

#### Regular Fugitive Emission Characteristics of HFC-134a from Mobile Air Conditioners (MACs) of Korea-Made Passenger Vehicles in Korea

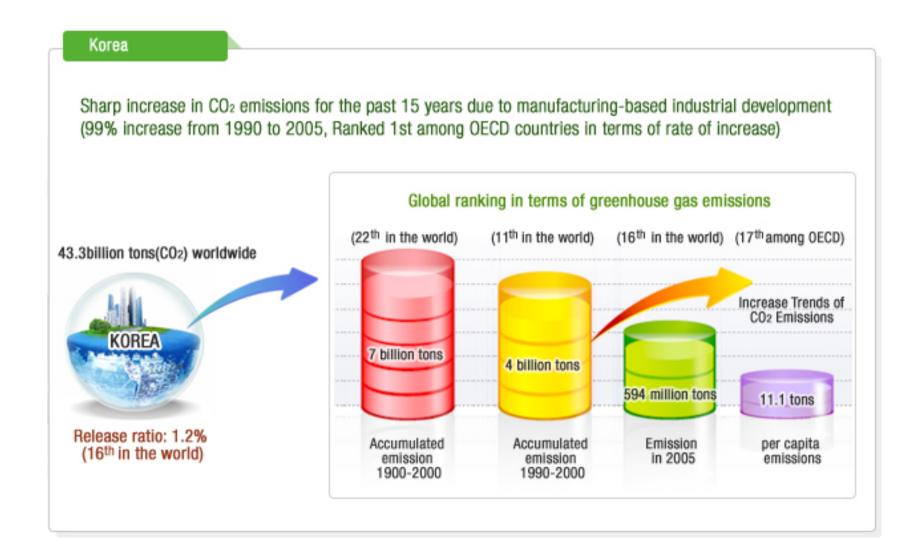


IPCC Expert Meeting, 1. July 2014 Seungdo KIM, Ph.D. POSCO Professor Hallym University



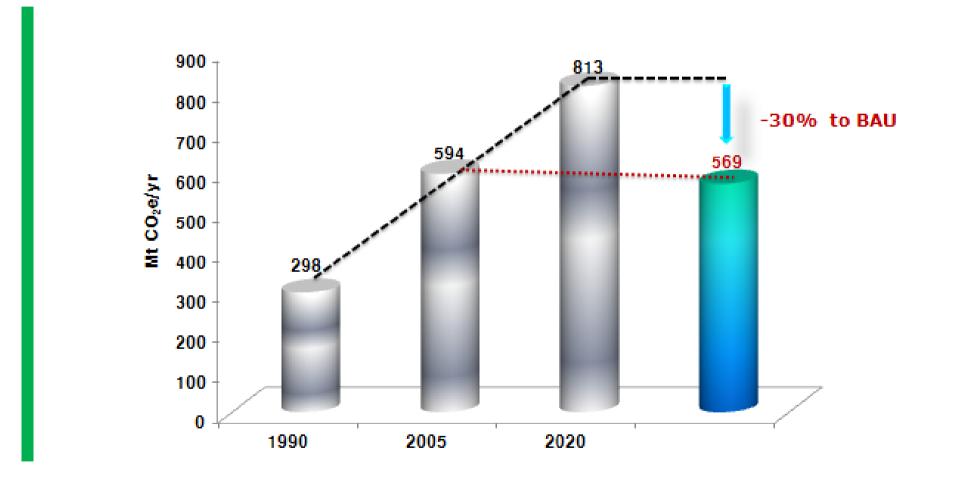
- 1. Backgrounds
- 2. Theoretical
- 3. Experimental
- 4. Results and Discussion
- 5. Conclusions




