

Emissions Trends and Key Sources of Shortlived Climate Pollutants Using Topdown/Technology Based Methodologies in Mexico

Luis Gerardo Ruiz Suárez

IPCC Expert Meeting on Short-Lived Climate Forcers May 28-31, Geneva

Main sources of information in this presentation

- Semarnat (2012). México Quinta Comunicación Nacional ante la Convención Marco de las Naciones Unidas sobre el Cambio Climático. Ciudad de México.
- MCE2 and INECC (2016). Integrated responses to short lived climate forcers promoting clean energy and energy efficiency. Mexico City, Molina Center for Energy and the Environment,Instituto Nacional de Ecología y Cambio Climático.
- INECC/Semarnat (2015). Primer Informe Bienal de Actualización ante la Convención Marco de las Naciones Unidas sobre el Cambio Climático. INECC. Ciudad de México, Instituto Nacional de Ecología y Cambio Climático. Periférico: 288.

Mexico Fifth Communication

A GEF project

1 Biennial Update Report

Some obviousness

- If SLCF are to included in climate conventions their emissions inventories need to be as:
 - transparent
 - documented
 - consistent over time,
 - complete
 - comparable
 - assessed for uncertainties
 - subject to quality control and assurance.
- Their emissions inventories should not mean heavy additional burdens to national emissions systems.
- Their emissions inventories should be estimated at the same tier level as co-emited Kyoto GHG for any sector source.
- SLCF emissions inventories should follow Good Practice IPCC Guidance at the same level as the co-emitted Kyoto GHG

BC national emission inventory in the Fifth National Communication

How it was made

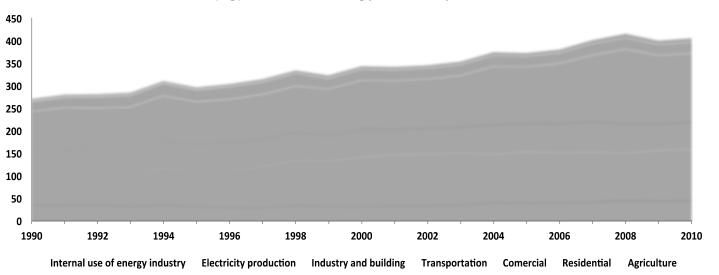
- A proposal was made to INECC to make it piggybacked to the national GHG emissions inventory.
- We asked for the calculation files for all sectoral sources once the GHG emissions inventory was finished. We got:
 - Energy Sector: Proprietary Excel notebook for end use of fuel by sector with activity data from the national energy balance reports.
 - Waste Sector: 2006 IPCC Revised Guidelines
 - All other sectors; 1996 IPCC Guidelines
- Following Good Practice, use national emissions factors were used when available (forest fires, agricultural, waste open, cookstoves, brick)

How it was made, cont.

- Whenever there was combustion reported there should be BC and OC with the same activity data.
- For the energy sector follow Bond et al (2204) technology based estimation method.
 - Use Bond E.F. tables as default E.F.
 - If not in Bond's tables, follow Bond as example and seek in literature.
 - Use weighted E.F. for mixed technologies use
 - Account for bad emitters for all internal combustion
 - Assume all domestic wood combustion is "fogón" like.
- Estimate uncertainty using the same uncertainty for activity data as the co-emitted CO (CO2) and the specific E.F.

