanced data (Speed et al., 2013), was used to determine the effect of controlling variables 3211 
on CH4 flux from rice fields: 3212 

 3213 

EQUATION 5A.2.1 3214 
LN (FLUX)  = CONSTANT + A • LN (SOC) + PHH  + PWI  + WRJ  + CLK  + OML  • LN (1 + AOML) 3215 

 3216 

Where:  3217 

ln (flux) = average CH4 flux during the rice-growing season (expressed in natural logarithm) 3218 

SOC and constant “a” = represent soil organic carbon content and its effect (SOC is in per cent) 3219 

pHh  =  represents the soil pH, unitless 3220 

PWi = represents the pre-season water regime (e.g. continuous flooding; single drainage; multiple drainage; rainfed; 3221 
and deep water) 3222 

WRj = represents the water regime in the rice-growing season (e.g. non flooded pre-season for less than 180 days; 3223 
non flooded pre-season for more than 180 days; flooded pre-season for more than 30 days; and non-flooded pre-3224 
season for more than 365 days) 3225 

CLk = represents the climate, (expressed using IRRI’s agro-ecological zone for Asia, other regions were categorized 3226 
into Europe, Latin America and United States) 3227 

OMl  = represents organic amendment (straw incorporated shortly (<30 days) before cultivation, straw incorporated 3228 
long ( >30 days) before cultivation, compost, farmyard manure, and green manure) 3229 

AOMl  = represents the amount of organic amendment, tonne ha�1  3230 

 3231 

In this model soil pH was treated as a categorical variable and grouped into the following “h” classes: <4.5, 4.5-5.0, 3232 
5.0-5.5, 5.5-6.0, 6.0-6.5, 6.5-7.0, 7.0-7.5, 7.5- 8.0 and �8.0. For other categorical variables, their corresponding 3233 
sublevels (i, j, k, l) and descriptions are shown in Tables 5A.2.1.  3234 

The last part of Equation 5A.2.1 reflects the effect of the application of organic amendment on CH4 flux. This effect 3235 
is an interaction of the type and amount of organic materials used. In cases where the amount of organic amendment 3236 
is zero in the analysis, it is assumed to be the result of each type of organic material at zero application rate. 3237 
Obviously, this assumption will result in more data points in the analysis than there are in real observations. To 3238 
ameliorate this problem, the residual of observations are weighted with organic amendment as 1 and those without 3239 
as 0.2 (as the observational result was repeated five times for the five types of organic materials). 3240 

The effects of the controlling variables on CH4 flux were computed by fitting Equation 5A.2.1 to field 3241 
observations using the SPSS Mixed Model procedure (V24.0, SPSS Inc., Chicago, IL, USA). 3242 

3. Developing of global and regional emission factors and scaling factors 3243 
 The estimated effects of various variables were used to derive a default EF. In the model, the CH4 3244 

emission from rice fields is a combination of the effects of SOC and pH values, pre-season water status, 3245 
water regime in the rice-growing season, organic amendment and climate. An assumption was made to 3246 
provide a default EF, that is, all observations in the data set to have a water regime of continuous flooding, 3247 
a preseason water status of non flooded pre-season <180 d and no organic amendments, while keeping 3248 
other conditions constant, as stated in the original papers (Yan et al., 2005). Using Equation 5A.2.2, default 3249 
EF is derived for continuously flooded rice fields, with a pre-season water status of non flooded pre-season 3250 
<180 days, and without organic amendment: 3251 

 3252 



 DO NOT CITE OR QUOTE                                                                                Chapter 5, Volume 4 (AFOLU)  
 
Second Order Draft 
 

5.88 DRAFT 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 

 3253 

EQUATION 5A.2.23254 

 3255 

 3256 

 3257 

Where: 3258 

EF = default emission factor derived for continuously flooded rice fields, with a pre-season water status of non 3259 
flooded pre-season <180 days, and without organic amendment, kg CH4 ha-1 day-1 3260 

‘constant’ and ‘a’ = values estimated in Equation 5A.2.1 3261 

n = total number of observations in the data set 3262 

pHi  = soil pH for the ith observation, unitless 3263 

CLi  = climate type for the ith observation, (expressed using IRRI’s  agro-ecological zone for Asia, other regions 3264 
were categorized into Europe, Latin America and United States) 3265 

PWshort drainage  =  represents the pre-season water regime (i.e. as ‘non flooded pre-season <180 days) 3266 