Hallym University Research Center for Climate Change



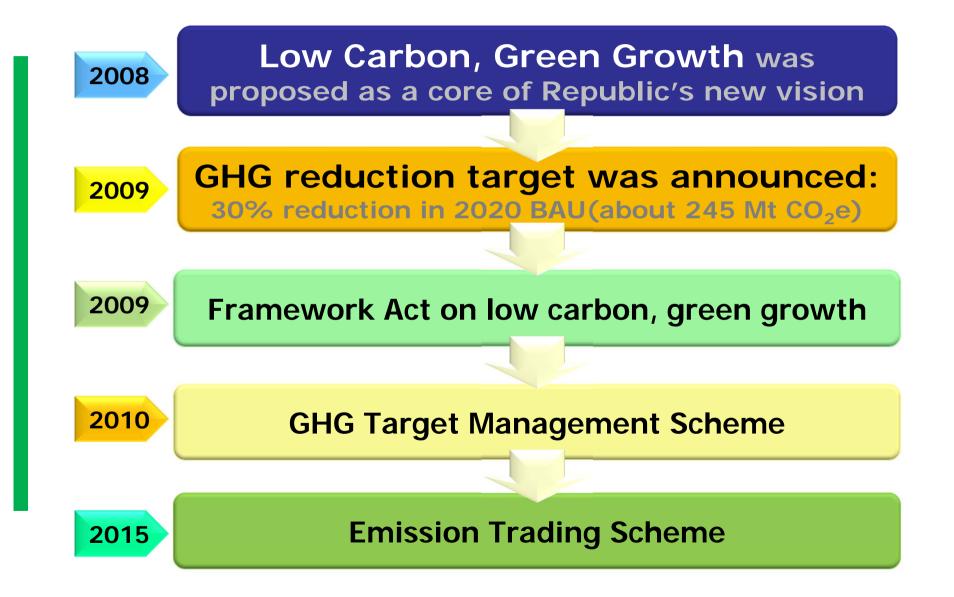
## **1. Backgrounds**














Hallym University Research Center for Climate Change







- GHG Target Management System and Emission Trading System require high accuracy of inventory;
- Korea is now reconstructing inventories of all sectors;
- HFC is one of the target GHGs for inventory reconstruction project.

 Two years project (2011. 7. ~ 2013. 8.) was carried out for developing F-Gas Inventory.







 High Global Warming Potential of HFCs demands accuracies of its emission data;

 Minor errors made during the courses of inventory preparation can allow significant deviation of inventory

 There are various emission sources of HFCs and difficulties in collecting activity data;

We did not have country-specific and/or plant-

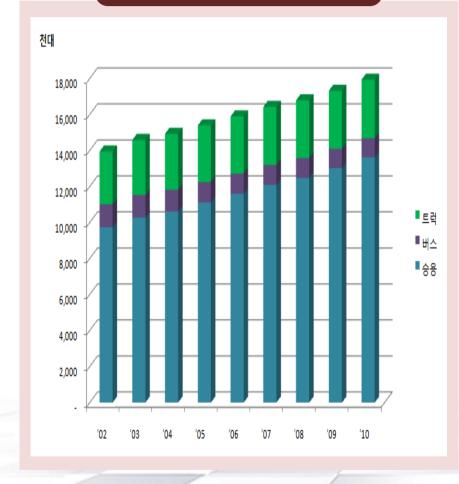
specific EFs for HFCs.



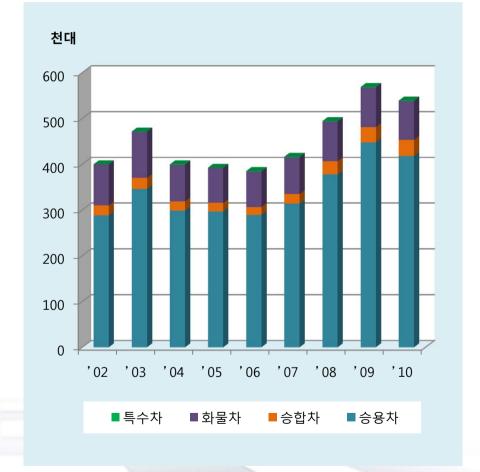


## **Refrigerant of MAC (Mobile Air Conditioner)**

#### History of Vehicle Refrigerant


#### **Characteristics of Refrigerants**

| <b>*</b> 89 | Montreal Protocol : Regulation of CFC<br>and HCFCs Use  | Item           | R-12                            | R-134a                           | R-1234yf      |
|-------------|---------------------------------------------------------|----------------|---------------------------------|----------------------------------|---------------|
|             | <u> "R-12</u> was major refrigerant"                    | Formula        | CCI <sub>2</sub> F <sub>2</sub> | CH <sub>2</sub> FCF <sub>3</sub> | $C_3H_2F_4$   |
| <b>′96</b>  | Conversion to <b>R-134a</b> for<br>New Cars             | Toxicity       | No                              | No                               | No            |
| <b>′05</b>  | Kyoto Protocol : Regulation of GHG Emission             | Flammability   | No                              | No                               | A little      |
|             |                                                         | ODP            | 1.0                             | 0                                | 0             |
|             | Conversion to R-1234yf<br>for New Car                   | GWP            | 8,500                           | 1,300                            | 4             |
|             |                                                         |                |                                 |                                  |               |
| SE          | Hallym University<br>Research Center for Climate Change | 9 <b>NČÍ G</b> | raduate Schoo                   | ol of Climate C                  | hange Studies |




## Statistics for Vehicle in Korea

#### Registration Status by Vehicle Type



#### Statistics for Scrap Vehicles



Hallym U Resear

Hallym University Research Center for Climate Change



#### Regular Emission

- Siegl et al. (2002) : <u>25.4 g/yr</u> per vehicle at a stationary mode
- Stemmler (2004) : <u>122.6 g/yr</u> per vehicle at a dynamic mode
- Schwarz (2005) : 52.6 g/yr per vehicle (EF = 6.9%/yr)
- Japan (2009) : EF = 5.2%/yr

### Total Emissions including regular and irregular emission

IPCC (2006) : EF = 10~20%/yr





### This research attempts to

- Develop the emission model of HFC-134a from MAC of passenger vehicles to simulate its regular emission kinetics;
- Develop country-specific emission factors of HFC-134a from MAC of passenger vehicles at use-phase and disposal-phase;
- Estimate the fugitive emission inventory of HFC-134a from MAC of passenger vehicles.



