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1. estimating emissions
a. particular challenges of carbonaceous aerosols
b. inventory procedure & brief results
C. major uncertainties
2. a brief history of inventories
a. present dilemma
3. work on the future (from D. Streets)

not here (and needeaq):
s secondary anthropogenic aerosol
s biogenic aerosol




- - - - = harder than species with
+ EmISSIOn estimation bounded emissions (CO,, SO,)

= Similar to process-dependent
species (NOx, CO)

- ' = harder than well-mixed species
+ Model validation (O, CH)

= Similar to species with short
lifetimes (SO,/S0O,=, CO)

" 3 " = harder than single species (CO,,
+ Chemlst_ry optics CH,. even S0.5) ’
connection

1a. some challenges



Variability in dif
burning of the st

kg el
0.001 .04 0.1 i 10

Puherized+ESP|
Sloker+ESP -G
Stokersoyclone . S
Caoking, caplured I ]
Improwvad cooksiove| P |

Cooking firg | PO S

ul

Caoking, uncapiured

Heating stove|

Image: National
‘Geographic

1a. some challenges



Variability betwe

Controlling Emlissions from In-Use Vebicles |

Figure 4.6 Cumulative Distribution of CO Emissions from Passenger Cars in Bangkok

Passenger Cars at Normal Idle (Sample size = 253)
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1a. some challenges

Source: McGregor and others 1994

From Faiz et al,, 1996
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Figure 7- 1. Emission of absorption (left) and mass (right) from Caterpillar engine.
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emission from one technology
= fuel use x PM emission factor x characteristics

+ activity levels (usually fuvel)
= International Energy Agency, United Nations, etc.

+ emission factors (vary by fuel/technology)
+ characteristics (also vary by fuel/technology) —
s BC fraction

s Removal by control devices
m Size (affects optical properties)

+ technology divisions
s division into >100 fuel+technology categories
s regionally-distinct technology divisions

total emissions = sum over technologies

1b. estimation procedure




global sourc

Bond, Streets et al., JGR 109, D14203, doi:10.1029/2003]D003697
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Estimating unce

combine c.i.
assuming
: asymmetric
high case has distribution
larger contribution &
of polluting activity independence

combine confidence
intervals assuming
linear dependence
& asymmetric
distribution

process differences?

assume lognormal

estimate expected value & c.i.
combine characteristics
assuming independence each fuel/sector has
own uncertainty

AN~

asymmetric
distribution,
independence

1b. estimation procedure



uncertainties

+ inventory contains full uncertainty propagation
(activity estimates, emission factors, etc)

+ of course, there are many guesses

N.America S/C America Europe Former USSK Asia Africa
Sector BC OC BC OC BC OC BC 0OC BC 0OC BC 0C

Contained combustion
Agri waste/residential
Anim waste/residential

Coal/industrial

Diesel/off-road - . .
Coal/cokemaking

Coal/residential

Diesel/on-road -
Diesel/residential
Gasoline/transport
Wood/charcoal prod
Wood/industrial

Wood/residential

1c. major uncertainties




Image: CSIR;
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Open biomass buming N

Issues I

- Quantities of vegetative
matter burned

- Emission factors variable
with combustion conditions;
not represented

1c. major uncertainties



Issues| i %L#ﬁ"
+ on-road T e

» estimated fleet emission factor ke /4 - !
(fleet information hard to find (==
for many countries)

s Superemitters

= difference between
dynamometer measurements &
real world

+ off-road mobile/industrial

s estimated from fraction of fuel
used in various sectors

= country treatment of reporting is *
inconsistent

1c. major uncertainties



' _ Image. Beverly Anderson
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Issues |
+ limited measurements

= emission factors/
characteristics

s types of industrial use
= willingness to be measured

Kathmandu:
Brick Kilns

1c. major uncertalntles




Issues

+ fuel quantities

= haven't been well
estimated even by energy
sector

= nhot just a “developing”
country issue (per-capita

Raenee i - R e wood use in U.S. 50% of

TSN - et that in India)

R e & emission factors

_/'mage D%/@Eé’ X

1 P s = many sources; difficult to
estimate average

s measurement of aerosol
type (BC/OC) most
uncertain

1c. major uncertainties
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8} A brief history of glo_

1983 Turco

1993 Penner

1996 Cooke & Wilson
1996 Liousse

1999 Cooke et al

2001 Andreae & Merlet

2004 Bond & Streets

order-of-magnitude estimate
based on fuel use

fossil fuel + biofuel
biomass/biofuel

emissions different by development
level

comprehensive tabulation of biomass
emission factors

emissions different by technology

2. inventory history



black carbon . organic carbon
1983 Turco 2.6-22
1993 Penner 6.6 FF, 6 BB

24 (ratios w/sulfur)f
1996 Cooke & Wilson 8, 688 |
1996 Liousse 5.688 | 45 BB

1999 Cooke et al 5.1 FF 10 FF

2001 Andreae & Merlet 4.888 36 BB

2004 Bond & Streets 3.0 rr, 5.0 BB/BF 2.4 FF, 31 BB/BF
(4.3-22) | (17-77)

2. inventory history



Bond (2004) vs Cooke (1999)

Differences are easily explained.

Coal, power generation (difference 1.5 Tg/yr)

We rely on measured BC fractions (<1%)
instead of guesses (25%)

On-road diesel (difference 1 Tg/yr)

We use emission measurements and World Bank studies
instead of assuming “developing countries have 5x higher
emissions” (15 g/kg average PM emission factor)

Domestic diesel (difference 0.25 Tg/yr; large in Europe)

We do not apply emission factors for internal
combustion engines to external-combustion boilers

2. inventory history



§  hepresentditemma N

+ corrections” reduced emission estimates

from 14 Tg/yr to 8 Tg/yr

+ models typically need more BC to match

observations... not less!

+ measurement techniques
may be uncertain...

10000 A

1000

C model

100 4

+ ...but probably not enougha .|
to explain discrepancy. A4S

1

10 100 1000 10000

BC obs (ng/m3)

2a. inventory dilemma



IPCC Forecasts
(19896, 2030, 2050)

From Bond et
al., JGR, 2004
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How fast will control

Electrostatic precipitator,
high collection efficiency

Cyclone, low
collection efficiency

3. future carbonaceous
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(Gg)
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12000

Technology

Technology improvement overwhelms energy growth!

improvement
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Results suggest we are headed for a world
with stable or lower primary aerosol emissions
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+ Estimating emissions of carbonaceous
aerosols has challenges that may go
beyond previous IPCC inventories.

+ Technology & other practice are important.

+ More cooperation and /nformation from
local knowledge is needed.




