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« Canada’s National Forest Carbon
Monitoring, Accounting, and Reporting
System, NFCMARS

— Brief Overview
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» Stand to Landscape-scale model of
forest ecosystem C dynamics
developed to assess the past, present
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CBM-CFS3: A mod,

and future role of Canada’s forests in change
the global C cycle.
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* Quantifying Uncertainty
—Why we did it
— How we did it
—The results

Assessment of uncertainty in
GHG inventories is required

Uncertainty should be
reduced “as far as is
practicable”

Not meant to judge validity of
estimates

Meant to provide guidance
on where to direct efforts
towards reducing uncertainty




Chapter 5: Cross-Cutting Issues

Box5.24
UNCERTAINTIES OF ESTIMATES BASED ON MODELS

Models used in inventory construction can range from purely empirical/statistical relationships to
detailed process based models. In practice, most models are constructed with elements of both.
There are many issues to consider in quantifying the uncertainties in the estimates produced by
these models. A few general comments can be made although it is beyond the scope of this
document to review all relevant models. Overall uncertainty in models can be derived from two
main components: uncertainty in the structure of the model and uncertainty in the parameter
values. The first source of uncertainty is difficult to quantity. Comparison with observational field
data can mdicate that either the structure of the model or the parameter values or both are incorrect
(Oreskes et al., 1984). It is therefore important to test the validity of the models, and to use only
models that are validated for the intended purpose. If a model is not well validated, a validation
programume should complement its use. The uncertainty associated with parameter values can be
more easily quantified by combining statistical estimates or expert judgments of parameter
uncertainty with sensitivity, or Monte Carlo analysis. A sensitivity analysis should be performed
before a model is used so as to determine its usefulness for prediction. A model that is highly
sensitive to a parameter with high uncertainty may not be the best choice for inventory purposes.
Given that the model structure is adequate, the final point to consider is the uncertainty of
estimates produced by models. In this case. there are typically two error components to consider:
uncertainty due to parameter uncertamty and uncertamty due to inherent variation in the
population that cannot be captured by the model. When making these estimates, both sources of
uncertainty should be considered in any calculation.

No mention of model input data
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Reference value

_ Attempting to quantify
:;:2?::|Ilw Accuracy - prec's'on
/ Accuracy is improved by
model and data
improvements (we think)

Very difficult to quantify
because a “true” reference
value will never exist

* Model intercomparison Increased accuracy may

— Canadian Carbon Program have no effect on precision
— North American Carbon

Program (Vice versa is also true)
— Others
* Model validation

— Comparison to measurements
at Canadian National Forest
Inventory plots

* Value
Precision

) .

A practical approach for assessing the sensitivity of the
Carbon Budget Model of the Canadian Forest Sector
(CBM-CFS3)
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Model is most sensitive to:
» The base decay rate of the slowly decomposing soil C pools

» How much of the very quickly decaying soil C pools is released
directly to the atmosphere

* Model initialization assumptions

Data and sensitivity interact:

» Some parameters more important in some landscapes than others
* The most important parameters change over time




Model inputs:
*  Forest Inventory and Growth Data *
* Activity Data *
Model parameters:
» Litterfall, decay, and transfer *
* Biomass estimation *
* Disturbance Impacts
Model Structure:
* Incorrectly specified or excluded processes
*  Model algorithms
Human Error

Monte Carlo Simulation
— 100 simulations of all of Canada
— 20 CBM-CFS3 projects
— ~1month, ~10 PC’s, ~1 TB of results
Varied disturbance data:
- fire (+/- 10%),
— harvest (+/- 10%),
— insects (+/- 25%), and
— deforestation (+/- 38%)
Varied biomass increment
-  +/-50%




Varied some litterfall, decay and C transfer
parameters

Variation in the parameters of interest for an uncertainty analysis using the CBM-CFS2 model in northwestern
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* None of the scenasios included beth softwoods and hardy

» Assumed triangular distribution for uncertain
variables

* Most variables were assumed to be
independent
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+ Typically, 95% Cl is
~+/-14 Mt C

Equivalent to LFL
total CO, reporting
value

+/- 53 Mt when
expressed as CO2e
(p=0.05)

~7% of total GHG
emissions in Canada
(2007)

1) FLFL Total - CO, -23861 +50107
1.1) FLFL Annual Processes - CO, -201986 + 45336

1.2) FLFL Immediate emissions from natural disturbances - 43003 + 9236
Co,

1.3) FLFL Immediate emissions from harvesting - CO, 135301 + 2536
1) FLFL Total - CH, 3870 777

11.1) FLFL Immediate emissions from natural disturbances 3317 +712
-CH,

11.2) FLFL Immediate emissions from harvesting - CH, 553 + 148
111) FLFL Total- N20O 2400 +480

111.1) FLFL Immediate emissions from natural disturbances 2060 +443
-N,0

111.2) FLFL Immediate emissions from harvesting - N,O 340 +103
IV) LFL Total - CO, -837 nal
Etc.




