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a b s t r a c t

Mapping and monitoring mangrove ecosystems is a crucial objective for tropical countries, particularly
where human disturbance occurs and because of uncertainties associated with sea level and climatic
fluctuation. In many tropical regions, such efforts have focused largely on the use of optical data despite
low capture rates because of persistent cloud cover. Recognizing the ability of Synthetic Aperture Radar
(SAR) for providing cloud-free observations, this study investigated the use of JERS-1 SAR and ALOS
PALSAR data, acquired in 1996 and 2008 respectively, for mapping the extent of mangroves along the
Brazilian coastline, from east of the Amazon River mouth, Pará State, to the Bay of São José in Maranhão.
For each year, an object-orientated classification of major land covers (mangrove, secondary vegetation,
gallery and swamp forest, open water, intermittent lakes and bare areas) was performed with the
resulting maps then compared to quantify change. Comparison with available ground truth data indi-
cated a general accuracy in the 2008 image classification of all land covers of 96% (kappa ¼ 90.6%,
tau ¼ 92.6%). Over the 12 year period, the area of mangrove increased by 718.6 km2 from 6705 m2 to
7423.60 km2, with 1931.0 km2 of expansion and 1213 km2 of erosion noted; 5493 km2 remained
unchanged in extent. The general accuracy relating to changes in mangroves was 83.3% (Kappa 66.1%; tau
66.7%). The study confirmed that these mangroves constituted the largest continuous belt globally and
were experiencing significant change because of the dynamic coastal environment and the influence of
sedimentation from the Amazon River along the shoreline. The study recommends continued observa-
tions using combinations of SAR and optical data to establish trends in mangrove distributions and
implications for provision of ecosystem services (e.g., fish/invertebrate nurseries, carbon storage and
coastal protection).

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Mangroves are a globally important coastal forest ecosystem
that deliver numerous services for local people, store significant
amounts of carbon (Donato et al., 2011), and act as habitat and
nursery grounds for marine fauna, many of which are commercially
important (Alongi, 2002, 2008; Glaser, 2003) and forest that miti-
gate coastal erosion (Kathiresan and Rajendran, 2005; UNEP-
WCMC, 2006; Souza-Filho et al., 2006). To assess their status,
ará, Instituto de Geociências,
Pará, Brazil.
o).
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several studies have generated maps of mangroves at regional to
global levels (Saenger et al., 1983; FAO, 2005; Spalding et al., 2010;
Giri et al., 2011), with these primarily utilizing aerial or optical
remote sensing imagery (Green et al., 1998). However, the mapping
has been compromised by the lack of consistency in the timing of
observations, persistence of cloud cover and smoke haze in many
coastal regions, and the complexity of the spectral response of
mangroves arising from different species, growth stages, substrate
types and tidal conditions (Souza-Filho et al., 2011). For similar
reasons, the detection of change has remained a significant chal-
lenge. For these reasons, a number of studies have investigated the
use of Synthetic Aperture Radar (SAR) for mapping and monitoring
mangroves. The RADAM Brazil Project highlighted the potential of
this technology for geomorphologic mapping, where GEMS 1000
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radar data were acquired over the Amazon region (Herz, 1991).
Other studies (e.g., Proisy et al., 2000; Lucas et al., 2007) have also
used SAR data for localized studies of mangroves, with these
demonstrating additional potential for retrieving structural attri-
butes and biomass.

