IPCC Expert Meeting on Short-lived Climate Forcers Geneva 28-31 May 2018

Emission metrics for SLCFs

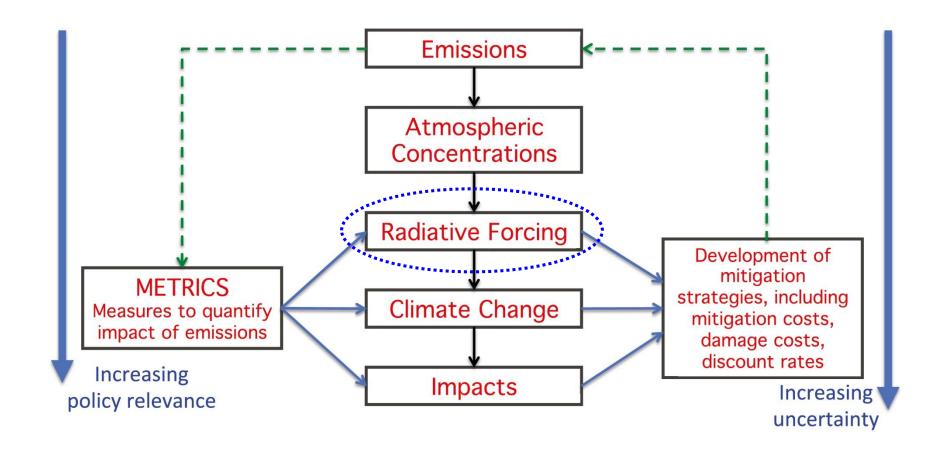
Keith P Shine

Department of Meteorology, University of Reading, UK k.p.shine@reading.ac.uk

With particular thanks to: Myles Allen, Michelle Cain, Jan Fuglestvedt

- Background and how we got to where we are
- Metrics in the context of long-term temperature goals

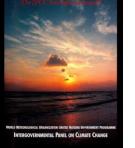
Note: In this talk, I often use CO_2 as the example longlived gas and methane (CH₄) as the example SLCF. But conclusions apply more generally to other SLCFs



Metric design

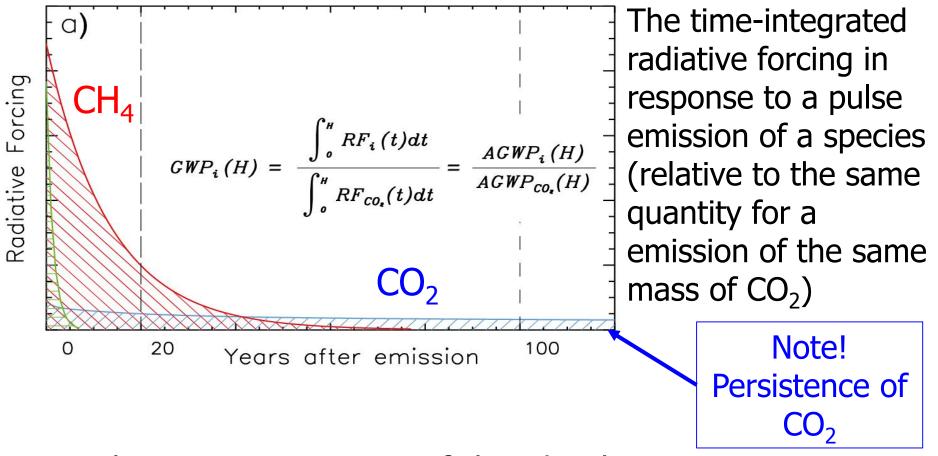
- Climate emission metrics provide an "exchange rate". They allow the climate effect of emissions of species to be compared with emissions of CO₂
- Emissions of all species can then be placed on a common scale ("CO₂-equivalent (CO₂-e) emissions")
- If a metric is perfect, the same CO₂—e emissions from a different mix of species would produce the same climate effect; in practice conventional metrics fail to do this
- Many choices have to be made in choosing an appropriate metric
- Ultimately, choices should be guided by the policy that the metric aims to serve

