

Proudly Operated by Battelle Since 1965

Links between global-scale emission estimates and national emission inventories

STEVEN J. SMITH Joint Global Change Research Institute College Park, MD

Expert Meeting on Short-Lived Climate Forcers Geneva, Switzerland May 28, 2018

Proudly Operated by Battelle Since 1965

Global emission inventories are necessary for global Earth-system models, Human-Earth System models, and comparative analysis across countries.

National inventories are a key component of efforts to limit pollution and its impacts on human health and the environment.

Inventories are particularly important for short-lived species that have high spatial heterogeneity.

- Aerosol Emissions: BC, OC, (other PM2.5), (dust)
- Aerosol and ozone precursors: SO₂, NO_X, CO, NH₃, NMVOC

Inventories of CO₂, CH₄ are also used for carbon-cycle and atmospheric chemistry studies.

The substantial amount of work that goes into developing and updating national inventories makes these useful for the development of global inventories.

A Variety of Approaches to using of national inventory information in global estimates

Independent Estimates

e.g., EDGAR. (Sources: EMEP/EEA 2013 guidebook, literature, IEA energy data)

Pros: Independent estimate with consistent methodology across countries

Cons: May not have most up to date regional information or location-specific details. Must use global proxy databases for gridding.

Mosaic Emissions Grids

e.g., HTAPv2. (regional gridded air pollution inventories "stitched" together with EDGAR gridded data as default where other information not available), MIX

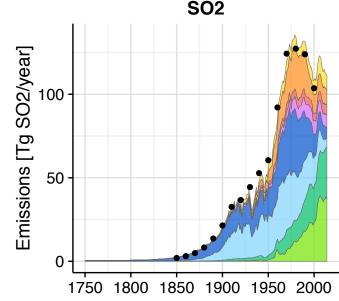
Pros: Detailed regional information consistent with air quality studies.

Cons: Gridded data not always available for the same year, nor for most recent or earlier years. No detailed sector info (and maybe not consistent)

Mosaic Aggregate Regional/Country Emissions by Sector

e.g., HTAPv1, CEDS, RCP (also GAINS-extensive country consultations) Pros: Can use most up to date regional emissions information Cons: Inconsistent methods, generally global grid proxies (e.g., EDGAR) 3

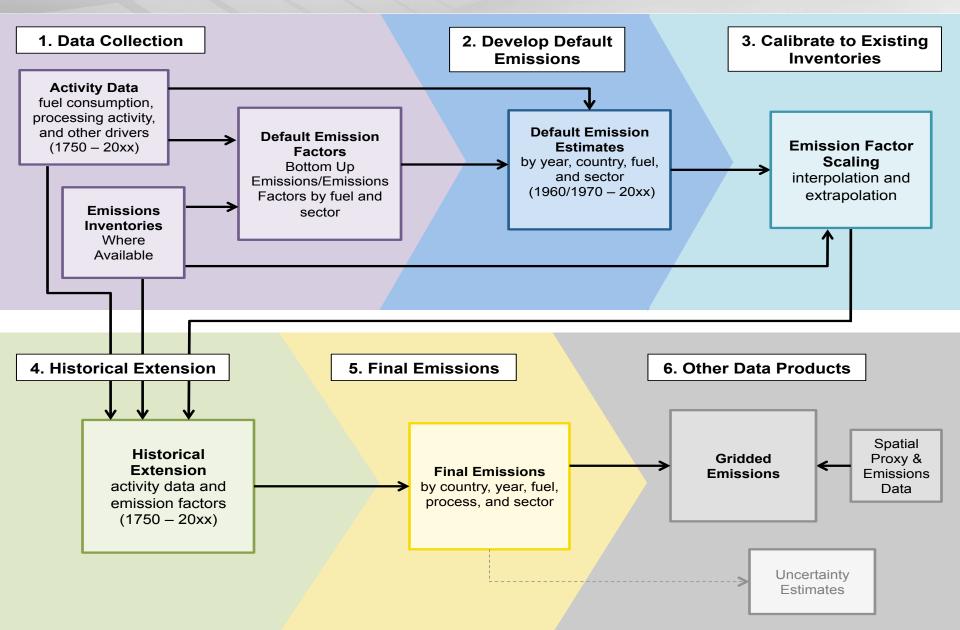
Community Emissions Data System (CEDS) Advertisement


Timely, reproducible, consistent, "research" estimates for emissions of aerosol (BC, OC), precursor compounds (SO₂, NO_x, NH₃, CH₄, CO, NMVOC), and CO₂.