For mapping mangroves, a number of techniques have been
utilized including visual interpretation of airborne (Hertz, 1991) or
satellite sensor data (e.g., Prost, 1997; Rebelo-Mochel, 1997; Souza-
Filho and Paradella, 2003, 2005; and Souza-Filho et al., 2006), with
most focussing on the use of optical data. Sub-metric and metric
optical satellite images provided by recent satellite like Geoeye,
Ikonos or Quickbird greatly improve thematic information on forest
canopies as highlighted by Wang et al. (2004) and Proisy et al.
(2007). But their use for regional or global mapping of coastal
environments remains too much expensive and the archive is
rather limited. Interestingly, the combination of optical and radar
imagery often provides a good visual impression of the extent of
mangroves as key elements (e.g., texture, form, size, color and
patterning) can be recognized and interpreted for mapping (Souza
Filho and Paradella, 2005; Rodrigues and Souza-Filho, 2011).
However, the quality of interpretation depends on the experience
and knowledge of the analyst (Lu et al., 2004) and the process is
time consuming, particularly when mapping mangroves across
large areas. Automated procedures (e.g., supervised classifications)
provide a more quantitative and reproducible approach and, until
recently, have largely been pixel-based. Green et al. (1998)
compared different pixel-based approaches for mapping
mangroves and conveyed that the main issue was the “granulated
effect” observed in the derived maps, which was attributed to
random variations in the intrinsic characteristics of the forest
canopies and underlying surface (Lobo, 1997). Nevertheless, Souza-
Fig. 1. Location map of the AMM coast between Marajó and São José Bay. See ground con
detection.
Filho (2005) successfully used a visual image interpretation of
medium spatial resolution Landsat sensor data to generate the first
regional map of mangroves in the Amazon-influenced coast of
Brazil. Fromard et al. (2004) used a similar approach to detect major
changes in mangroves in French Guiana from series of aerial and
Spot images. It is to be noted that the first global map of mangroves
computed using the same image analysis protocol was generated
only recently i.e. 2011 through a pixel-based classification of
approximately 1000 Landsat scenes (Giri et al., 2011).

Object-based approaches are a recent development, with these
dividing the digital image homogeneous and spatially contiguous
regions (Flanders et al., 2003; Walter, 2004). This reduces ‘granu-
larity’ and facilitates better mapping and discrimination of classes
(Lobo, 1997). These are particularly well suited to mapping
mangroves, as these often form discrete units that are largely
continuous in cover, relative homogeneous in terms of canopy
properties, and often organized in zones that parallel the coastal
margins. Object-based approaches also allow data from different
sources (e.g., optical or SAR data or digital elevation models) to be
integrated and can be used to compensate for gaps in times-series
as a consequence of, for example, cloud cover. A limitation,
however, is the definition of the Minimum Mapping Unit (MMU;
Saura, 2002), which can be too large to allow inclusion of all areas of
mangroves (i.e., isolated pixels or groups of pixels representing
small areas or margins of mangroves may be omitted; Desclée et al.,
2006).

This study aimed to utilize the benefits of both SAR data and
object-based approaches for mapping and detecting changes in the
extent of mangroves along the Brazilian coastline, with focus on an
area southeast of the Amazon mouth, known locally as the Amazon
Macrotidal Mangrove Coast (AMCC). For the study, Japanese Earth
trol points marked in the study area to validate mangrove classification and change
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Resources Satellite (JERS-1) SAR and Advanced Land Observing
Satellite (ALOS) Phased Array L-band SAR (PALSAR) data acquired in
1996 and 2008 respectively were used, with these provided
through the Japanese Space Exploration Agency (JAXA), a Kyoto and
Carbon Initiative. This is an international collaboration led by JAXA
that revolves primarily around the ALOS PALSAR (Rosenqvist et al.,
2007) and secondly around the Global Rain Forest Mapping (GRFM)
project, which provided SAR data from the Japanese Earth
Resources Satellite (JERS-1) (Rosenqvist et al., 2000). Both sensors
provided cloud-free observations of the AMMC. A limitation of
using the SAR data alone was that the boundary between
mangroves and adjoining tropical forests was often difficult to
establish. Hence, Landsat sensor data acquired over similar time
periods were also incorporated to assist with the mapping. The
study reports on the accuracy of the maps of mangrove extent in
both years and in the detection of change. Recommendations for
Fig. 2. Mosaic of remot
mappingmangroves using a combination of L-band SAR and optical
data are also provided.

2. Study area

The AMMC is located south-east of the Amazon River mouth
(Fig. 1) between Marajó Bay (48�W; 0�30ʹS) and São José Bay
(44�15ʹW; 2� S) and contains the largest and best-preserved
mangrove ecosystem in Brazil. Souza-Filho (2005) established
that mangroves occupied 7591 km2 and 56.6% of all mangroves in
Brazil, with the mapping undertaken using Landsat-5 Thematic
Mapper (TM) images acquired in 2000 and geological and ocean-
ographic data to distinguish five geomorphologic sectors. In this
region, the coastline is very jagged with numerous long peninsulas
being up to 10 kmwide and extending about 30 km out to sea. The
coastal currents combined with sediment discharge from the
ely sensed images.



Fig. 3. Flowchart of the processing performed during the research.

Table 1
Characteristics of remotely sensed data.