Choice of climate impact



IPCC, the Kyoto Protocol and GWP

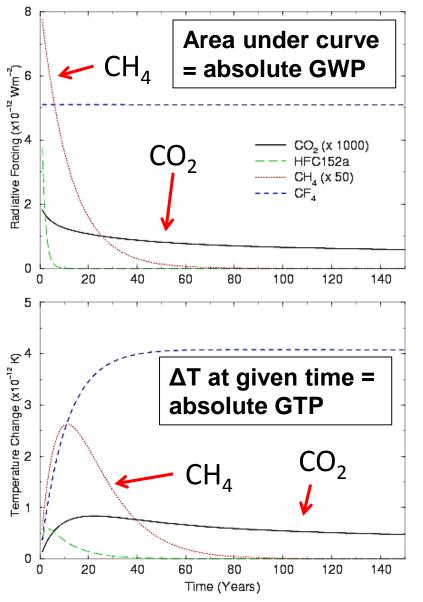
- Kyoto Protocol uses the *100-year* GWP (GWP₁₀₀), mostly from IPCC's 2nd Assessment (1995)
- NDC's use values from a variety of assessments
- GWP is *generally* accepted as an appropriate measure by the user community, and has played an important role in enabling Kyoto
- At the time of Kyoto, GWP was the only metric that IPCC had assessed: Kyoto chose GWP₁₀₀
- AR5 also assessed the Global Temperature-change Potential (GTP) but recommended *neither* the GWP or GTP (AR4 *did* recommend GWP)
- The CO₂-e problem is shared by all these conventional metrics


The Global Warming Potential (GWP) - the view from IPCC's First Assessment Report ...

Section 2.2.7: "... there is no universally accepted methodology for combining ... relevant factors into a single (metric) ... A *simple* approach [i.e. the GWP] has been adopted here to illustrate the difficulties inherent in the concept ..."

It presented three time-horizons (20, 100 and 500 yr)... `as candidates for discussion [that] should not be considered as having any special significance'

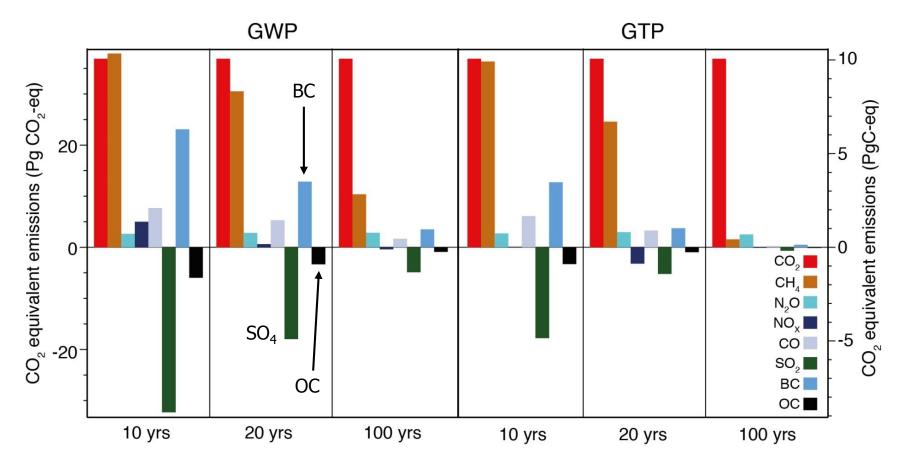
What is the GWP?



GWP has a strong memory of short-lived emissions even after they have disappeared from the atmosphere

IPCC AR5 WG1 Chapter 8

GWP and temperature


 It does not represent the temperature impact: CO₂'s impact persists; CH₄'s is small after ≈50 years (neglecting carbon-cycle feedbacks)

 Long-term temperature impact of CO₂ *pulse* emission can only be matched by *sustained* SLCF emissions

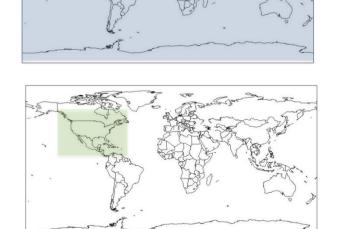
Shine et al, Cli Change (2005)

Impact of metric choice on perceived CO₂-e

IPCC AR5 WG1 Chapter 8 – global emissions

Example of uncertainty: evolution of methane GWP₁₀₀

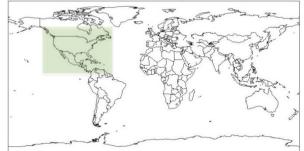
	GWP (100)
FAR (1990)	21
RF Rep (1994)	24.5
SAR (1995)	21
TAR (2001)	23
AR4 (2007)	25
AR5 (2013)	28

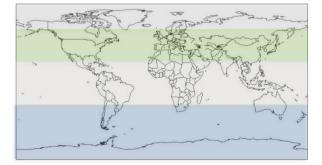

- IPCC GWP₁₀₀ has changed with time: reflects changing understanding of CH₄ lifetime and indirect effects, CO₂ properties, etc. Volatility ≥ for other **SLCFs** – important in policy usage Stated uncertainty in CH₄ GWP₁₀₀ is ±40%. Greater for SLCFs.
- (If post-AR5 science developments are assessed to be robust by AR6, GWP_{100} could increase to ≈ 35)