Methodology

- Hybrid of bottom-up emission estimates & calibration to inventories (e.g. EPA, EMEP, etc.)
- Mapped to spatial grids for CMIP6 and other research
- Calibrated to country-level inventories (most species but not BC/OC)
- Drawing heavily on existing work (EDGAR, GAINS, country inventories)
- Seasonality and VOC speciation

CMIP6 Anthropogenic Emissions (1750 – 2014)


- Aggregate data (country/sector) : in Journal Article supplement <u>https://www.geosci-model-dev.net/11/369/2018/gmd-11-369-2018.html</u>
- Gridded data: https://esgf-node.llnl.gov/search/input4mips/
- GitHub: <u>https://github.com/JGCRI/CEDS/</u>
- Project Web Site: <u>http://www.globalchange.umd.edu/CEDS/</u>

CEDS System Diagram

Pacific Northwest

Proudly Operated by Battelle Since 1965

Issues With Connecting Country Inventories to Global Datasets

Proudly Operated by Battelle Since 1965

• Heterogeneous data formats

- There is no common format for either aggregate or gridded emissions data
- Custom data processing needed for each dataset

$\circ~$ Inconsistent sector definitions

- Definitions of sectors are sometime unclear
- Not all inventories include all sectors important to know where to gap fill
- Some air pollutant sectors (e.g. off road) have incomplete global driver data

General lack of fuel-specific data

- Emissions by fuel and sector would enable analysis and allow better calibration
 - (Thank you U.K. for providing both!)

Lack of activity data

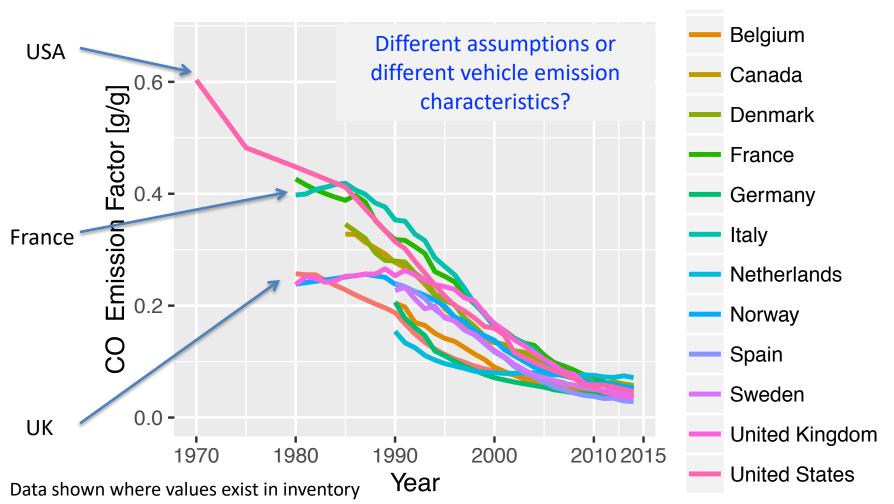
- Activity data is not always publicly available, making consistency difficult to check
- While global inventories use fuel consumption as driver data, some sectors in country inventories may use other types of activity data (e.g. vehicle-km, etc.).
- It would be very valuable for global inventories if country inventories could report combustion emission factors and process emissions intensities (physical units).

$\circ~$ Limited or no uncertainty analysis

- Not traditionally a priority for country em inventories used for regulatory purposes.
- For scientific purposes, uncertainty is highly desired.

Issues: Inventory Errors, Gaps and Biases

Regulatory air pollutant inventories are generally based on extensive guidance and processes, including, for example, testing regimes for road vehicles and reporting requirements


- Given their regulatory purposes, adherence to a well-defined, publicly accessible, and approved process is important.
- For many scientific purposes, the most accurate dataset is desired, not necessarily the dataset most well aligned with a country inventory
 - There are a number of documented cases where observational (+model) evidence indicates that current processes have lead to biases in regulatory inventories both in USA and Europe (and likely elsewhere).
 - How much evidence is required to depart from the "official" inventory data?
- $\circ~$ There are known issues and gaps in some country data
 - Thus, for example, leading to the EMEP data "as used by models"
 - Alternative approach is GAINS, where extensive consultations and expert judgment are used in the process of emissions estimation
 - Shipping emissions consistency ("international" vs "domestic") are a significant issue (in and between country inventories, and between country and global inventories)
 - Fugitive emissions are difficult to quantify in all cases
 - Different goals/hierarchies for air quality vs climate emissions at the country level

Consistency in Country Inventories: What is going on here?

