Global Inventories of carbonaceous aerosols

Tami C. Bond University of Illinois at Urbana-Champaign

> 2 May 2005 IPCC Aerosol Meeting Geneva, Switzerland

outline

1. estimating emissions

- a. particular challenges of carbonaceous aerosols
- b. inventory procedure & brief results
- c. major uncertainties
- 2. a brief history of inventories
 - a. present dilemma
- 3. work on the future (from D. Streets)

not here (and *needed*):

- secondary anthropogenic aerosol
- *biogenic* aerosol

BC/OC emission challenge

 Emission estimation 	 harder than species with bounded emissions (CO₂, SO₂) similar to process-dependent species (NOx, CO) 	
 Model validation 	 harder than well-mixed species (CO₂, CH₄) similar to species with short lifetimes (SO₂/SO₄⁼, CO) 	
 Chemistry-optics connection 	harder than single species (CO ₂ , CH ₄ , even SO ₄ ⁼)	

Variability in different burning of the same fuel

the point at which "excessive soot" begins to form [8]. This limit is apparent in the

ngure for Variability of a single source RPM. At

higher speeds, the acceptable ϕ is even lower, because the particles have less time to

• emission factor and aerosol type depends on burning conditions

 2 kg⁻¹.

Figure 7-1. Emission of absorption (left) and mass (right) from Caterpillar engine.

global inventory procedure

emission from one technology

= fuel use x PM emission factor x characteristics

+ activity levels (usually fuel)

- International Energy Agency, United Nations, etc.
- emission factors (vary by fuel/technology)
- characteristics (also vary by fuel/technology)
 - BC fraction
 - Removal by control devices
 - Size (affects optical properties)
- technology divisions
 - division into >100 fuel+technology categories
 - regionally-distinct technology divisions

total emissions = sum over technologies

1b. estimation procedure

global sources

Bond, Streets et al., JGR 109, D14203, doi:10.1029/2003JD003697

1b. estimation procedure

Estimating uncertainties

1b. estimation procedure

uncertainties

 inventory contains full uncertainty propagation (activity estimates, emission factors, etc)
 of course, there are many guesses

Open biomass burning

Issues

 → Quantities of vegetative matter burned
 → Emission factors variable with combustion conditions; not represented

Transport sector

Issues

on-road

- estimated fleet emission factor (fleet information hard to find for many countries)
- superemitters
- difference between dynamometer measurements & real world

off-road mobile/industrial

- estimated from fraction of fuel used in various sectors
- country treatment of reporting is inconsistent

Small industry

Kathmandu: Brick Kilns

Iimited measurements

Issues

- emission factors/ characteristics
- types of industrial use
- willingness to be measured

Domestic biofuel

Issues

- + fuel quantities
 - haven't been well estimated even by energy sector
 - not just a "developing" country issue (per-capita wood use in U.S. 50% of that in India)

emission factors

- many sources; difficult to estimate average
- measurement of aerosol type (BC/OC) most uncertain

Domestic biofuel (II)

A brief history of global inventories

1983 Turco 1993 Penner 1996 Cooke & Wilson 1996 Liousse 1999 Cooke et al 2001 Andreae & Merlet

order-of-magnitude estimate based on fuel use fossil fuel + biofuel biomass/biofuel emissions different by development level

comprehensive tabulation of biomass emission factors

2004 Bond & Streets emissions different by technology

2. inventory history

A brief history of global inventories

	black carbon	organic carbon
1983 Turco	2.6-22	
1993 Penner	6.6 FF, 6 BB	
	24 (ratios w/sulfur)	
1996 Cooke & Wilson	8 FF, 6 BB	
1996 Liousse	5.6 вв	45 вв
1999 Cooke et al	5.1 FF	10 ff
2001 Andreae & Merlet	4.8 вв	36 вв
2004 Bond & Streets	3.0 FF, 5.0 BB/BF	2.4 FF, 31 BB/BF
	(4.3-22)	(17-77)

Why the reduction in FF emissions?

Bond (2004) vs Cooke (1999)

Differences are easily explained.

Coal, power generation (difference 1.5 Tg/yr)

We rely on measured BC fractions (<1%) instead of guesses (25%)

On-road diesel (difference 1 Tg/yr)

We use emission measurements and World Bank studies instead of assuming "developing countries have 5x higher emissions" (15 g/kg average PM emission factor)

Domestic diesel (difference 0.25 Tg/yr; large in Europe)

We do not apply emission factors for internal combustion engines to external-combustion boilers

2. inventory history

The present dilemma

 * "corrections" reduced emission estimates from 14 Tg/yr to 8 Tg/yr

- models typically need more BC to match observations... not less!
- measurement techniques may be uncertain...
- ← …but probably not enough ²/₈ to explain discrepancy.

Forecasting BC and OC emissions

How fast will control technology improve?

Electrostatic precipitator, high collection efficiency

Cyclone, low collection efficiency

Representing time trends with S-shaped technology penetration curve

Emission rate (g/kg)

BC emission changes between 1996 & 2030A1B

Technology improvement overwhelms energy growth!

General decline in all cases

Results suggest we are headed for a world with stable or lower primary aerosol emissions

Main message

 Estimating emissions of carbonaceous aerosols has challenges that may go beyond previous IPCC inventories.

- Technology & other practice are important.
- More *cooperation* and *information* from local knowledge is needed.