## **2. Theoretical**





## **Methodologies of 2006 IPCC Guidelines**

|        | Tier    |                                                                                  | Description                                                                                                                                                                                                                                          |
|--------|---------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tier 1 | Tier 1a | Emission Factor<br>Approach at the<br>application level                          | <ul> <li>Activity Data: Net Consumption         Net Consumption = Production + Imports - Exports -             Destruction     </li> <li>Annual Emission = Net Consumption • Composite EF</li> </ul>                                                 |
|        | Tier 1b | Mass Balance<br>Approach at the<br>application level                             | <ul> <li>Emissions = Annual Sales of New Chemical – (Total Charge<br/>of New Equipment – Original Total Charge of Retiring<br/>Equipment)</li> </ul>                                                                                                 |
| Tier 2 | Tier 2a | Emission Factor<br>Approach at the<br><b>sub-</b><br><b>application</b><br>level | $E_{total,t} = E_{containers,t} + E_{charge,t} + E_{lifetime,t} + E_{end-of-life,t}$<br>$ \approx E_{lifetime,t} = B_t \times \frac{x}{100}; B_t \text{ stands for HFC banked in existing equipment at year } t \text{ and } x \text{ does for EF} $ |
|        | Tier 2b | Mass Balance<br>Approach at the<br>sub-application<br>level                      | <ul> <li>Emissions = Annual Sales of New Refrigerant – Total Charge<br/>of New Equipment + Original Total Charge of Retiring<br/>Equipment – Amount of intentional destruction</li> </ul>                                                            |







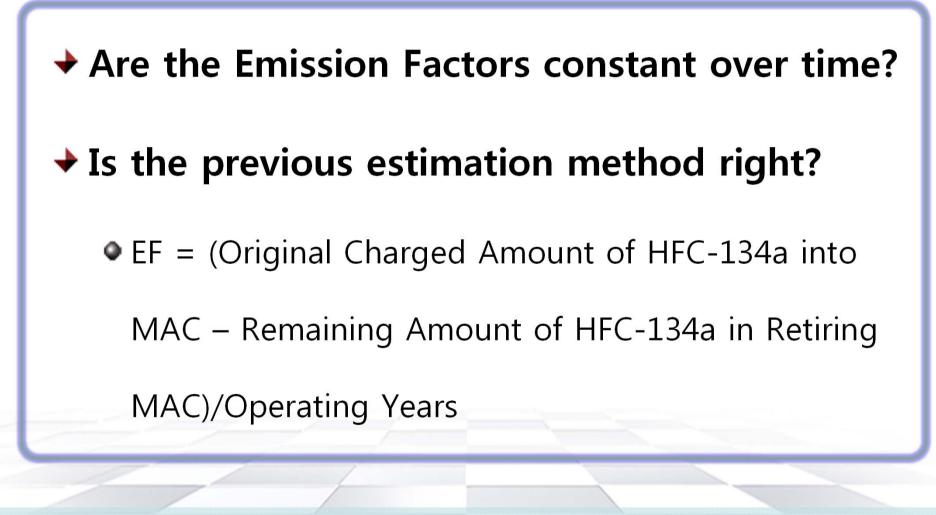
## Manufacturing Stage :

• HFC-134a may be emitted accidentally during its injection to MAC

## Operation Stage :

 HFC-134a may be emitted during the operation of MAC through the construction materials and connection points

## Disposal Stage :

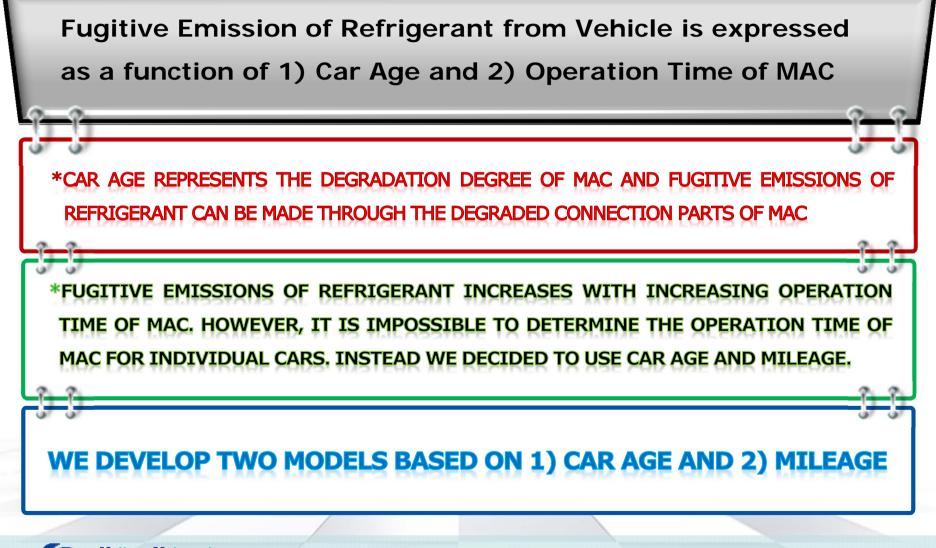

• HFC-134a remained in MAC will be emitted eventually



Hallym University Research Center for Climate Change








Hallym University Research Center for Climate Change

16

**MOV** Graduate School of Climate Change Studies







#### Assumptions

- Emission Rate of Refrigerant is proportional to the residual amount of refrigerant;
- Emission rate constant is unvaried with car age.

