

Short-lived climate forcers (SLCF) in the IPCC WGI contribution to the 6th Assessment Report

Jan Fuglestvedt, Vice chair Working Group I

Thanks to: Vaishali Naik (CLA Ch6), Sophie Szopa (CLA Ch6), Terje Berntsen (LA Ch6), Sarah Connors (Head of Science Team, TSU), Bill Collins (LA Ch7)

Joint 1st and 2nd IPCC Expert Meeting on Short-Lived Climate Forcers 11 – 22 October 2021

IPCC Working Group I report outline

	Chapter 1: Framing, context, methods
Large-scale climate change	Chapter 2: Changing state of the climate system
	Chapter 3: Human influence on the climate system
	Chapter 4: Future global climate: scenario-based projections and near-terminformation
	Chapter 5: Global carbon and other biogeochemical cycles and feedbacks
Climate	Chapter 6: Short-lived climate forcers
processes	Chapter 7: The Earth's energy budget, climate feedbacks, and climate sensitivity
	Chapter 8: Water cycle changes
	Chapter 9: Ocean, cryosphere, and sea level change
Regional climate	Chapter 10: Linking global to regional climate change
	Chapter 11: Weather and climate extreme events in a changing climate
information	Chapter 12: Climate change information for regional impact and for risk assessment
	Atlas of Regional Climate Information

AR6 Climate Change 2021: The Physical Science Basis

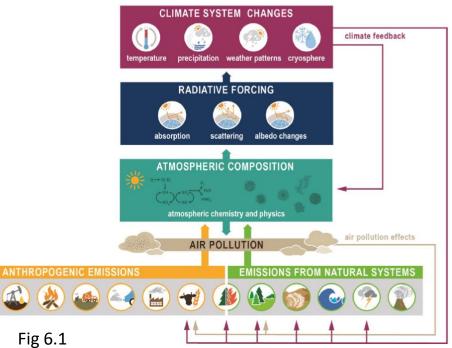
IPCC Working Group I report outline

	Chapter 1: Framing, context, methods
Large-scale climate change	Chapter 2: Changing state of the climate system
	Chapter 3: Human influence on the climate system
	Chapter 4: Future global climate: scenario-based projections and near-terminformation
	Chapter 5: Global carbon and other biogeochemical cycles and feedbacks
Climate	Chapter 6: Short-lived climate forcers
processes	Chapter 7: The Earth's energy budget, climate feedbacks, and climate sensitivity
	Chapter 8: Water cycle changes
	Chapter 9: Ocean, cryosphere, and sea level change
Regional climate	Chapter 10: Linking global to regional climate change
	Chapter 11: Weather and climate extreme events in a changing climate
information	Chapter 12: Climate change information for regional impact and for risk assessment
	Atlas of Regional Climate Information
	•

INTERGOVERNMENTAL PANEL ON Climate change

What is SLCF?

A set of chemically and physically reactive compounds with atmospheric **lifetimes typically shorter than two decades** but differing in terms of physiochemical properties and environmental effects.


SLCFs can be classified as **direct** or **indirect**, with direct SLCFs exerting climate effects through their radiative forcing and indirect SLCFs being precursors of direct climate forcers.

Direct SLCFs include **methane (CH₄)**, **ozone (O₃)**, short lived halogenated compounds, such as hydrofluorocarbons (HFCs), hydrochlorofluorocarbons (HCFCs), and **aerosols**.

Indirect SLCFs include nitrogen oxides (NOx), carbon monoxide (CO), non-methane volatile organic compounds (NMVOCs), sulphur dioxide (SO₂), and ammonia (NH₃).

Aerosols consist of **sulphate (SO₄²⁻), nitrate (NO₃⁻), ammonium (NH₄⁺), carbonaceous aerosols (e.g., black carbon (BC), organic aerosols (OA)), mineral dust, and sea spray.**

Sources and processes contributing to SLCFs and their effects on the climate system

Compounds	Source Type ^a	Lifetime	Direct	Indirect	Climate Forcing	Other effects on climate	WHO AQ guidelines
CH4	Primary	~9 years ~12 years (perturbation time)	CH4	O ₃ , H ₂ O, CO ₂	+		No ^c
O3	Secondary	Hours - weeks	O ₃	CH ₄ , secondary organic aerosols, sulphates	+	Ecosystem	100 µg m ⁻³ 8-hour mean
$NO_x (= NO + NO_2)$	Primary	Hours - days		O ₃ , nitrates, CH ₄	+/-	Ecosystem	40 μg m ⁻³ annual mean 200 μg m ⁻³ 1-hour mean
CO	Primary + Secondary	1-4 months		O ₃ , CH ₄	+		No
NMVOCs	Primary + Secondary	Hours - months		O ₃ , CH ₄ , organic aerosols	+/-		No
SO ₂	Primary	Days (trop.) to weeks (strat.)		sulphates, nitrates, O3	-		20 μg m ⁻³ 24-hour mean 500 μg m ⁻³ 10-minute mean
NH3	Primary	Hours		Ammonium Sulphate, Ammonium Nitrate	-	Ecosystem	No
HCFCs	Primary	Months – years	HCFCs	Stratospheric O ₃	+/-		No ^c
HFCs	Primary	Days – years	HFCs		+		No ^c
Halons and Methylbromide	Primary	Years	Halons and Methylbro mide	Stratospheric O ₃	+/-		No ^c
Very Short-Lived halogenated Species (VSLSs)	Primary	less than 0.5 year		Stratospheric O3	-		No ^c
Sulphates	Secondary	Minutes – weeks	Sulphates		-	Cloud	as part of PM ^d
Nitrates	Secondary	Minutes – weeks	Nitrates		-	Cloud	as part of PM ^d
Carbonaceous aerosols	Primary + Secondary	Minutes to Weeks	BC, OA		+/ -	Cryo, Cloud	as part of PM ^d
Sea spray	Primary	day to week	Sea spray		-	Cloud	as part of PM ^d
Mineral dust	Primary	Minutes to Weeks	Mineral dust		-	Cryo, Cloud	as part of PM ^d