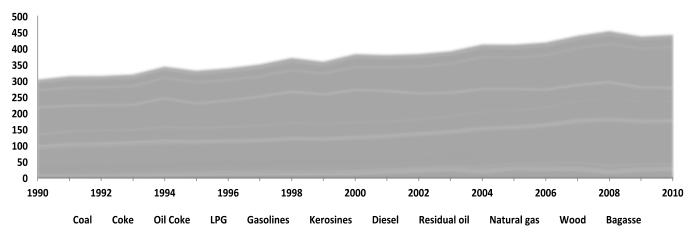
Centralized emission factors file

icio Inse	rtor Dir	oño do pá	igina Fórr		atos	Revisar	Ver Pro	gramado	-	• • •	Compartir
			-		atos		_	gramauo	I		
	iar Tin	nes New R.	🔻 9 🔻	A▲ A▼	= =	= _ %	•	🏹 Ajustar 🕯	texto	General Ceneral Cenera	Ž Ž Y
nar .	N	K S	-	v A v	= =		•=	• Combin	ar y centrar 🔻		Ordenar
Ser Ser	liato								-	Condicional como tabla de celda	y filtrar
	$\langle \sqrt{f_x} f_x$	Notes									
В	С	D	Е	F	G	н	1	J	к	L	Μ
YEAR											
		PM1									
	PM	fraction	Fraction of	BC	Fraction of	OC	VOC	Note			
on tunes	Emission	in PM2.5	BC in PM1	Emission	OC in	Emission	Emission				
on types	Factor			factor	PM1	factor	factor				
	- (1	Guiden	Gradian	- (- 1	Guiden	. / . .					
	g/ kg dm	fraction	fraction	g/ g dm	fraction	g∕g dm	g/ g dm		Notes		
Coníferas	12.7	1.00	1.538E-02	1.954E-04	6.000E-01	7.620E-03	2.370E-02			$\frac{1}{1}$ PM2.5 E.F. = 12.5 ±7.5 (natural variability) for temperate forest from Akagi et al (2011), Table 1., Wiedinmyer et al 2011	
Coníferas y										PM2.5 E.F.= 11.33 ±4.13 (at 1 stdv), for pine-oak forest Average vaule at average mdifed combustion efficiency from Yokelson et al (2011) Table 6. B/PM ad OC/PM fractions calculated from data in Table 1 for mixed forest in Wiedinmyer et al (2011). VOC EF igual	
atifoliadas	11.33	1.00	4.308E-02	4.881E-04	7.077E-01	8.018E-03	5.400E-02			2 a bosque no-tropicalde Akagi	
										PM2.5 E.F.= 11.33 ±4.13 (at 1 stdv), for pine-oak forest Average vaule at average mdifed combustion efficiency from Yokelson et al (2011) Table 6. BC/PM and OC/PM fractions calculated from data in Table 1 for mixed forest in Wiedinmyer et al (2011)- EF para	
Latifoliadas	11.33	1.00	4.308E-02	4.881E-04	7.077E-01	8.018E-03	5.400E-02			3 VOC igual a bosque no tropical de Akagi	
Matorral y										PM2.5 E.F. 11.9 ±5.8 g/kg d.m. from Akagi et al (2011), however in this case EF of BC and O ara taken directly from the same source,	
rbustos				1.300E-03		3.700E-03	1.200E-02			4 Table 2 for chaparral, no error or variability given. VOC EF from Chaparral in Table 2 Akagi (2011)	
Selva Alta		7		5.300E-04		4.710E-03	5.190E-02			5 BC E.F. = 0.52 ± 0.28 and OC E.F. 4.71±2.73 (natural variability) in g/kg of d.m. for tropical forest in Table 1 Akagi et al (2011)	
selva Baja				5.300E-04		4.710E-03	5.190E-02			6 BC E.F. = 0.52 ± 0.28 and OC E.F. 4.71±2.73 (natural variability) in g/kg of d.m. for tropical forest in Table 1 Akagi et al (2011)	
elva Mediana				5.300E-04		4.710E-03	5.190E-02			7 BC E.F, = 0.52 ± 0.28 and OC E.F. 4.71±2.73 (natural variability) in g/kg of d.m. for tropical forest in Table 1 Akagi et al (2011)	
pastizal				0.1005-01		0.6400-00	8 0 (OF 02			BC E.F. = 0.91 ± 0.41 and OC E.F. 9.64±4,43 (natural variability) in g/kg of d.m. for grassland maintenance in Table 1 Akagi et al	
				9.100E-01		9.640E+00	8.960E-02			8 (2011)	
									-		
h A muinu	Iture_BC_EF	Masta	_BC-EF_incine			OpenBurning	0110011	S_On_Site		Verificador +	