### Fugitive Kinetic Equation for Refrigerant

$$\frac{dM_e}{dt} = - \textcircled{\mathcal{E}} M_e$$

where  $M_e$ : Residual amount at year t (g)

E : Apparent emission rate constant(yr<sup>-1</sup>)



Hallym University Research Center for Climate Change

## First-order Emission Model (FEM)

#### **Apparent Emission Rate Constant**

$$\varepsilon = \frac{\ln \left( \begin{array}{c} M_{e} \\ M_{0} \end{array} \right)}{-t}$$

- 1. Get information on original charged or recharging amount :  $M_0$
- 2. Determine the residual amount of refrigerant  $: M_e$
- 3. Determine the duration time after refrigerant charging (original or recharge)

#### **Residual Amount as a function of time**

•  $M_e = M_0 \cdot \exp(-\varepsilon \cdot t)$  where  $M_0$  is the original charged amount or recharged amount(g)



Hallym University Research Center for Climate Change



#### Total Emission Amount at year t

Difference in residual amount between (t-1) and t year

$$EA(t) = M_e(t-1) - M_e(t) = M_0 \cdot [exp\{-\varepsilon \cdot (t-1)\} - \exp(-\varepsilon \cdot t)]$$

where EA represents Emission Amount(g) during one year between year (t-1) and t.

#### **Emission Factor (Annual Emission Rate)**

$$x(\%) = \frac{EA(t)}{M_e(t-1)} \times 100 = \{1 - \exp(-\varepsilon)\}$$

where EA(g) is the Emission Amount during the one year from year

(t-1) and t and x(%) is Emission Factor(annual emission rate)



Hallym University Research Center for Climate Change

## **3. Experimental**





#### Potable Recover: Yellow Jacket XLT/95763, USA



| Specification for recover |          |  |  |
|---------------------------|----------|--|--|
| Upper limit of<br>weigh   | 50 kg    |  |  |
| Minimum unit              | 2 g      |  |  |
| Precision                 | ± 0.5 %  |  |  |
| Suction pressure          | 0.50 bar |  |  |





### **Disposal Stage : Measurement Practices**











Hallym University Research Center for Climate Change



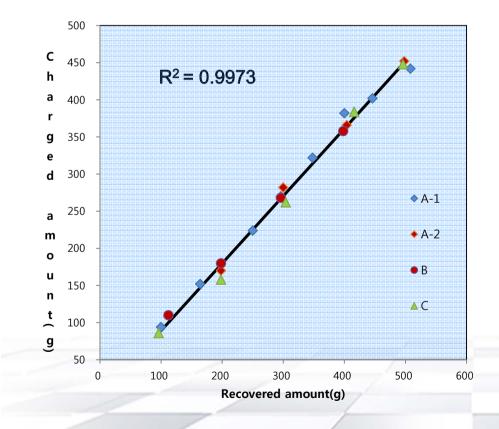
## **Analyses of Refrigerant Compositions**

#### Condition

| Item             | Condition of GC-MSD                          |
|------------------|----------------------------------------------|
| Inlet            | 220 °C, Split ratio 100 : 1                  |
| Column           | DB-624 ( 60 m X 0.25 mm X 1.4 um )           |
| Flow             | He , 1 mL/min                                |
| Oven             | 40 °C ( 5 min ) → 10 °C/min → 80 °C → 250 °C |
| Scan range       | 45 ~ 300 m/z ( EI mode )                     |
| Injection volume | 0.5mL                                        |
| Tedlar Bag       | 1L(PVF Film)                                 |



## **4. Results and Discussion**




## **4.1. Emission Characteristics**





◆ There may be Limiting Recovery Performance of recover used here and average recovery rate was 90.6±3.7%→ Calibration was proposed



$$M_r = 1.0872 \times M_m + 6.4098$$

where  $M_r$  stands for calibrated amount and  $M_m$  for recovered amount (reading value) offered by the recover