Satellite/Sensor Band - wavelength Polarization Spatial resolution Swath width Incidence angle Number of images Acquisition date

ALOS/PALSAR L-23.5 cm HH 20 m 70 km 34.3� Mosaic 18 scenes From April to September 2008
JERS-1 SAR L-23.5 cm HH 18 m 75 km 35� Mosaic 18 scenes From November 1995 to March 1996
SRTM C-5.6 - 7.5 cm e 90 m 185 km e Mosaic May 2000
Landsat-5 TM 1e0.45e0.52 mm

2e0.52e0.60 mm
3e0.63e0.69 mm
4e0.76e0.90 mm
5e1.55e1.75 mm
6e10.4e12.5 mm
7e2.08e2.35 mm

e 30 m 185 km 98.20� 12 Orbit/Point-Date
220/62 - Jun 19, 1995
221/61 - Aug 18, 1997
221/62 - Oct 16, 1995
222/61 - May 13, 1994
223/60 - Jun 21, 1994
223/61 - Aug 13, 1996
220/62 - Sep 10, 2008
221/61 - Jul 29, 2007
221/62 - Jun 24, 2006
222/61 - Jun 20, 2008
223/60 Jul 13, 2008
223/61 Jul 13, 2008
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Amazon River leads to mangroves being highly dynamic in terms
of their colonization and loss. The region is also subject to a semi-
diurnal macro-tidal regime with variations of around 4 m in
Marajó Bay and 7.5 m in São José Bay (DHN, 2010). The climate is
governed by seasonal changes in the position of the Inter-Tropical
Convergence Zone (ITCZ), which controls precipitation along the
Brazilian Equatorial coast and varies from a latitudinal position of
around 14� N in August and September and 2� S in March and
April. Mean annual rainfall along the studied coast increases
westward, from 2250 mm to 2950 mm, with 75% of annual
precipitation falling between January and April. In the dry season
(September to November), the mean precipitation is close to zero
(Moraes et al., 2005). The highest discharges from the rivers occur
in April and have been estimated as being 2478, 1393 and
257 m3 s�1 for the Gurupi, Turiaçu and Caeté Rivers respectively
(Souza-Filho et al., 2009).

Mangroves in the region are dominated by Rhizophora mangle,
racemosa and harrisonii and Avicennia germinans and schaueriana
species (Menezes et al., 2008). Laguncularia racemosa is also
observed but as a subdominant species. These mangroves provide
a subsistence livelihood for local households of lower income
groups with some commercial extraction. Key products include the
Fig. 4. Classes used in the classification of mangrove areas. The yellow rectangles indicate
colour in this figure legend, the reader is referred to the web version of this article.)
mangrove crab (Ucides cordatus) and mangrove wood and bark
(Diele et al., 2010).

3. Materials and methods

The following sections provide an overview of the remote
sensing data used for mapping and detecting changes in mangroves
between 1996 and 2008. Pre-processing involved calibration and
orthorectification of the available imagery, segmentation of the
combined dataset and classification using a rule-based approach
within eCognition software, with the classification validated
primarily using field data. The baseline datasets for the two years
were then compared to map areas of change. An overview of the
processing is given in Fig. 2.

3.1. Remote sensing datasets and digital image processing

The main steps of the digital image processing and analysis are
presented in the flow chart in Fig. 3 and described below. Initially,
2008 ALOS PALSAR, 1996 JERS SAR, 2008 and 1996 Landsat TM
images were orthorectified prior to segmentation and classifica-
tion. The resulting maps of extent and change were then validated
the position of photographs taken in the field. (For interpretation of the references to
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using a combination of ground-based assessments of land covers.
Digital image processing was carried out using different software
suites.

The study used 18 JERS-1 SAR L-band HH-polarization scenes
and9ALOS PALSAR Fine BeamDual (FBD)HHandHV strips acquired
in 1996 and 2008 respectively, with the JERS-1 SARmosaic provided
as part of the GRFM project. PALSAR data were provided at 50 m
spatial resolution and as Level 1.1 format through the K&C Initiative.
Orthorectification of these was undertaken within the Gamma SAR
processing software using 90 m Shuttle Radar Topographic Mission
(SRTM) data as reference. For both 1996 and 2008, 12 Landsat-5 TM
images (28.8 m spatial resolution) were downloaded from the
Global Land Cover Facility (GLCF), with these already radiometri-
cally corrected and orthorectified (Tucker et al., 2004).