This E.F. notebook is pasted into the IPCC software root

LULUC example

cio Insei	ertar	Diseño de página	a Fórmulas	a Datos	Revisar	Ver	Programado	or									2 4	- Compai	rtir
Cort		Times New R	8 × A^	A• =	= =	*	📑 🖓 Ajustar	texto	Genera	al 🔹	•	7 -	2 · •		× - 🖬	▼	Autosum Rellenar		7.
ar 💞 Form	mato									% 000 * 0 00 * 0	Formato Dar for condicional como t	abla de ce	lda	sertar Elin		nato	Borrar *	Orde y filt	nar
÷ ×	$\langle \vee$	f_x {='/Volumes/I	Data/Ruiz/Docu	uments in Dat	a/PROYECTO	DS/GEF-Carl	bono_Negro/	Inventario BC-	IPCC/Qui	nta_BC/USCUSS/USCL	ISS sin suelos/veg to	tal/2010/	OVERVIE	W.xls]hea	d'!\$C\$16:	\$C\$17}			
В		С	D	E	F	G	Н	I	J	к	L	Μ	Ν	0	Р	Q	R	S	
		et 2 of Worksheet 5-2, in accord s for National Greenhouse Gas																	
		MODULE	LAND-USE CHANG	GE AND FORESTR	Y														
		SUBMODULE		SSLAND CONVE	RSION - BC, OR,	VOC FROM BIC	OMASS												
		WORKSHEET																	
		COUNTRY	Eddited 2 OF 5 CAR México	BON RELEASED	BY ON-SITE BUI	KNING													
		YEAR																	
					STE				-										
			F Fraction of	G Quantity of	H Fraction of	I Quantity of	J EF BC	K	L EF OC	M	N	P							
			Biomass	Biomass Burned	Biomass	Biomass													
	Vegegati	ion types	Burned on Site	on Site	Oxidised on Site	Oxidised on Site		Emissons of BC		Emissons of OC	EF VOC	Emissions o	FVOC						
			Site	Site		on she													
				(Gg dm)		(Gg dm)	g/g dm	Gg	g/g dm	Gg		Gg							
				(-8)		I = (G x H)	0.0		88			-0							
Bosque Templao	ıdo	Coniferas	0.4		0.9		-	0.18				21.76883							
		Coníferas y Latifoliadas	0.4	1,096.34	0.9		0.000488062	0.48				53.282196							
		Latifoliadas	0.4	556.49	0.9	500.84	0.000488062	0.24	0.0080182	4.0	2 0.054	27.045193							
Grasslands																			
		Matorral y arbustos		100.01							0.01								
Grasslands		matorrar y aroustos	0.4	480.84	0.9	432.76		0.56	0.0037	1.6	0.01.	2 5.1930603							
Bosque Tropical		Selva Alta	0.4	1,077.69	0.9			0.51	0.00471	4.5	7 0.0519	50.33894							
		Selva Baja	0.4	,	0.9		0.00053	0.77	0.00471	6.8		75.636252							
		Selva Mediana	0.4	976.38	0.9		-	0.47	0.00471	4.1		45.606912							
Grasslands		pastizal	0.4		0.9							0.3334056							
Other			0.4	0.00	0.9	0.00	Subtotal	0.00		0.0	-	279.20479							
							Subtotal	0.01		/1.9	, 	219.20479							
Documentation I Parties are encour		rovide relevant information	used in the calculatio	n and on data sour	ces in this docum	entation box.													
in the second	gra 10 pr			o on and oour			_												
		ed on site biomm																	


This notebook is pasted into the inventory year folder

To get started, from the GHG emissions inventory of the 5ft National Communication

CO₂ (Tg) from the energy sector by subsector

CO2 (Tg) from the energy sector by fuel

CO2 emissions trends are quite stable by sector and by fuel, their shares do not change abruptly along the time as expected from the long life cycle of technologies in the main sectoral sources

Only natural gas use grows faster than other fuels at the expenses of residual oil in the electricity production