For SLCFs, the <u>global</u> impact depends on where (and when) emissions occurs

Global to global

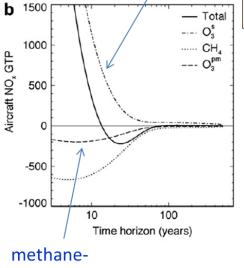
Regional to global




Driver

Response

Regional to regional


Figures from Jan Fuglestvedt

Example of dependence on location of emissions

Table 8.A.3 GWP and GTP for NO_x from surface sources for time horizons of 20 and 100 years from the literature. All values are on a per kilogram of nitrogen basis. Uncertainty for numbers from Fry et al. (2012) and Collins et al. (2013) refer to 1- σ . For the reference gas CO₂, RE and IRF from AR4 are used in the calculations. The GWP₁₀₀ and GTP₁₀₀ values can be scaled by 0.94 and 0.92, respectively, to account for updated values for the reference gas CO₂. For 20 years the changes are negligible.

	GWP		GTP	
	H = 20	H = 100	H = 20	H = 100
NO _x East Asia ^a	6.4 (±38.1)	-5.3 (±11.5)	-55.6 (±23.8)	-1.3 (±2.1)
NO _x EU + North Africa ^a	-39.4 (±17.5)	-15.6 (±5.8)	-48.0 (±14.9)	-2.5 (±1.3)
NO _x North America ^a	-2.4 (±30.3)	-8.2 (±10.3)	-61.9 (±27.8)	-1.7 (±2.1)
NO _x South Asia ^a	-40.7 (±88.3)	-25.3 (±29.0)	-124.6 (±67.4)	-4.6 (±5.1)
NO _x four above regions ^a	-15.9 (±32.7)	-11.6 (±10.7)	-62.1 (±26.2)	-2.2 (±2.1)
Mid-latitude NOx ^c	-43 to +23	-18 to +1.6	–55 to –37	-2.9 to -0.02
Tropical NO _x ^c	43 to 130	-28 to -10	-260 to -220	-6.6 to -5.4
NO _x global ^b	19	-11	-87	-2.9
NO _x global ^d	-108 ± 35 -335 ± 110 -560 ± 279	-31 ± 10 -95 ± 31 -159 ± 79		

Short-lived ozone (warming)

methaneinduced ozone (cooling)

methane reduction due to NOx (cooling)

IPCC AR5 WG1 Chapter 8

NOx as a example. AR5 included additional SLCFs. How would/could this regionality be handled?

Fuglestvedt et al. Atmos Env 2010

Returning to the global perspective ...

Reconciling short-lived versus long-lived emission in the context of 1.5/2° target

nature climate change LETTERS

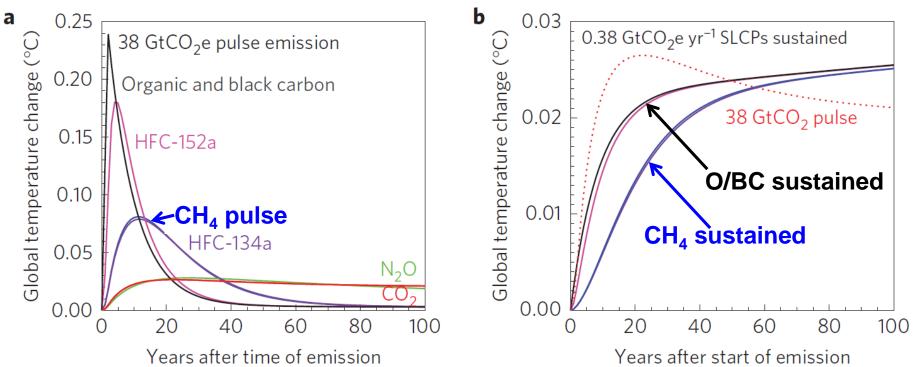
PUBLISHED ONLINE: 2 MAY 2016 | DOI: 10.1038/NCLIMATE2998

New use of global warming potentials to compare cumulative and short-lived climate pollutants

Myles R. Allen^{1,2*}, Jan S. Fuglestvedt³, Keith P. Shine⁴, Andy Reisinger⁵, Raymond T. Pierrehumbert² and Piers M. Forster⁶

And: Allen et al. (2018) to appear in npj Climate and Atmospheric Science on 5 June 10.1038/s41612-018-0026-8 (not yet active)