allym University Research Center for Climate Change



#### **Fugitive Emission Results at Use-phase**

| No. | Туре   | Model | Mileage<br>(km) | Original<br>Charged<br>Amount(g) | Recovered<br>Amount<br>(g) | Residual<br>Amount(g) | Residual<br>Rate(%) | Emission<br>Constant<br>(%/yr) | Annual<br>Emission<br>Rate(%/yr) | Average of<br>Emission Rate<br>(%/yr) |
|-----|--------|-------|-----------------|----------------------------------|----------------------------|-----------------------|---------------------|--------------------------------|----------------------------------|---------------------------------------|
| 1   |        | 2004  | 23,140          | 550                              | 468                        | 518.39                | 94.25               | 0.88                           | 0.87                             |                                       |
| 2   |        | 2009  | 98,498          | 550                              | 412                        | 455.6                 | 82.8                | 5.79                           | 5.6                              |                                       |
| 3   | Large  | 2004  | 59,408          | 650                              | 410                        | 453.4                 | 69.7                | 4.46                           | 4.4                              | 4.6±0.8%*                             |
| 4   |        | 2002  | 166,322         | 700                              | 456                        | 504.9                 | 72.1                | 3.35                           | 3.3                              |                                       |
| 5   |        | 2005  | 109,987         | 750                              | 498                        | 552.0                 | 73.6                | 4.43                           | 4.3                              |                                       |
| 6   |        | 2011  | 15,727          | 550                              | 460                        | 509.42                | 92.62               | 0.04                           | 4.28                             |                                       |
| 7   |        | 2007  | 108,750         | 550                              | 288                        | 316.56                | 57.56               | 11.84                          | 0.11                             |                                       |
| 8   | Medium | 2003  | 97,458          | 550                              | 372                        | 410.75                | 74.68               | 3.50                           | 3.44                             | 5.2±0.9%*                             |
| 9   |        | 2008  | 65,459          | 780                              | 576                        | 639.5                 | 82.0                | 0.05                           | 5.3                              |                                       |
| 10  |        | 2006  | 89,654          | 500                              | 354                        | 390.6                 | 78.1                | 3.95                           | 3.9                              |                                       |
| 11  |        | 2003  | 69,155          | 700                              | 292                        | 321.05                | 45.86               | 8.66                           | 8.30                             |                                       |
| 12  |        | 2007  | 25,094          | 500                              | 366                        | 404.02                | 80.80               | 5.12                           | 4.99                             |                                       |
| 13  | Small  | 2010  | 20,359          | 500                              | 444                        | 491.48                | 98.30               | 1.03                           | 1.03                             | 5.0±1.2%*                             |
| 14  |        | 2006  | 36,404          | 550                              | 360                        | 397.29                | 72.24               | 5.66                           | 5.50                             |                                       |
| 15  |        | 2009  | 57,948          | 480                              | 402                        | 444.39                | 92.58               | 3.19                           | 3.14                             |                                       |
| 16  |        | 2002  | 115,370         | 550                              | 290                        | 318.80                | 57.96               | 5.79                           | 5.63                             |                                       |
| 17  |        | 2010  | 51,866          | 450                              | 316                        | 347.96                | 77.32               | 4.47                           | 4.37                             |                                       |
| 18  | Mini   | 2009  | 28,708          | 450                              | 294                        | 323.29                | 71.84               | 11.34                          | 10.72                            | 5.6±1.2%*                             |
| 19  |        | 2002  | 76,247          | 550                              | 282                        | 309.83                | 56.33               | 6.04                           | 5.86                             |                                       |
| 20  |        | 2007  | 84,658          | 450                              | 288                        | 316.6                 | 70.3                | 5.21                           | 5.1                              |                                       |

\* : 95% confidential interval



| Vehicle<br>type  | Original charged<br>amount(g) | Average<br>operating<br>time(yr) | Mileage<br>(1,000km) | Average<br>residual rate<br>(%) | Apparent fugitive<br>emission constant<br>(yr <sup>-1</sup> ) | Emission<br>Factor<br>(%/yr) | Emissions<br>per kilometer<br>(mg/km) |
|------------------|-------------------------------|----------------------------------|----------------------|---------------------------------|---------------------------------------------------------------|------------------------------|---------------------------------------|
| Mini<br>(n=8)    | 512.5±43.3                    | 9.5±2.5                          | 94.9±29.0            | 58.9±8.5                        | 0.0579±0.0126                                                 | 5.6±1.2                      | 2.36±0.60                             |
| Small<br>(n=14)  | 616.4±51.9                    | 9.2±1.8                          | 125.1±28.3           | 65.4±7.3                        | 0.0512±0.0125                                                 | 5.0±1.2                      | 1.88±0.40                             |
| Medium<br>(n=18) | 657.6±47.1                    | 8.5±1.8                          | 119.7±26.4           | 65.2±8.1                        | 0.0541±0.0092                                                 | 5.2±0.9                      | 2.03±0.36                             |
| Large<br>(n=7)   | 712.9±102.3                   | 7.5±2.4                          | 110.4±30.2           | 71.7±7.4                        | 0.0468±0.0087                                                 | 4.6±0.8                      | 1.96±0.73                             |
| Average          | 624.5±31.6                    | 8.7±0.9                          | 114.4±13.4           | 65.4±3.9                        | 0.0526±0.0051                                                 | 5.1±0.5                      | 2.02±0.21                             |