Emissions trends of BC and OC in Mexico

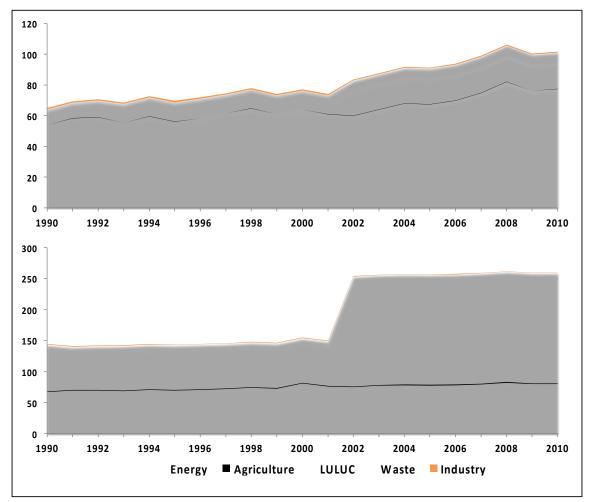


Figure A10. BC (top panel) and OC (bottom panel) emission trends from 1990 to 2010. Source of activity data, the 1990-2010 INEGEI in the Fifth National Communication, [SEMARNAT, 2012].

An oddity

GHG emissions from LULUC use deforestation rate from the National Forestry Inventory (NFI) as data source for the emissions activity data

These time series contains data from three NFI: 1981-1990, 1991-2000, 2001-2010

The GHG LULUC emissions inventory team took deforestation rates as they were from the NFI

I took the activity data as they were from the GHG emissions inventory from LULUC.

Relative sectoral contributions to BC and OC at the beginning and end of the time series

BC

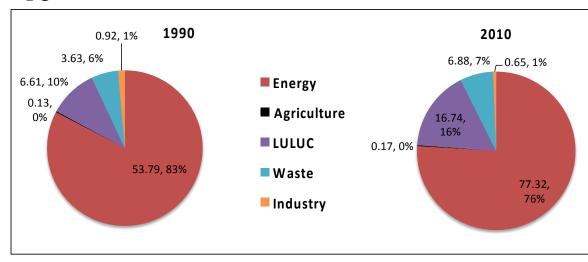


Figure A8. Relative distribution of BC by sector in 1990 and 2010.