WRcontinuous flooding = represents the water regime in the rice-growing season (i.e. as continuous flooding) 3267 

 3268 

The values of scaling factor from the aggregated and disaggregated cases are assumed to be referenced as global 3269 
and regional scaling factors, respectively. The scaling factors of the disaggregated case for water regime during the 3270 
rice season and preseason are estimated using the modelling results in Equation 5A.2.1. Firstly, the fluxes of CH4 3271 
for ‘continuously flooding’ during the rice season and ‘non flooded pre-season <180 d’ in preseason were assumed 3272 
to be 1. Then, the corresponding relative fluxes for different water regimes were calculated by the ratios of back-3273 
transformed estimates (i.e., exponential function) of different water regimes to back-transformed estimates (i.e., 3274 
exponential function) of ‘continuously flooding’ during the rice season and ‘non flooded pre-season <180 d’ in pre-3275 
season. Given the different sizes of observations for various water regimes in the data set, the calculations of the 3276 
scaling factors for the aggregated case were weighted accordingly. For organic amendment, the fluxes of CH4 3277 
following various organic materials incorporation were calculated, first with an application amount of 6 t/ha. After 3278 
that, the CH4 flux from straw applied shortly (<30 days) before cultivation (6 t/ha) is assumed to be 1, the relative 3279 
fluxes for other organic materials are then calculated. 3280 

 3281 

For more detail: 3282 

Wang, J., Akiyama, H., Yagi, K., and Yan, X.: How methane emission from rice paddy is affected by management 3283 
practices and region?, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-165, in review, 2018. 3284 

List of reference included in the updated database for the model is also available in the website shown above. 3285 

 3286 

 3287 

 3288 

 3289 

 3290 

 3291 
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 3292 

TABLE 5A.2.1 DESCRIPTION OF THE SELECTED VARIABLES THAT CONTROL CH4 EMISSION FROM RICE FIELDS  

Variables Description 

Preseason water status 
Flooded pre-season Permanently flooded rice fields are assumed to have a preseason water regime of ‘flooded 

pre-season’. Late rice in China is usually planted immediately after early rice on the same 
field and is therefore regarded as having a preseason water regime of ‘flooded pre-season’. 

Non flooded pre-season >180 d If rice is planted once a year and the field is not flooded in the non-rice growing season, the 
preseason water regime is classified as ‘non flooded pre-season >180 d’. 

Non flooded pre-season <180 d Rice is planted more than once a year, but there is more than one month fallow time 
between the two seasons, ‘non flooded pre-season <180 d’ is usually taken as preseason 
drainage. 

Non-flooded pre-season >365 d For measurements conducted on rice fields that are preceded by two upland crops or an 
upland crop and a drained fallow season, the preseason water of such experiments is 
classified as ‘non-flooded pre-season >365 d’. 

Water regime in the rice-growing season 
Continuous flooding Rice is cultivated under continuously flooded condintion but sometimes an end-season 

drainage before rice harvest included. 
Single drainage One mid-season drainage and an end-season drainage are adopted over the entire rice-

growing season. 
Multiple drainage 

It refers to the water regime is called 'intermittent irrigation' but the number of drainages 
was not clear. 

Rainfed, wet season (regular 
rainfed) 

Rice cultivation rely on rainfall for water, in this case the field is flood prone during the rice-

growing season. 
Rainfed, dry season (drought 
prone) Rice cultivation rely on rainfall for water, in this case the field is drought prone during the 

rice-growing season. 
Deep water Rice grown in flooded conditions with water depth more than 50 cm deep. 

Organic amendment  
Straw incorporated shortly (<30 
days) before cultivation 

Straw applied just before rice transplanting as on-season; straw that is left on the soil surface 
in the fallow season and incorporated into the soil before the next rice transplanting is also 
categorized as ‘straw incorporated shortly (<30 days) before cultivation’. The amount of 
straw return is expressed in dry weight (t ha-1). 

Straw incorporated long (>30 
days) before cultivation 

Straw incorporated into soils in the previous season (upland crop or fallow) is categorized as 
‘straw incorporated long (>30 days) before cultivation’. The amount of straw return is 
expressed in dry weight (t ha-1). 

Compost, farmyard manure, 
green manure 

The amount of organic materials is expressed in fresh weight (t ha-1). 

 3293 

 3294 
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