The characteristics of the remote sensing data are presented in
Table 1. All data were provided in a geographic coordinates system
using the World Geodetic System (WGS-84) as reference. The
average quadratic error obtained using 1st degree polynomial
corrections was less than 1 pixel. The JERS-1 SAR, ALOS PALSAR and
Landsat TM mosaics are illustrated in Fig. 2.
Fig. 5. Mangrove areas for
3.2. Field data collection

In September and November 2010, field visits weremade during
which panoramic digital photographs and ground control points
(GCPs) were acquired using global positioning receivers linked to
a Global Position System (GPS). Particular focus was on identifying
mangrove areas and obtaining evidence of change in extent,
structure and condition. As access to the study areawas limited and
over 9000 km of coastlinewas considered, samples were only taken
from a region between Belém and São Luís cities. Over the course of
thefield campaign, 215GCPswere collectedwith 62 used to validate
the classification ofmangroves and 153 to validate other classes that
were common in the area andwhich represented the interface with
mangroves. During the fieldwork, sites were visited to obtain
knowledge of mangrove species composition and growth stage and
to document the characteristics of other land covers (Fig. 4). The
GCPs were selected in areas near the shoreline and along the roads
that crossed through the mangrove area as well as in areas repre-
senting the limits of mangroves and borders with other land covers.
The spatial locations of the GCPs are given in Fig. 1.
2008 (A) and 1996 (B).
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3.3. Object-based segmentation and classification

Segmentation is the process of partitioning an image into
groups of pixels that have similar numerical characteristics and are
spatially adjacent, thereby minimizing the variability within the
object (Baatz and Schäpe, 2000).Whilst many studies (e.g., Flanders
et al., 2003; Wulder et al., 2009) have used a single image for
segmentation, the segmentation in this study (undertaken in
eCognition) used the JERS-1 SAR, ALOS PALSAR, Landsat TM and
SRTM data in combination. In the segmentation, different weights
were applied with the greatest attributed to the JERS-1 SAR and
ALOS PALSAR (weight ¼ 15) and as well as SRTM elevation data
(weight 10). A lower weight (weight 3) was given to the Landsat TM
images. Following segmentation, rules were developed to classify
objects associated with mangroves, with these based on relative
height (determined from the SRTM), SAR backscatter and the
Landsat Thematic Mapper (TM) reflectance values. The SRTM data
were first used to confine the mapping to areas below a conserva-
tive elevation value of 50 m, with this considered that the top
height of most mangroves was >25 m and no more than 40 m. The
SRTM provides a canopy height model (CHM) which is equivalent
to a Digital Terrain Model (DTM) only in areas of low or non-
vegetation. For mangroves, Simard et al. (2006) noted that the
SRTM CHM, when corrected for mean sea level, was within 2 m of
the height of mangroves when these were contiguous within
a pixel. The height above mean sea level corresponds also to the
height of the mangroves given their location on the coast, although
amendments need to be made for the tidal level. To define
thresholds for the classification, 79, 75 and 76 samples associated
with mangroves, open water and other categories respectively
(Fig. 5) were selected from within the images and used to define
thresholds for subsequent classification. These samples were based
primarily on interpretation of the imagery obtained through site
visits in late 2010 (see later sections), during which ground-level
photographs were taken.

Using the SAR data alone, the mangroves were often difficult to
distinguish from proximal secondary forests and other vegetation
covers and hence Landsat TM and SRTM data were also needed to
define their extent. In several scenes, many mangroves were
Table 2
Classification rules (descriptors and algorithms) used to map mangrove following decisi

Process Child process Algorithm

1 - Segmentation Multiresolu
2 - Classification (2.1) Classify secondary vegetation class Assign class

(2.2) Classify water class Assign class
(2.3) Classify Mangrove class Classificatio

3 - Group Group segments of water class Merge regio
4 - Reclasification (4.1) Reclassify mangrove class as secondary

vegetation
Classificatio

(4.2) Reclassify water class as marsh and lakes Classificatio
(4.3) Reclassify continent as mangrove
under clouds

Classificatio

5 - Group Merge classes Merge Regi
obscured by haze and hence mapping necessarily utilised the
Landsat TM shortwave infrared (SWIR; band 5) reflectance values,
as penetration of the atmosphere in this wavelength region was
greater. Where cloud completely obscured the mangroves, SRTM
data were used as these reflected height differences between the
mangroves and the surrounding covers. A summary of the rules
used for the classification of mangrove extent is provided in
Table 2.