Because CEDS consistently processed inventory and driver data, we can examine implied emission factors in country-level inventories.

Road Vehicle – Gasoline Implied EF

Issues: Primary Aerosol Emissions

There are some specific issues related to primary aerosol emissions.

- Climate modeling is primarily focused on sub-micron primary BC and OC emissions (e.g. BC1, OC1)
- Air quality inventories primarily quantify PM2.5

$\circ~$ Composition of PM2.5 is not detailed in most existing inventories

- Current regulatory regimes focus on total PM2.5, regardless of composition
- The anthropogenic BC and OC portion of PM2.5 is particularly important for climate change studies
- The best way to use country estimates of PM2.5 to improve BC and OC are not clear
- Need to better determine: PM2.5 -> PM1.0 = BC + OM + ? (+ Brown Carbon?)

o Biomass Consumption

- A major source of aerosol particles is solid biomass consumption, particularly traditional biomass (but also wood fuels in higher income countries)
- Biomass consumption statistics range widely in quality
- Data sources are not always well documented on an international scale
- Annual trends in international statistics can be incomplete or inconsistent over time (some trends are likely per-capita extrapolations)

$\circ~$ Be careful about use of defaults

• Need to be cautious when using default emission factors (illusion of certainty)

Summary - Future Directions (Initial thoughts) Pacific Northwest

• Develop common data formats and definitions for country-level inventory data

- This would greatly advance analysis, use, and comparison
- Should be coupled with API (Application Programing Interface) data access

Better document sectoral definitions

- Is a particular issue for research inventories
- Issue: fuel comb and process (e.g. IPCC guidelines) vs facility emissions (country level)
- Improved methods for inclusion of high quality country/regional gridded emissions data/proxies into global inventories
 - This would improve the quality of global inventory data for recent years
 - Need to develop methods to smoothly merge the higher quality gridded data for recent years with the less available proxy data for earlier years for time series model analysis

$\circ~$ Confront inventories with observations

- Observations are critical for many species, particularly BC/OC!
- Particularly where real-world emissions conditions vary widely (fugitive emissions, carbonaceous aerosols in nearly all cases, biologic sources (NO_X, NH₃)), in-situ and remote observations will be necessary to better constrain emissions

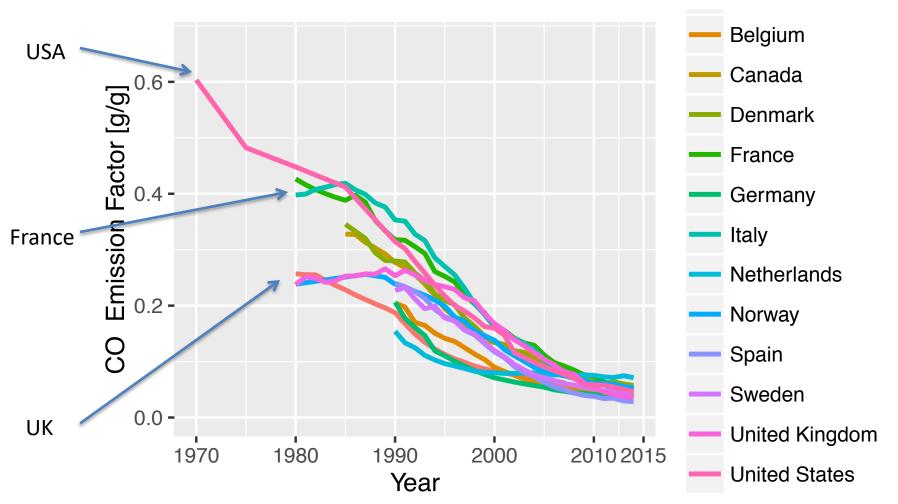
$\,\circ\,\,$ Document/research methods to harmonize estimates of PM2.5 and BC/OC