In LULUC OC emissions $\simeq 10~\text{BC}$ emissions

In open combustion VOC and OC emissions are correlated

OC

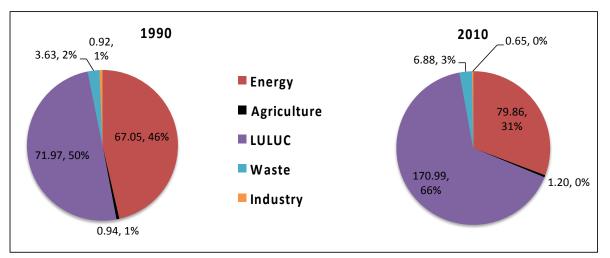
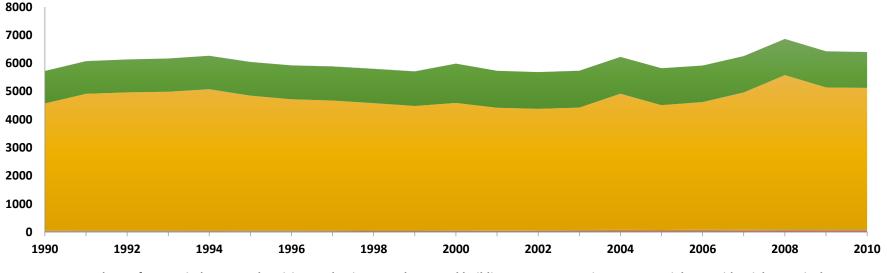
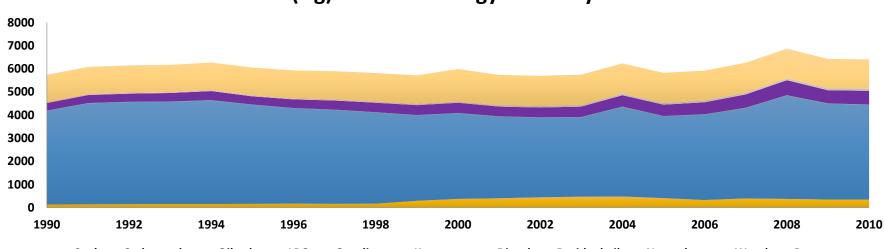
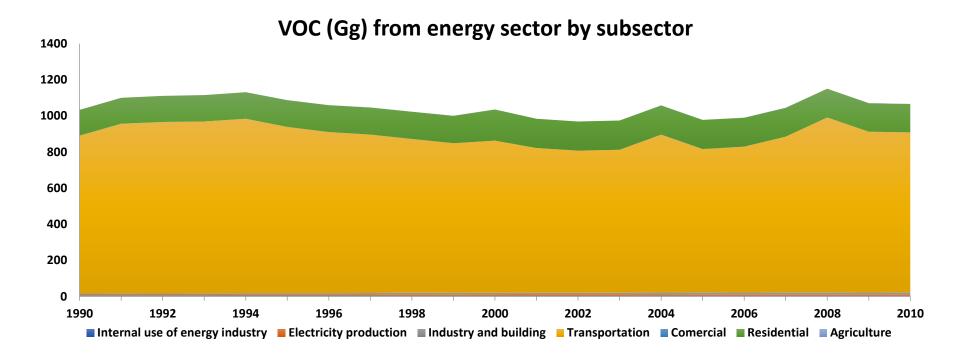
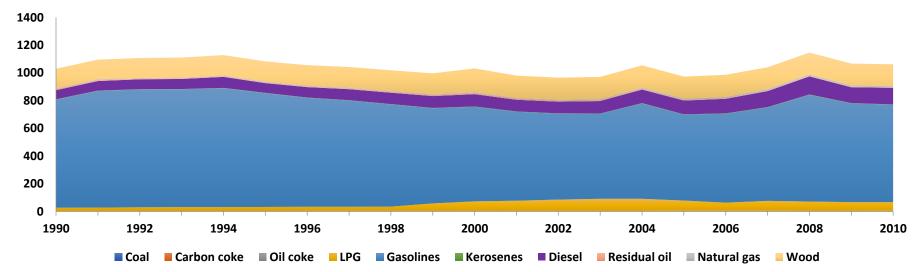




Figure A9. Relative distribution of OC by sector in 1990 and 2010.

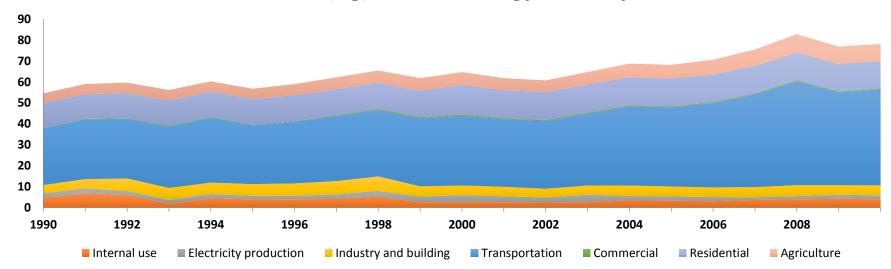
CO (Gg) from the energy sector by subsector