3.4. Object-based change detection

The segments that initially make up the mangrove class, defined
using the object-based classification process in the JERS-11996 and
ALOS PALSAR 2008 images, were exported in raster format and
submitted to a segmentation process with new weights. As only
one class was to be mapped, the digital numbers of 0 and 255 were
assigned to represent mangroves and non-mangroves respectively.
After segmentation and creation of new objects, three classes were
defined with these representing the extent of mangroves in 1996
and 2008 and areas of increase, decrease and no change. The
segmentation parameters utilized in the multi-resolution
segmentation were the following: parameters of scale ¼ 10,
form ¼ 0.1 and compacity ¼ 0.5. For detecting change, the matrix
files (“rasters”) of the mosaics for 1996 and 2008 received weights
equal to 1. After defining the classes, the objects classified were
exported to ArcGIS 10.0 software in vector format. This procedure is
summarized in Table 3.

3.5. Validating mangrove extent and change maps

For validation, the class of ‘mangrove’was separated from other
categories (i.e., water including lakes, secondary vegetation, gallery
and swamp forest and non- or sparse vegetation (barren), which
were merged into a single class termed “other”. The error analysis
was performed using the field data and observations and only for
the classification undertaken in 2008, given that this year was the
closest to the date of field data collection (2010). For validation of
both the 2008 map and the change map, standard error matrices
were constructed (Congalton, 1991; Foody, 2002) with measures of
on processes 1, 2, 3 and 4.

Function / Condition (Descriptor) Function / Condition (Descriptor)

tion segmentation
10*LOG(SAR BANDA L) >¼ 25 CUSTOM 10LOG(SAR BANDA L)
10*LOG(SAR BANDA L) < 25 CUSTOM 10LOG(SAR BANDA L)

n [10*(mean B5 Landsat) +
(mean SRTM)]

200                     600                 

CUSTOM
EQUAÇÃO 1
(200 e 600)

n
n Area <¼ 4,00,000 pixel

Rel. border to Continent >¼ 0.12
Area
Rel. border to

n Area < 25000 pixel Area
n Distance to mangrove <¼ 130 pixel

Mean SRTM

10                21
Rel. border to mangrove <¼ 0.9
[10*(mean SRTM) + (mean 10*Log
SAR BANDA L)]

100               250

Distance to
Mean
(10 e 21)
Rel. border to
EQUAÇÃO 2
(100 e 250)

on



Table 3
Process trees utilized in elaborating change detection.

Process Child process Algorithm Level Function/Condition (Descriptor)

1 Segmentation (1.1) Image segmentation Multiresolution segmentation 1
(1.2) Copy of segmentation Copy image object level 2 Copy under level 1 (1996)
(1.3) Copy of segmentation Copy image object level 3 Copy under level 2 (2008)

2 Classification (2.1) Classify mangrove class 1996 Classification 2 Mean 1996 ¼ 0
(2.2) Classify mangrove class 2008 Classification 3 Mean 2008 ¼ 0

3 Change detection (3.1) Classify increased mangrove class Classification 1 Existence of sub objects mangrove 2008 ¼ 1
Existence of sub objects mangrove 1996 ¼ 0

(3.2) Classify decreased mangrove class Classification 1 Existence of sub objects mangrove 2008 ¼ 0
Existence of sub objects mangrove 1996 ¼ 1

(3.3) Classify no-change mangrove class Classification 1 Existence of sub objects mangrove 2008 ¼ 1
Existence of sub objects mangrove 1996 ¼ 1
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accuracy being the overall, producer’s and user’s (Congalton and
Green, 2009) as well as the Kappa and Tau coefficients (Ma and
Redmond, 1995).

4. Results

4.1. Accuracy in classification of mangrove extent and change

In 2010, 215 field sites were visited and 96% (207) were correctly
classified. The Kappa and Tau coefficients of 91% and 93% indicated
the improvement of the classification over a random assignment of
pixels to a class (Table 4A). Of the 62 points known to be mangrove,
87% (54) were correctly classified with the remaining 13% (8) rep-
resenting primary or secondary forests, marshes and open water,
including lakes. A number of the 153 GCPs were collected from
other areas and these were all correctly classified as a group,
although some confusion with mangroves occurred, reducing in
errors of omission of around 5% (i.e., a producer’s accuracy of 95%).
Fig. 5 presents mangroves maps for 1996 and 2008.

