Soil Dust Emissions

Ina Tegen Institute for Tropospheric Research Leipzig, Germany

Saharan dust storm from Space Shuttle, 1992

IPCC, 2001:

IPCC, 2001:

Global Dust Indicators

days/yr

Dust Storm Frequencies, 1970-1990s, (Visibility < 1km)

(International Station Meteorological Climate Summary (ISMCS) version 4.0)

(Engelstaedter et al. 2003)

Total Ozone Mapping Satellite Absorbing Aerosol Index (1985-1990)

Global Dust Indicators

Dust Storm Frequencies, 1970-1990s, (Visibility < 1km)

(International Station Meteorological Climate Summary (ISMCS) version 4.0)

(Engelstaedter et al. 2003)

Bias to inhabited regions

Total Ozone Mapping Satellite Absorbing Aerosol Index (1985 - 1990)

Do we understand dust variability on interannual to decadal timescales?

 Satellite: Few long-term records, consistency?
 Station data of dust concentration/ice cores: only sparse information

Analysis of dust storm frequency data

Dust Storm Frequency Changes in Africa

N'tchayi Mbourou et al. (1997)

Do we understand dust variability on interannual to decadal timescales?

 Satellite: Few long-term records, consistency?
 Station data of dust concentration/ice cores: only sparse information

 Analysis of dust storm frequency data
 Transport models using meteorological fields from a series of reanalysis years

Processes of Soil Particle Movement

(Numbers in brackets indicate typical particle diameters)

Dependence of threshold wind shear for dust emission on z_0

Minimum u* required for dust emission

after Iversen and White (1982)

after Marticorena and Bergametti, 1995

Some dust emission schemes used in global models

Tegen et al., 1994:

$$F = \sum_{i} (C_i (u - 6.5m/s)u^2)$$

C: Calibration constant

Marticorena et al., 1997

$$F = \alpha \frac{\rho}{g} u_*^3 \sum_i \left[\left(1 + \frac{u_{*tr_i}}{u_*} \right) \left(1 - \frac{u_{*tr_i}^2}{u_*^2} \right) s_i \right]$$

α: depending on soil type

Ginoux et al, 2001

$$F = CS\sum_{i} \left[(u - u_{tr_i} \text{ (soil moisture)})u^2 s_i \right]$$

S: topography factor

for $u > u_{tr}$ (or $u_* > u_{*tr}$)

F: dust flux, *u*: surface wind speed, u_{tr} : threshold wind speed, u_* surface wind shear, s_i : fraction of particles in size bin i, ρ = air density, *g*: gravitational constant Usually areas with high vegetation and soil moisture are masked out

Dust source areas: Vegetation mask

Annual dust sources Seasonal dust sources No dust emission Preferential source

Dust Budget Estimates

Reference	Emissions E Tg yr ¹	Time τ Days	Burden M Tg
Duce et al. [1991] Tegen and Fung [1994] Tegen and Fung [1995] Andreae [1996] Prospero [1996] Mahowald et al. [1999] Penner et al. [2001] Ginoux et al. [2001] Chin et al. [2002] Werner et al. [2002] Tegen et al. [2003] Luo et al. [2003] Mahowald and Luo [2003] Miller et al. [2004] Tegen et al. [2004]	$\begin{array}{c} (910)\\ 3000\\ 1222\\ 1500\\ (358)\\ 3000\\ 2150\\ (478)\backslash 1814\\ 1650\\ 1060 \pm 194\\ 1100\\ (314)1490 \pm 160\\ 1654\\ 1654\\ 1654\\ 1018\\ 1921 \end{array}$	$5.6 \\ 4$ 7.1 6.3 2.8 \pm 0.5 7.4 4.3 \pm 1.0 5.1 5.1 5.2 Zend	$ \begin{array}{c} 18.8\\ 8.4\\ 35.9\\ 28.7\\ 8 \pm 3\\ 22.2\\ 17.4 \pm 2\\ 23\\ 23\\ 14.6\\ \end{array} $
		Zender et al., 2004	

Impact on soil surfaces by:

Cultivation in arid and semi arid regions (+)

 (Soil protection, irrigation) (-)

 Overgrazing (+)
 Deforestation (+)
 Unpaved roads, construction (+)
 Military activities in deserts (+)

Impact on soil surfaces by:

Cultivation in arid and semi arid regions (+)

 (Soil protection, irrigation) (-)

 Overgrazing (+)

 Deforestation (+)
 Unpaved roads, construction (+)
 Military activities in deserts (+)

Impact on climate:

Changes in meteorology (wind, precipitation) (+/-)
 Changes in natural vegetation (+/-)

Impact on soil surfaces by:

Anthropogenic Dust of First Kind

- 1. Direct emission by mechanical impact
- 2. Wind erosion of disturbed soils

Impact on climate:

Anthropogenic Dust of Second Kind

(Zender et al, 2004)

Methods to estimate anthropogenic contribution from global models:

Global models: Increase of dust emissions by either enhancing emission factor or decreasing u*_{tr} in regions with disturbed soils

$$F = \alpha \frac{\rho}{g} u_*^3 \sum_i \left[\left(1 + \frac{u_{*tr_i}}{u_*} \right) \left(1 - \frac{u_{*tr_i}^2}{u_*^2} \right) s_i \right]$$

Methods to estimate anthropogenic contribution from global models:

