

Lessons learned from the Application of Emission Factors defined in 2006 IPCC Guidelines to the Clean Development Mechanism (CDM)

IPCC Expert Meeting: Application of 2006 IPCC Guidelines to Other Areas 1-3 July 2014 Sofia, Bulgaria

Kazuhisa KOAKUTSU (koakutsu@iges.or.jp) Principal Policy Researcher Leader, Climate and Energy Area, IGES

205 CDM Methodologies

Majority of projects under renewables and waste management

Source: IGES CDM Project Database (June 2013)

More than 70% of CDM projects use the baseline as the existing emissions

Renewable Energy

ACM0002 (ver.12.1) Consolidated methodology for grid-connected electricity generation from renewable sources

Combined CO₂ emission factor for grid connected power

Project emissions in year y

Baseline Emissions

$$BE_y = EG_{PJ,y} EF_{grid,CM,y}$$

Tool to calculate the emission factor for an electricity system

Project Emissions
$$PE_y = PE_{FF} + PE_{GP,y} + PE_{HP,y}$$

Tool to calculate project or leakage CO2 emissions from fossil fuel combustion

Based on data on fuel consumption and net electricity generation of each power plant / unit

Tool to calculate Project EFs

Based on fuel consumption and fraction of carbon in the fuel

$$PE_{FC,i,y} = \sum_{i} FC_{i,j,y} * COEF_{i,y}$$
Option A:
If $FC_{i,jy}$ is measured in a mass unit:
Mass fraction of carbon in the fuel
If $FC_{i,jy}$ is measured in a volume unit:
COEF_{i,y} $w_{c,i,y}$ 44/12
If $FC_{i,jy}$ is measured in a volume unit:
COEF_{i,y} $w_{c,i,y}$ $\rho_{i,y} \times 44/12$
Option B:
COEF_{i,y} $w_{c,i,y}$ $\rho_{i,y} \times 44/12$
Default values can be applied
by the 2006 IPCC Guidelines

Waste Management (Animal Manure)

AMS-III.D. (version17) Methane recovery in animal manure management systems

 For many of parameters, default values are provided by 2006 IPCC inventory guideline

Baseline Emissions: Equation (1)

$$BE_{y} = GWP_{CH4} *D_{CH4} *UF_{b} *\sum_{j,LT} MCF_{j} *B_{0,LT} *N_{LTy} *VS_{LTy} *MS\%_{Bl,j}$$

D: CH4 density **IPCC IPCC IPCC IPCC IPCC**
MCF: Methane correction factor
B: Methane producing capacity
VS: Volatile solids
$$VS_{LT,y} = \left(\frac{W_{site}}{W_{default}}\right) *VS_{default} *nd_{y}$$

W: Default average enimel weight of a defined period tion

W: Default average animal weight of a defined population

Wastewater Treatment

AMS-III.H. (version16) Methane recovery in wastewater treatment

For many of parameters, default values are provided by
 2006 IPCC inventory guideline

Baseline Emissions: Equation (2)

$$BE_{ww,treatment},y = \sum_{i} (Q_{ww,i,y} * COD_{inf low,i,y} * \eta_{COD,BL,i} * MCF_{ww,treatment},BL,i}) * B_{o,ww} * UF_{BL} * GWP_{CH4}$$

MCF: Methane correction factor
B: Methane producing capacity

Baseline Emissions: Equation (3)

 $BE_{treatment,s,y} = \sum_{j} S_{j,BL,y} * \underline{MCF}_{s,treatment,BL,j} * \underline{DOC}_{s} * UF_{BL} * \underline{DOC}_{F} * \underline{F * 16} / 12 * GWP_{CH4}$ $IPCC \qquad IPCC \qquad IPCC \qquad IPCC$

DOC: Degradable organic content **F**: Fraction of CH4

Baseline Emissions: AMS-III.G.

Tool to determine CH4 avoided

Based on Fast Order Decay Model

F: Fraction of methane captured
OX: Oxidation factor
MCF: methane correction factor
DOC: Fraction of degradable organic carbon
k: decay rate for the waste

Different ERs in the Same Methodology

Methane recovery in wastewater treatment (AMS-III.H.)
The same input value, but different emissions reductions
Differences due to the changes in calculation formula and introduction of conservative default values

Based on IGES ER calculation Sheet (AMS-III.H.) and IGES own calculation

Methodology is not always perfect

Landfill methane recovery (AMS-III.G.)

19 reg. projects out of 22 reg. projects "voluntarily" introduces correction factor, "methane recovery rate" (0.5-0.7), which is not in the methodology

Project developer, based on experience, try to make best estimates to reflect in their emission reductions.

Summary of Application of IPCC default values to the CDM

- CDM methodology has been benefited by utilizing 2006 IPCC guideline for national GHG inventory, where appropriate.
- Mostly concentrated in the CDM methodology related to renewable energy and waste management.
- For those related to energy, most of the EFs offered by the IPCC are used to calculate emission reductions by displacing fossil fuels. They are typically (NCV, CO₂/CH₄ emission factor per unit of energy, mass fraction, etc.)
- For those related to waste management, extensive set of EFs are offered by the IPCC default values (MCF, B, F, OX, DOC, etc.).
- Depending on the parameters, regional (e.g. DOC) and case specific (e.g. animal weight) are also provided and they seem to be effective as the CDM is project-based mechanism. 14

Lessons learned from the Application of IPCC default values

- There has been tendency to revise the default values to be conservative as new findings are available. This has been the cases for the CDM methodology as it involves actual verification (filling gap between theory and practice).
- Default emission factors are much more available for waste related emission factors than any other sectors, which in turn has been extensively utilized, however, it has limited application and variety for the energy related sectors (e.g. regional values for fossil fuels.
- Some project participants have tried to calculate country specific EFs for certain fossil fuel (e.g. coal, and natural gases) in order to incorporate country specific circumstances.
- It has been difficult to ensure the level of uncertainty based on the limited experience.

Default & Country Specific Values applied

Default parameters

Parameters	Default values	Unit	Source
Average annual temperature	27	Co	PAGASA
Average mass of feed intake per head per day	2.33 or 2.66	kg/day	PDA
Density of methane at normal condition	0.00067	t/m ³	IPCC 2006
Maximum methane producing capacity for manure produced by livestock category	0.29	m³CH₄/kg VS	IPCC 2006
Methane Conversion Factor	80	%	IPCC 2006
Urinary energy expressed as fraction of energy	2	%	IPCC 2006
intake			
Digestibility	80	%	IPCC 2006
Maximum methane producing potential of the volatile solid generated	0.45	kg CH₄/kg VS	IPCC 2006
Default value for the volatile solid excretion per	0.3	kg	IPCC 2006
day on a dry-matter basis for a defined livestock		VS/head*day	
(market)			
Default value for the volatile solid excretion per	0.46	kg	IPCC 2006
day on a dry-matter basis for a defined livestock		VS/head*day	
(breeding)			
Average animal weight (breeding)	198	kg/head	IPCC 2006
Average animal weight (market)	50	kg/head	IPCC 2006