In the detection of change, 54 GCPs were used, with 23 and 31
representing unaltered and altered mangroves respectively, either
through expansion (an increase) or retraction (decrease). Field
examples of the different forms of expanding, reducing and unal-
tered mangroves observed when comparing the JERS-1 SAR and
ALOS PALSAR are presented in Fig. 6. For areas that were unaltered,
83% were classified correctly with the remaining 17% classified as
Table 4
A) Error matrix in the multi-resolution and multi-sensor object-based classification
oriented. B) Confusionmatrix prepared to validate classification of change detection.

A)

Classification Mangrove Other Total Error of
commission

User’s
accuracy

Mangrove 54 8 62 12.90% 87.10%
Other 0 153 153 0 100%
Total 54 161 215
Error of omission 0% 4.96%
Producer’s accuracy 100% 95.04%
Kappa per Class 0.9626 0.9625

General accuracy ¼ 96.28% Kappa index ¼ 0.91 Tau index ¼ 0.93

B)

Classification No change Change Total Error of
commission

User’s
accuracy

No change 19 4 23 17.39% 82.60%
Change 5 26 31 16.12% 83.87%
Total 24 30 54
Error of omission 20.83% 13.33%
Producer’s accuracy 79.16% 86.66%
Kappa per class 0.83 0.82

General accuracy ¼ 83.33% Kappa index ¼ 0.66 Tau index ¼ 0.67
altered. Of those classified as altered, 84% (26) were correctly clas-
sified. The confusion occurred in ecotone areas, where mangrove,
rainforest and gallery forest were in close proximity. In the overall
classification, the overall accuracy was 83% (i.e., 45 points were
correctly classified) and the Kappa and Tau coefficients were 80% and
66% respectively, which indicated a close correspondence between
the classification output and the field observations (Table 4b).
4.2. Status and dynamics of mangroves between 1996 and 2008

Areas of expansion and retraction of mangroves were identified
between 1996 and 2008. Fig. 6 presents examples of the different
forms of expansion, reduction and unaltered mangrove areas
observed in the field and in SAR images.

The mangroves to the AMMC presented a growth of from
6705.05 km2 (1996) to 7423.60 km2 (2008). Over these 12 years,
therewas an increase of 1931 km2 and a reduction of 1213 km2 in the
mangrove area,with 5493km2 remainingunaltered. This resulted in
a net gain of 718.5 km2 equating to 10.7% in the mangrove areas
(Fig. 7). The increase inmangroveswas largelyobserved in theupper
reaches of the rivers suggesting inland salt-water intrusion. While
losses were largely due to river and coastal erosion whereby large
were lost, particularly towards the southwest of the study area.
5. Discussion

5.1. Object-based classifications of mangrove extent and change

Compared to pixel-based approacheswhich requires only spectral
information-digital values (DNs) stored in the image (Singh, 1989),
the use of objects to map the extent of mangrove and changes over
timewas beneficial for the segmentation and classification of images
based on spectral and textural properties of homogenous areas,
defined as objects (Baatz and Shape, 2000; Schiewe et al., 2001).
Given the same image types, similar rules could also be used for
classifying other objects although some manual editing was neces-
sary. The classificationwas also informed by ecological knowledge of
the state and dynamics of mangroves within the coastal margin.

The accuracy in the classification of mangroves was considered
excellent with differences between the Kappa and Tau coefficients
attributed to differences in the number of samples used for clas-
sifying the mangroves and identifying areas that were altered or
otherwise. It should be noted that the points chosen for validating
the classification were collected at sites where greatest confusion
between classes when using SAR and optical imagery occurred. The
accuracies for both extent and change mapping indicated that the
object-based classification was compatible with a visual interpre-
tation performed by an interpreter with knowledge of the terrain.
This is evidenced by the close correspondence with the mangrove
extensionmapped by Souza-Filho (2005) fromvisual interpretation



Fig. 6. Forms of expansion and reduction in the mangrove areas.
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of Landsat-5 TM images, which was 7591 km2 for the year 2000
compared to 7423.6 km2 in 2008 (in this study).
5.2. Extent and changes in mangroves