#### Emission rates and quantities of HFC-134a from MAC at the use-phase in 2011

| Z011 registrationTypenumber |            | Emission rate per car<br>(g/yr) | Total emission<br>(tCO <sub>2</sub> -eq) |
|-----------------------------|------------|---------------------------------|------------------------------------------|
| Mini                        | 1,234,373  | 21.0                            | 33,662                                   |
| Small                       | 2,008,689  | 23.2                            | 60,621                                   |
| Medium                      | 5,495,505  | 25.7                            | 183,643                                  |
| Large                       | 2,042,714  | 25.2                            | 66,893                                   |
| Sum                         | 10,781,281 | -                               | 344,819                                  |
| Weighted average            | -          | 24.6                            | -                                        |
| Hallym University           |            | 30 Mer Graduate Sc              | hool of Climate Change Stud              |



#### Emission Factors of Vehicle Types during Operation Stage

| Vehicle Type | Emission Factor(%/yr) | IPCC Default<br>Value(%/yr) |
|--------------|-----------------------|-----------------------------|
| Mini Size    | 5.6                   |                             |
| Small Size   | 5.0                   | 10 20                       |
| Medium Size  | 5.2                   | 10 ~20                      |
| Large Size   | 4.6                   |                             |

HFCs Emission Amount using country-specific(CS) EFs in 2011 is
 344,819 tCO<sub>2</sub> eq, whereas the IPCC default EFs allows 539,609 tCO<sub>2</sub> -eq higher(56%) than the emission amounts derived by the CS EFs

#### **Overestimation if we adopt the IPCC default value**



Hallym University Research Center for Climate Change

31

**Mey** Graduate School of Climate Change Studies



#### **Residual Amounts of Refrigerant in Scrap Vehicles**

| T  | уре   | Model   | Mileage(km) | RA(g)  | CA(g)  | Residual<br>Rate(%) | Average Residual<br>Rate(%) |
|----|-------|---------|-------------|--------|--------|---------------------|-----------------------------|
|    |       | ′05.8   | 244,292     | 448.00 | 495.97 | 90.2                |                             |
|    |       | '94. 7  | 130,867     | 430.00 | 475.79 | 73.2                |                             |
| īv | /lini | '97. 10 | 172,464     | 380.00 | 419.72 | 76.3                | 51.4±2.4%(n=91)             |
|    |       | '96. 3  | 177,142     | 317.00 | 349.08 | 69.8                |                             |
|    |       | '97. 8  | 150,370     | 252.00 | 27.19  | 50.2                |                             |
|    |       | ′03. 5  | 193,380     | 382.00 | 421.96 | 64.9                |                             |
|    |       | '97. 10 | 148,518     | 482.00 | 534.09 | 73.2                |                             |
| Sr | mall  | '00. 2  | 118,986     | 360.00 | 397.29 | 55.2                | 51.2±1.9%(n=157)            |
|    |       | ′98. 8  | 152,464     | 428.00 | 473.54 | 63.1                |                             |
|    |       | '01. 3  | 151,013     | 369.00 | 407.39 | 71.5                |                             |
|    |       | ′00. 9  | 82,118      | 460.00 | 509.42 | 69.8                |                             |
|    |       | '04. 1  | 110,008     | 461.00 | 510.55 | 65.5                |                             |
| Me | dium  | '99. 5  | 95,815      | 480.00 | 531.85 | 72.9                | 55.2±2.0%(n=106)            |
|    |       | ′05. 7  | 90,708      | 334.00 | 38.14  | 56.6                |                             |
|    |       | '06. 1  | 141,792     | 428.00 | 473.54 | 72.9                |                             |
|    |       | ′01. 5  | 174,312     | 324.00 | 356.93 | 47.6                |                             |
|    |       | '03. 2  | 174,126     | 412.00 | 455.60 | 44.7                |                             |
| La | arge  | '99. 6  | 194,792     | 391.00 | 432.05 | 63.5                | 58.4±3.4*%(n=39)            |
|    |       | '97. 6  | 212,432     | 441.00 | 488.12 | 54.2                |                             |
|    |       | '00. 4  | 266,442     | 511.00 | 566.61 | 55.6                |                             |

\*: 95% confidential interval



Average : 55.6±1.1%

# Residual rates of HFC-134a in MACs of scrap passenger vehicles

| Vehicle type      | Original Charged<br>Amount (g) | Average age (yr) | Average Residual<br>Rate (%) |
|-------------------|--------------------------------|------------------|------------------------------|
| Mini<br>(n=91)    | 552.8±5.6                      | 12.2±0.3         | 51.4±2.4                     |
| Small<br>(n=157)  | 673.2±15.0                     | 12.7±0.6         | 51.2±1.9                     |
| Medium<br>(n=106) | 680.0±14.9                     | 11.7±0.7         | 55.2±2.0                     |
| Large<br>(n=39)   | 833.8±41.7                     | 12.8±0.8         | 58.4±3.4                     |
| Average           | 689.5±4.2                      | 12.4±0.2         | 55.6±1.1                     |