Environ. Res. Lett. 13 (2018) 054003


https://doi.org/10.1088/1748-9326/aab89c

Increased importance of methane reduction for a 1.5 degree target

William J Collins^{1,6}, Christopher P Webber¹, Peter M Cox², Chris Huntingford³, Jason Lowe^{4,5}, Stephen Sitch², Sarah E Chadburn^{2,5}, Edward Comyn-Platt³, Anna B Harper², Garry Hayman³ and Tom Powell²

Equivalence between a *pulse* CO₂ **emission and** *sustained* change in **SLCF emission rate**

(38 GtCO₂ is the 2011 anthropogenic emissions of CO₂; total CH₄ emissions are the same in both frames)

Allen et al. Nature CC (2016),

An improved metric? GWP*

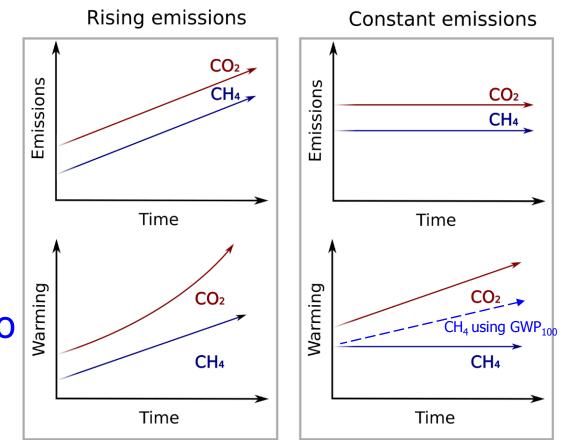
• The conventional usage of ${\rm GWP}_{100}$ says that the ${\rm CO}_2$ equivalence of ${\rm CH}_4$ emission is given by

CO₂-e[tonnes]=GWP₁₀₀ x CH₄ Emission[tonnes]

- The "equivalence" is such that the integrated radiative forcing over 100 years is the same for the CH₄ pulse and the equivalent pulse of CO₂
- Under GWP*, the CO₂ equivalence comes from the change in CH₄ emission rate

CO₂-e*[tonnes]=H x GWP_H x change in CH₄ emission rate [tonnes per year]

 The "equivalence" is temperature change rather than integrated forcing: arguably more aligned with Paris goals


Examples

- Under GWP, a 1 tonne CH_4 pulse is "equivalent" to a 28 tonne CO_2 pulse (IPCC AR5 GWP_{100} for $CH_4=28$)
- Under GWP* = H x GWP(H), a 1 tonne per year *increase* in CH₄ emission rate is equivalent to a 100x28 = 2800 tonne (one-off) CO₂ pulse. (Dependence on H is quite modest)
- And similarly, a 1 tonne per year *decrease* in CH₄ emission rate is equivalent to a 2800 tonne (oneoff) *removal* of CO₂
- Equivalence only holds if CH₄ decrease is sustained indefinitely. If emissions go back up, equivalence is lost. A policy challenge.

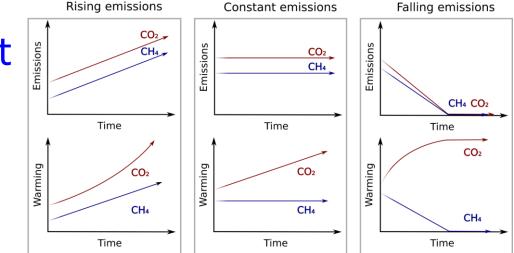
Point 1: constant SCLF emissions equivalent to zero CO₂ emissions

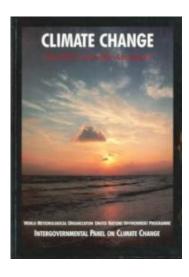
- Constant CH₄ emissions cause no *further* ΔT
- CO₂-e using GWP₁₀₀ would say they continue to warm
- (Constant CH₄ emissions continue to elevate temperature and so retain mitigation potential)

Cain et al. Martin School Brief

Point 2: falling SLCF* emissions equivalent to CO₂ removal

- Falling CH₄ emissions are equivalent to CO₂ removal; they cause a cooling
- Conventional (GWP₁₀₀) CO₂-e says that they cause additional warming until emissions reach zero




Cain et al. Martin School Brief

The story so far

- CO₂-e using GWP might be reasonable when emissions increase; it fails when they are constant or falling
- Arguably the greatest challenge to the "integrity" of GWPs since IPCC's First Assessment (1990)