The maps of extent confirmed that the mangroves to the east of
the Amazon River mouth represent the most extensive continuous
belt of mangroves globally. By comparison, the area of the
mangrove forests in the Sundarbans of India and Bangladesh cover
approximately 5,816 km2 (Giri et al., 2007) whilst those of the Gulf
of Papua in New Guinea, occupy an area of approximately
5,929 km2 (Shaerman et al., 2009).
Changes in mangroves are largely the result of local human
pressures in the form of deforestation and landfills for building
roads and residential settlements, with this most commonly
occurring where mangroves abut terrestrial land. However, the
population density within the Amazon mangroves is typically low,
varying from 10 to 25 inhabitants per km2 (Souza-Filho et al., 2009).
Natural losses of mangroves are associated with erosion in
response to wave and tidal action, which leads to root burial by
sediments coming from the inner continental shelf and death of
mangroves. Despite human pressures and natural losses, an
increase of 10.7% was observed with this attributed to lateral pro-
gradation and landward migration within areas of the highest
elevation. These observations suggest that salinization is occurring
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in the upper courses of the estuaries, generating propitious areas
for mangrove development with many moving upstream. Similar
patterns of inland expansion have also been observed by Ellison
(1993) in Bermuda and Gilman et al. (2007) in American Samoa.
The process of expansion of large mangrove areas over herbaceous
fresh fields on the topographically highest sectors provides
evidence of relative sea level rise in the Amazon region (Cohen
et al., 2009; Souza-Filho et al., 2009; Guimarães et al., 2012).

It is important to note that the process of expansion of large
mangrove areas observed to the east of the Amazon River mouth is
peculiar to this study area. Studies carried out in other areas with
large extensions of mangroves, such as the Gulf of Papua in Papua
New Guinea, show a reduction in the mangrove area for the period
of 1973e2002 (Shearman, 2010), while the mangroves in the
Sundarbans in Bangladesh and India remained unaltered from 1973
to 2000 (Giri et al., 2007, 2008). Furthermore, the authors cited
above did not quantify variations in the mangrove areas at their
boundaries inland with the mainland, which may compromise the
balance in areas of mangrove expansion and reduction. In other
words, the expansion and retraction analysis of mangroves were
carried out only on the seaward coast and further research is
needed to quantify the true changes in mangroves areas at a global
level.

6. Conclusion

The combined use of optical and radar remote sensing data has
been shown to benefit the mapping of mangroves and mangrove
change within the AMMC, partly because of the provision of cloud-
free observations by the radar but also because of different sensi-
tivities to differences in mangroves structure and species compo-
sition. Within this framework, a multi-resolution and multi-sensor
classification method highlighted promising results for discrimi-
nating mangroves areas from others types of coastal surfaces, with
accuracies in the classification of extent exceeding 95% regardless
of the date of acquisition and change exceeding 83%.

The mangrove forest mapped in 2008 confirms the AMMC as
supporting the largest continuousmangrove area in theWorld, being
1500 km2 larger than the extensive mangroves of India and
Bangladesh, and one that is also increasing in extent. For the period
from 1996 to 2008, an increase in the mangrove area on the order of
10% (w718 km2) has been observed. The study has highlighted that
the mapping of mangroves cannot consider these systems as static
and hence regular updating is needed in order to inform on changes
and the implications for conservation, economies and policy. Fur-
thermore, an understanding of the processes of change is needed to
establish the direction but also whether the causes are the conse-
quence of natural and/or human-induced processes. For this reason,
additional information on seasonal rainfall variations, river flows,
tidal and sea level fluctuations and air and ocean surface tempera-
tures are needed. Through such an approach, the contributions of
climate change impacts can be better disaggregated.

The integrated approach presented in this paper showed to be
efficient to quantify mangrove areas and changes in both the
landward and seaward directions. The use of SAR data allowed
quantifying mangrove area along the Equatorial zone, indepen-
dently of season and weather conditions. These results are useful
for the development of robust and reproducible remote sensing
methods dedicated to the dynamic mapping of fast changing
tropical coasts. Therefore, it is recommended that this method
should be applied to characterize, map and monitor the global
mangrove changes as planned within the Japanese Space Explora-
tion Agency (JAXA)-ALOS Kyoto & Carbon (K&C) Initiative Global
Mangrove Watch project that is set out to use ALOS and ALOS-2
data for global mangrove assessment.
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