Global models: Increase of dust emissions by either enhancing emission factor or decreasing u*_{tr} in regions with disturbed soils

$$F = \alpha \frac{\rho}{g} u_*^3 \sum_i \left[\left(1 + \frac{u_{*tr_i}}{u_*} \right) \left(1 - \frac{u_{*tr_i}^2}{u_*^2} \right) s_i \right]$$

<u>Global estimates of dust fluxes from</u> anthropogenically disturbed soils:

IPCC, 2001: up to 50% (determines radiative forcing)

⇒ based on model/satellite AOT comparison (ocean)

<u>Global estimates of dust fluxes from</u> anthropogenically disturbed soils:

IPCC, 2001: up to 50% (determines radiative forcing)
 Prospero et al, 2002: small (Natural sources dominant)

TOMS absorbing aerosol index 1985-1990

"Dust mostly originates from deserts 'hot spots' in uncultivated regions"

Preferential Dust Source Areas

Ginoux et al., 2001

<u>Global estimates of dust fluxes from</u> anthropogenically disturbed soils:

IPCC, 2001: up to 50% (determines radiative forcing)
 Prospero et al, 2002: small (Natural sources dominant)
 Luo et al., 2003: 0-50% ('new desert source')

based on comparison of different model scenarios with concentration data from surface stations

<u>Global estimates of dust fluxes from</u> anthropogenically disturbed soils:

IPCC, 2001: up to 50% (determines radiative forcing)
Prospero et al, 2002: small (Natural sources dominant)
Luo et al., 2003: 0-50% ('new desert source')
Yoshioka et al., in press.: <25% (North Africa)

based on comparison of different model scenarios with TOMS AI

<u>Global estimates of dust fluxes from</u> anthropogenically disturbed soils:

IPCC, 2001: up to 50% (determines radiative forcing)
 Prospero et al, 2002: small (Natural sources dominant)
 Luo et al., 2003: 0-50% ('new desert source')
 Yoshioka et al., in press.: <25% (North Africa)
 Tegen et al., 2004: <10% (Agricultural soils)

⇒ based on comparison of different model scenarios with DSF climatology data

Observed differences between dust storm frequencies in different source regions

Small but significant increase in cultivated areas for locations grouped according to vegetation cover.

Dust Emissions from Natural and Cultivated Soils

 \succ Satellite z_0 >ECMWF ERA15 ≻Year 1987

<u>Global estimates of dust fluxes from</u> anthropogenically disturbed soils:

IPCC, 2001: up to 50% (determines radiative forcing)
Prospero et al, 2002: small (Natural sources dominant)
Luo et al., 2003: 0-50% ('new desert source')
Yoshioka et al., in press.: <25% (North Africa)
Tegen et al., 2004: <10% (Agricultural soils)

► → Large uncertainties!

Regional Soil Studies: Wind Erosion Prediction

WEQ: Wind Erosion Equation E = f (I, K, C, L, V)

E: potential soil loss, I: erodibility index, K: roughness factor, C: climate factor, L: unsheltered distance across field, V: equivalent vegetative cover.

WEPS: Wind Erosion Prediction System (USDA) Process based, process sub-models:

- ➤Weather
- Crop Growth
- Decomposition
- ≻Hydrology
- ≻Soil
- ➢Erosion
- ≻Tillage

For climate impact studies need particle size information!

Climate Change Impact: Projected Future Dust Emission Changes

Changes in meteorology

- Computing dust emission using meteorological fields extracted from ECHAM4 and HADCM3 IPCC future scenarios (IS92a Greenhouse warming).
- Changes in vegetation cover (as consequence of climate change)
 - Vegetation changes computed with BIOME4 vegetation model.
- Changes in cultivation patterns
 - Changes in emissions from cultivated regions computed using results from the IMAGE2.2 model (RIVM), based on IPCC SRES scenarios.

Regional Dust Emission Changes: Projection for 2050

 Tegen et al., 2004: HADCM, ECHAM
 Mahowald and Luo, 2003: NCAR

Global: -60-+20% change in emissions

Future estimates in dust changes vary greatly due to uncertainties in climatology and parameterization of dust emissions in global models

Projected Future Dust Emission Changes

Δ Natural

△ Natural + Agricultural

For comparison: Mahowald and Luo, 2003: 60% reduced dust emission in 2090

More sources of anthropogenic soil dust

- Agricultural tillage: Europe: Probably more important than wind erosion? (Goossens et al., 2001)
- Deforestation: ?? Treat as unvegetated areas for wind erosion, possibly small contribution (Tegen and Fung, 1995)
- Offroad traffic: Depending on vehicle speed and weight, PM10 – climate relevance? Small areas (Gillies et al. 2005, Etyemezian, 2004)
- Construction: Climate relevance? Small areas (Kinsey et al., 2004)

Summary

- Dust emissions can by impacted by human influence on land surfaces or as consequence of anthropogenic climate change.
- Global 'antropogenic' dust emissions have been estimated to be up to 50% (IPCC 2001). Recent results indicate that probably less than 10-25% of global dust emissions originate from agricultural soils.
- Changes in dust on global scale are likely to be more controlled by changes in climate and natural vegetation rather than by changes in cultivated areas.
- Regional impacts of anthropogenic soil dust may be large.
- Better quantification of anthropogenic dust emission requires upscaling of wind erosion measurement/ model results, plus size resolved information (PM2.5).