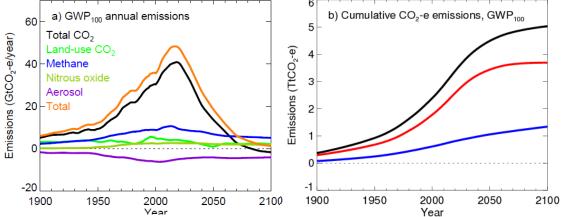
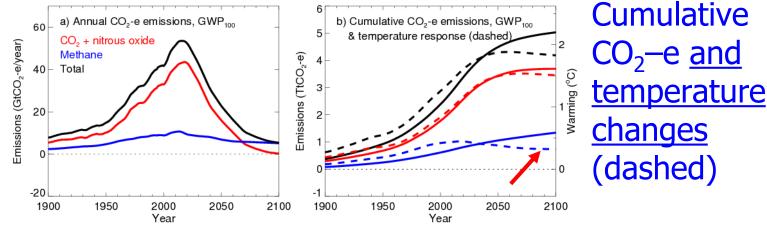


Illustration using RCP2.6⁺: with GWP₁₀₀

Annual emissions in CO_2 -e using GWP_{100}

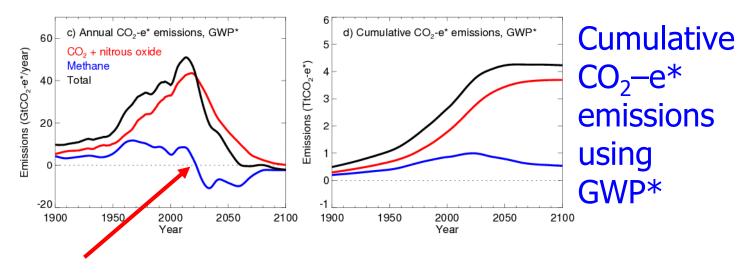
Cumulative CO₂—e emissions using GWP₁₀₀


- The CO₂-e is calculated using GWP₁₀₀
- CO₂ and CH₄ emissions rise and then fall; but using CO₂—e, CH₄ seems to accumulate in the atmosphere

Allen et al. 2018 to appear in npj Climate and Atmospheric Science ⁺ RCP2.6: IPCC's Representative Concentration
Pathway aiming for 2 deg C

Illustration using RCP2.6: with GWP₁₀₀

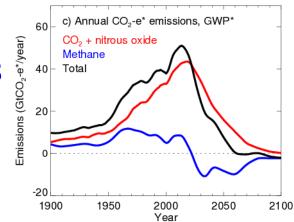
Annual emissions in CO_2 -e using GWP_{100}


- Cumulative CO₂-e works well for CO₂(!)
- For CH₄, even though emissions fall and cause temperature to decrease, CO₂-e using GWP₁₀₀ cannot capture this

Allen et al. 2018 to appear in npj Climate and Atmospheric Science

Illustration using RCP2.6: with <u>GWP*</u>

Annual emissions in CO₂-e* using GWP*


- Under GWP*, the <u>change</u> in CH₄ emissions holds the CO₂ equivalence
- Once CH₄ emissions begin to fall, they become equivalent to removal of CO₂

Allen et al. 2018 to appear in npj Climate and Atmospheric Science

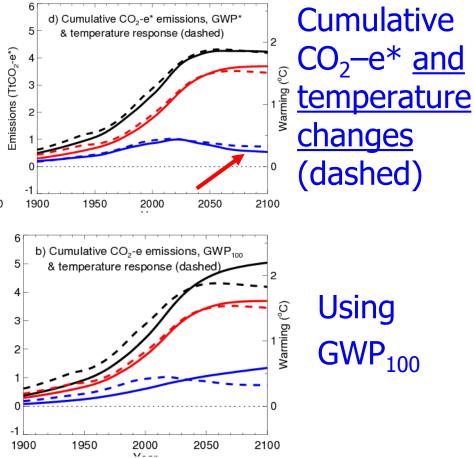


Illustration using RCP2.6: with GWP*

Annual emissions in CO₂-e* using GWP*

 Temperature response to CO₂-e* now works well for CH₄ (and hence for the total)

Allen et al. 2018 to appear in npj Climate and Atmospheric Science

Concluding thoughts

- GWP₁₀₀ seems poorly suited for characterising CO₂equivalence for constant/falling SLCF emissions in the temperature context
- The problem could be resolved via a new GWP usage that we call GWP*. This equates a <u>sustained</u> step decrease in SLCF emission rate with a <u>one-off</u> removal of CO₂ from the atmosphere
- GWP* seems better than GWP for monitoring progress to a long-term temperature goal, but the comparison of pulse (long-lived) and sustained (SLCF) emissions requires a change of thinking
- Any change in the metric used in international agreements would be disruptive and likely to be resisted by some/many
- Dependence of global impact on time and location of SLCF emissions is also a challenge