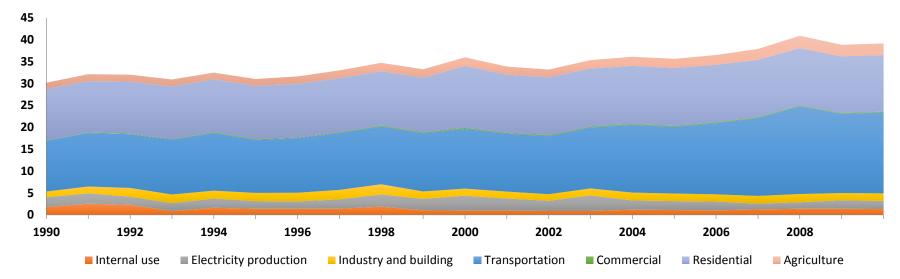


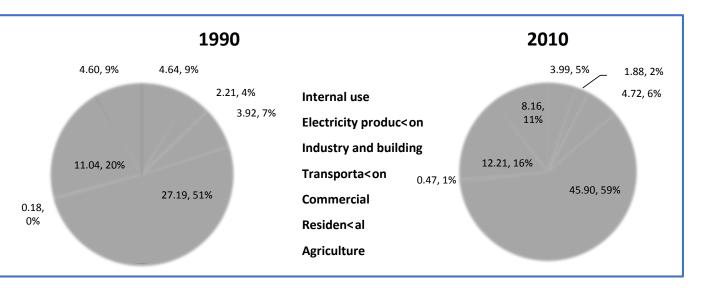
Internal use of energy industry Electricity production Industry and building Transportation Comercial Residential Agriculture

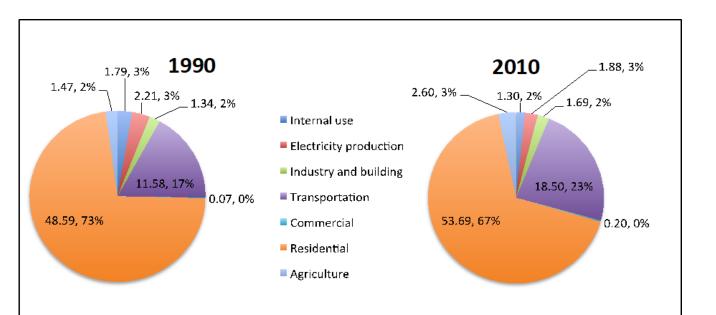


CO (Gg) from the energy sector by fuel


Coal Carbon coke Oil coke CPG Gasolines Kerosenes Diesel Residual oil Natural gas Wood Bagasse


VOC (Gg) from the energy sector by fuel




1990-2010 BC (Gg) from the energy sector by subsector

1990-2010 OC (Gg) from the energy sector by subsector

If in open combustion VOC and OC are correlated then VOC residential emissions may be as important as OC emissions.

Combustion SLCF should be analyzed as an integral set of co-pollutants

Comparison of total and sectoral BC emissions from the 5NC, 1rst BRP and 6NC for 2010.

	5	NC	1rts	BRP	6NC (2nd BRP)			
Energy	87.87	78%	112.40	90%	109.36	95%		
Agriculture	0.17	0%	8.84	7%	3.51	3%		
LULUC	16.74	15%	3.61	3%	0.75	1%		
Waste	6.88	6%	0.23	0%	1.60	1%		
Industrial Processes	0.47	1%	0.04	0%	0.00	0%		
Totals	112.31		125.08		115.22			

BRP and 6 NC use $BC/PM_{2.5}$ ratios on $3PM_{2.5}$ estimates of dectoral and bottom up estimates

Comparison of total and subsectoral BC emissions from the Energy Sector in the 5NC, 1rst BRP and 6NC for 2010

	5	INC	1 E	RP	6NC			
Industry of energy	3.99	1.5%	2.17	2%	1.59	1%		
Electricity production	1.88	2%	8.46	8%	7.46	7%		
Industry + building	4.72	5%	35.42	31%	27.27	25%		
Transportation	45.9	52%	47.34	42%	29.34	27%		
Commercial	0.47	1%	0.04	0%	2.37	2%		
Residential	13.04	15%	18.98	17%	31.47	29%		
Agriculture	8.16	9%	0.04	0%	0.31	0%		
Fugitive emissions*	9.54	11%	0.00	0%	9.54	9%		
Total	87.695		112.45		109.358			

6NC/5NC 6NC-5NC Subsector Gg 0.40 -2.40 **Energy industry Electricity production** 3.97 5.58 Industry + building 5.78 22.55 Transportation 0.64 -16.56 Commercial 5.09 1.90 Residential 2.41 18.43 Agriculture 0.04 -7.85 **Fugitive emissions** 1.00 0.00

Absolute and relative differences of BC missions between in the energy sector for 2010.

Conclusions

- Combustion SLCF emissions inventories can be made in the same go as GHG emission inventories
- Chosen E.F. (or BC/PM_{2.5} partition ratios) are key to mitigation choices
- To account for super emitters has a strong impact on estimates

Thanks