#### **Emission Amount from Scrap Vehicles in 2011**

| Vehicle Type | Scrap Quantities<br>in 2011 | Emission per<br>Vehicle | Emission Amount<br>(tCO <sub>2</sub> eq) |
|--------------|-----------------------------|-------------------------|------------------------------------------|
| Mini Size    | 45,959                      | 284.1                   | 16,974                                   |
| Small Size   | 382,351                     | 344.7                   | 171,335                                  |
| Medium Size  | 193,905                     | 375.4                   | 94,630                                   |
| Large Size   | 24,523                      | 486.9                   | 15,522                                   |
| Total        | 646,739                     | 383.4                   | 322,348                                  |





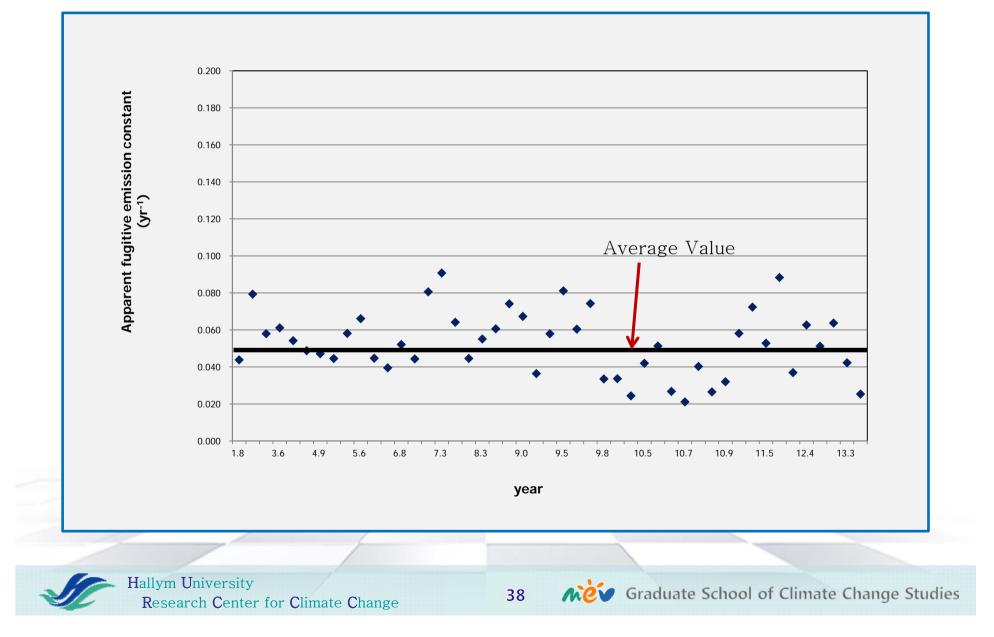
#### **Total Emission Amount from Passenger Vehicles in 2011**

| Vehicle Type | Use-phase<br>(tCO <sub>2</sub> eq) | Disposal-phase<br>(tCO <sub>2</sub> eq) | Sum     |
|--------------|------------------------------------|-----------------------------------------|---------|
| Mini Size    | 33,662                             | 16,974                                  | 50,636  |
| Small Size   | 60,621                             | 171,335                                 | 231,956 |
| Medium Size  | 183,643                            | 94,630                                  | 278,273 |
| Large Size   | 66,893                             | 15,522                                  | 82,415  |
| Total        | 344,819                            | 322,348                                 | 667,167 |



## **4.2. Verification of Emission Model**






Checking the consistency of apparent fugitive emission constant with vehicle age

Comparing the residual rates of scrap passenger vehicles measured here with those predicted by using the apparent fugitive emission constant derived from use-phase analyses



#### Consistency of Apparent Emission Constant with vehicle age



| Туре      | Measured residual<br>rate (%) | Predicted residual rate (%) | Deviation <sup>*</sup> (%) |
|-----------|-------------------------------|-----------------------------|----------------------------|
| Mini      | 51.4                          | 49.3                        | -4.1                       |
| Small     | 51.2                          | 52.3                        | +2.2                       |
| Medium    | 55.2                          | 53.2                        | -3.7                       |
| Large     | 58.4                          | 54.8                        | -6.2                       |
| Average** | -                             | -                           | 4.0                        |

- \*: (Predicted residual rate Measured residual rate)/Measured residual rate X 100
- \*\*: Average of absolute values of deviation



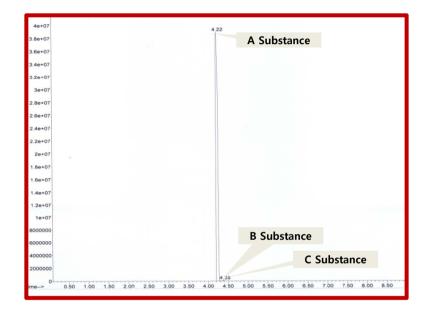
# **4.2. Chemical characterization of refrigerant in scrap vehicles**



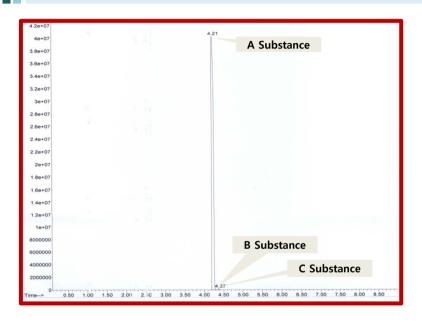


Korean Waste Act proposed that over 99% purity of original refrigerant should be maintained for reuse.