* Probability distributions used in the MC
simulations are uncertain

+ Some variable parameters may be correlated, or
differently correlated that what we assumed

« Some model parameters were held constant
— Disturbance impacts
— Soil Carbon initialization

Uncertainty estimates area also uncertain

Only brief guidance provided for uncertainty
estimates based on models

— No specific mention of uncertainty due to errors in input
data

Uncertainty due to model structure (~bias) is
difficult to quantify

— Can be approached by model intercomparision and
validation

Uncertainty due to model parameters (~precision)
can be quantified with MC simulation
— Computationally intensive




* Probability distributions used in the MC
simulations are uncertain

+ Some variable parameters may be correlated, or
differently correlated that what we assumed

« Some model parameters were held constant
— Disturbance impacts
— Soil Carbon initialization

Uncertainty estimates area also uncertain
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Why is p = .90 better than p = .70?
Preference for definitive predictions by
lay consumers of probability judgments

GIDEON KEREN
Eindhoven University of Technology, Eindhioven, The Netherlands

and
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University of Tromsd, Tromsg, Norway

regard as an informative and valuable probability statement? This article reports
t show participants to have a clear preference fi extreme and higher prob-

<treme and low er ones. This pattern emerged in Experiment 1, in which no co
was provided, and was further explored in Experiment 2 within a positive and a negative context. The
findings were further confirmed in Experiment 3, which employed a Bayesian framework with revi-
sions of opinions. Finally, E t 4 showed how preference for high probabilities can lead people
e forecaster. The results are interpreted
as manifestations of nitive predictions principle, which asserts that high probabilities
are preferred to medium ones and often favored over the corresponding complementary low proba-

bilities on the basis of their capacity to predict the occurrence of single outcomes.
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Overconfidence in interval estimates: What does expertise buy you?
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* Optimism bias
— Over-estimate likelihood of
positive events, under-estimate
the likelihood of negative events

» The overconfidence effect

— Answers rated as “95% certain”
are true only about 50% of the
time (both experts and non-
experts)

» Confidence heuristic

— People are more likely to believe
confident estimates, over those
that turn out to be accurate

Werner Kurz, Graham Stinson, Greg Rampley,

Eric Neilson, Carolyn Smyth, Mark Hafer, Gary

Zhang, Michael Magnan, Cindy Shaw, Stephen
Kull, Scott Morken

Pacific Forestry Centre (Victoria, BC)
Northern Forestry Centre (Edmonton, AB)

Caren Dymond, Qinlin Li
BC Ministry of Forests and Range (Victoria, BC)
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Growth and yield
models (province)

Merchantable Volume
(m3/ha) yield curves

Model-based, volume-to-biomass
wonversion for forested and vegetated
land in Canada
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Error is up to 60% for some attributes and is not
compensatory (Thompson et al. 2007)

Low correspondence between inventory and
ground species composition (Pinto et al. 2007)

CBM-CFS3

J

Spatially
referenced

Forest Inventory Cover Polygons

Spatial Units

» Scaling up flux-tower measurements to the
landscape

* Model intercomparisons
— CBM-CFS3
— ECOSYS (Z.Wang & R.Grant — U of Alberta)
— Can-IBIS (D.Price — CFS)
— InTEC (A.Govind & J.Chen — U of Toronto)
— C-Class (A.Arain — McMaster U)
— 3PG (R.Hember & N.Coops — UBC)
* Focus on 2 Fluxnet-Canada Research Network sites
— Chibougamau (Quebec, Boreal Shield) -

— Qvster River (British Coliimhia Pacific Maritime)



Oyster River study

— First phase of research now in press
(Trofymow et al., Forest Ecology & Management)
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Oyster River study

— First phase of research now in press (Trofymow et al., Forest Ecology &
Management)
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* Inventory-based modelling (CBM-CFS3)
* Process-based modelling (BEPS/INTEC)

* Inversion modelling (NOAA Carbon Tracker)
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