Kudos to Klimont et al. (2017) for providing PM10, PM2.5, PM1, BC1, OC1, OM1

Proudly Operated by Battelle Since 1965

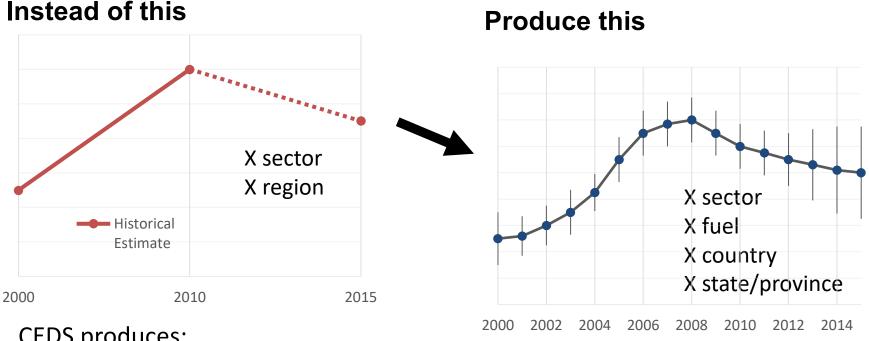
END

Proudly Operated by Battelle Since 1965


ADDITIONAL SLIDES ON CEDS

Consistency in Country Inventories: What is going on here?

Because CEDS consistently processed inventory and driver data, we can examine implied emission factors in country-level inventories.

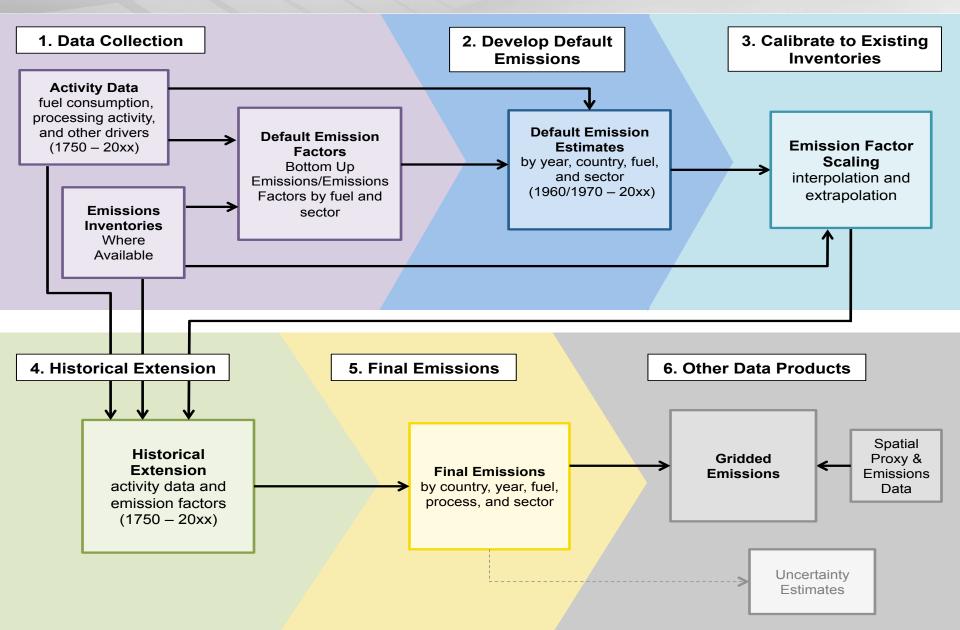

Road Vehicle – Gasoline Implied EF

CEDS goals

Timely, reproducible, consistent, "research" estimates for emissions of aerosol (BC, OC) and aerosol precursor compounds (SO₂, NO_x, NH₃, CH₄, CO, NMVOC)

CEDS produces:

SO₂, NO_x, CO, OC, BC, NH₃, NMVOC, CO₂, CH₄


Uncertainty essential for estimates of more recent years.

- 1750 2014
- Aggregate annual estimates (221 regions/countries, 8 fuels, 55 sectors)
- Gridded data (0.5° x 0.5°, monthly seasonality, 9 sectors)

System Diagram

Pacific Northwest

Proudly Operated by Battelle Since 1965

Methodology

1) Estimates by Country, Sector, Fuel

 Hybrid of bottom-up emission estimates & calibration to inventories (e.g. EPA, EMEP, etc.)