Other refrigerants than HFC-134a may be injected during the recharging process.

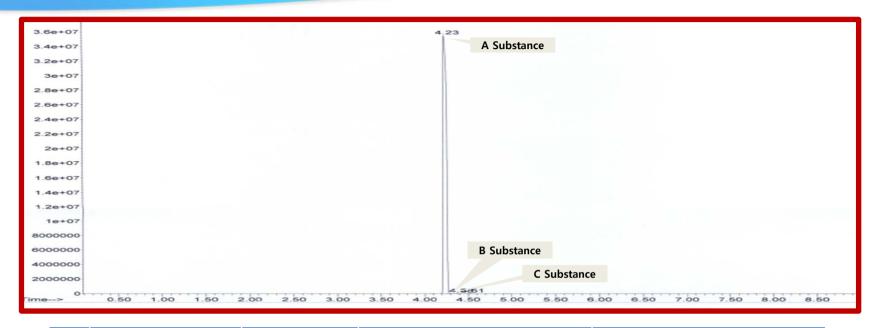

 Small-size repair shop may replace with cheaper refrigerant (e.g. CFCs) during the course of recharging processes






#### Chemical Characterization of New Refrigerant(HFC-134a)

#### Gas-phase HFC-134a




#### Liquid-phase HFC-134a



|   | Po.                                                     | Ret Time<br>(min) | Area<br>( % ) | Compound                           |   | Po. | Ret Time<br>(min) | Area<br>( % ) | Compound                           |
|---|---------------------------------------------------------|-------------------|---------------|------------------------------------|---|-----|-------------------|---------------|------------------------------------|
|   | А                                                       | 4.225             | 99.850        | 1,1,1,2-<br>Tetrafluoroethane      |   | А   | 4213              | 99.788        | 1,1,1,2-<br>Tetrafluoroethane      |
|   | В                                                       | 4.378             | 0.150         | 1,1,2,2-<br>Tetrafluoroethane      |   | В   | 4.372             | 0.212         | 1,1,2,2-<br>Tetrafluoroethane      |
|   | С                                                       | 4.509             | Negligible    | Dichlorodifluoro-<br>methane(R-12) |   | С   | 4.511             | Negligible    | Dichlorodifluoro-<br>methane(R-12) |
| • | Hallym University<br>Research Center for Climate Change |                   |               |                                    | 4 | 12  | micio Gradu       | ate School o  | of Climate Change Stud             |

#### Chemical Characterization of Refrigerant recovered from scrap vehicle



|    |   | Ret<br>Time( min )                   | Area ( % )     | IUPAC name                | Compound                        |
|----|---|--------------------------------------|----------------|---------------------------|---------------------------------|
|    | Α | 4.231                                | 99.894         | 1,1,1,2-Tetrafluoroethane | H H H                           |
|    | В | 4.378                                | 0.049          | 1,1,2,2-Tetrafluoroethane | F CH-HC F                       |
|    | С | 4.513                                | 0.06           | Dichlorodifluoromethane   |                                 |
| SI | F | Iallym UniversityResearch Center for | Climate Change | 43 <b>NOV</b> G           | raduate School of Climate Chang |

**Studies** 

## **3. Conclusions and Suggestions**





- First-order Emission model (FOM) and apparent fugitive emission constants are reasonable appropriate for estimating the emission rates of Korea-made vehicles operated in Korea ;
  - Average apparent fugitive emission constant : 0.0526±0.0024 yr<sup>-1</sup>
  - Average emission factor : 5.1±0.5 %/yr
  - Average age at disposal : **12.4 years**
  - Average residual rate of scrap passenger vehicle : 55.6±1.1 %
  - Annual emission rate per passenger vehicle
  - Use-phase : **24.6 g**
  - Disposal-phase : 383.4 g
  - Life Cycle Emission(12.4 years) : 688.4 g





- This research reported the fugitive emission amount of HFC-134a from passenger cars to be 667,167 tCO<sub>2</sub> eq, whereas the official amount reported by Korean Government to be 1,398,723 tCO<sub>2</sub> eq
  - Reason for difference : Application of different emission factors
    - This research : EFs developed by *in situ* measurements
    - Official data : IPCC default EFs

It is essential to adopt car-specific EFs

developed here to estimate the emission amount

of HFC-134a from passenger vehicles



Hallym University Research Center for Climate Change

46



 This research demonstrates that the chemical compositions of refrigerant were rarely varied to compare with those of new one



### It is possible to reuse the refrigerant

## recovered from scrap vehicles



Hallym University Research Center for Climate Change

47

**Mey** Graduate School of Climate Change Studies



 2014; Journal of Industrial Engineering and Chemistry, In Press;

Three Papers(2 papers in 2012, one paper in 2013) in Journal of Korea Society of Waste Management;

2013; in Journal of Environmental Science International





# Thanks