2) Map to spatial grid

- Country values mapped to spatial grids for 14 "intermediate" gridding sectors. (Chosen where we have EDGAR, and other global grids.)
- Other than population, we lack spatial information for earlier years.
 - Mostly use time-changing EDGAR grids over 1970 2008, then constant
 - Residential emissions distribution merges to population grid by 1900

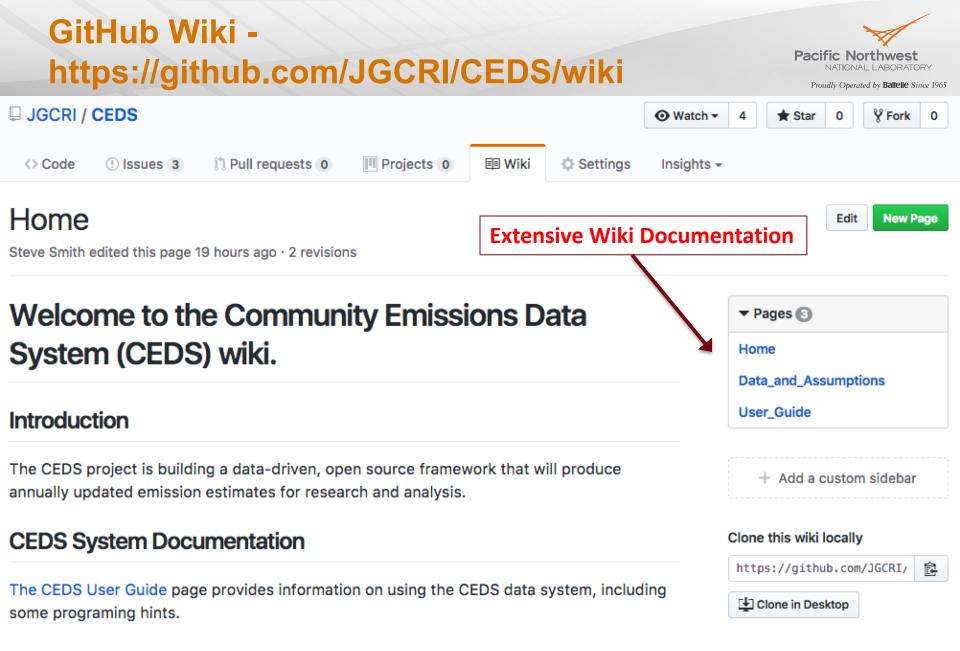
3) Add Seasonality

Global gridded monthly profiles (mostly from ECLIPSE) applied by gridding sector

4) Aggregate for gridded data release

• Aggregated to 9 final gridding sectors, month (including aircraft)

CEDS CMIP6 – Improvements Relative To CMIP5


Proudly Operated by Battelle Since 1965

• More robust emission trends

- Consistent methodology across all years
- All emission species use same driver data
- Consistently calibrated to country-level inventories where available
- Annual data resolves important socio-economic events
- o Emissions estimates out to 2014 to capture recent trends as best as possible
 - Albeit with additional uncertainty (which is now being estimated)
- 1850 Emissions CO higher and NO_x lower, due to explicit representation of biomass and coal emissions for all species.
- New sectors included
 - Residential waste burning
 - Flaring (from ECLIPSE project)
 - Fossil-fuel Fires (from EDGAR)

$\circ~$ Reproducible emissions generation process

- CEDS data system and most input data will be released as open source software
- Updated data such as new country inventories and energy driver data can be readily incorporated to allow annual updates
- Modular system facilitates data updates (e.g., "drag and drop" capability)

CEDS Data and Assumptions

The Data and Assumptions section documents data sources and assumptions.

GitHub – Tracking Issues

JGCRI / CEDS Y Fork O Unwatch -6 ★ Star 2 1 () Issues 5 11 Pull requests 0 Projects 0 III Insights Settings <> Code Wiki is:issue is:open Milestones Filters -Labels New issue ① 5 Open ✓ 2 Closed Projects -Assignee -Sort -Author -Labels -Milestones emissions_data Large Increase in Netherlands Industrial BC Emissions in 2007 CMIP6 🖵 1 • #7 opened on Jan 10 by ssmithClimate South Korea BC (OC) emissions overestimated CMIP6 emissions_data \square 0 #5 opened on Oct 4, 2017 by ssmithClimate USA SO2 emissions overestimated from about 1961 to 1969. CMIP6 emissions data C 1 • #3 opened on Sep 7, 2017 by ssmithClimate Western USA SO2 emissions too high CMIP6 gridded_emissions_data \Box • 2 #2 opened on Sep 7, 2017 by ssmithClimate Combustion emissions become zero for some countries, CMIP6 emissions_data (\mathbf{I}) \square #1 opened on Sep 7, 2017 by ssmithClimate

https://github.com/JGCRI/CEDS/issues