Table 6.1

Recent Evolution in SLCF Emissions and Abundances

Over the last decade, strong shifts in the geographical distribution of emissions

Observations show strong regional variations in trends of ozone (O₃), aerosols and their precursors.

Tropospheric columns of nitrogen dioxide (NO₂) and sulphur dioxide (SO₂) continued to decline over North America and Europe and to increase over South Asia, but have declined over East Asia.

Global carbon monoxide (CO) abundance has continued to decline.

The concentrations of hydrofluorocarbons (HFCs) are increasing.

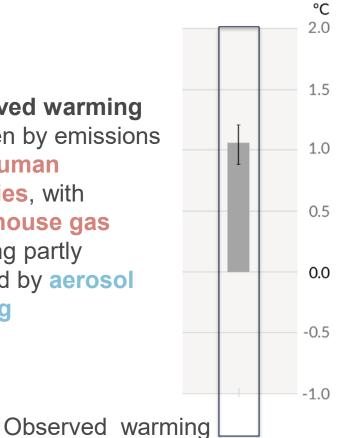
Global carbonaceous aerosol budgets and trends remain **poorly characterized** due to limited observations, but sites representative of background conditions have reported multi-year **declines in black carbon (BC) over several regions of the Northern Hemisphere**.

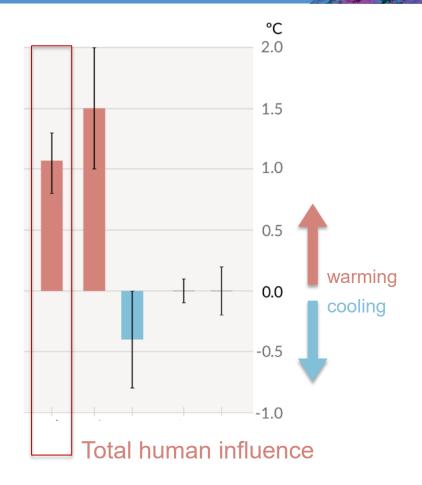
SCIAMACH

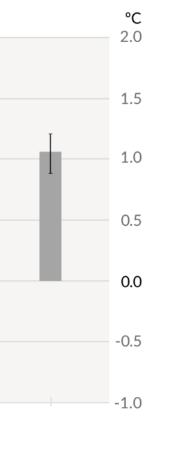
Year

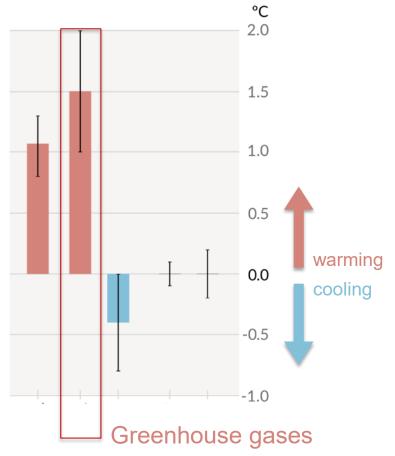
GOME-2A/2B

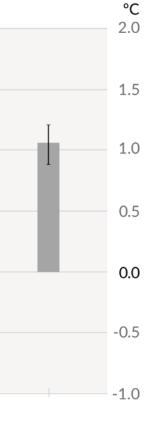
[Credit: Yoda Adaman | Unsplash

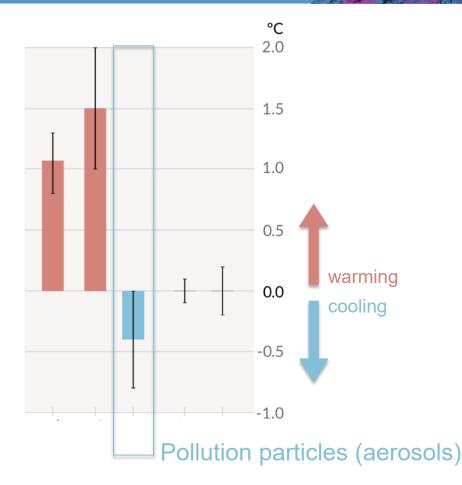

It is indisputable that human activities are causing climate change, making extreme climate events, including heat waves, heavy rainfall, and droughts, more frequent and severe.



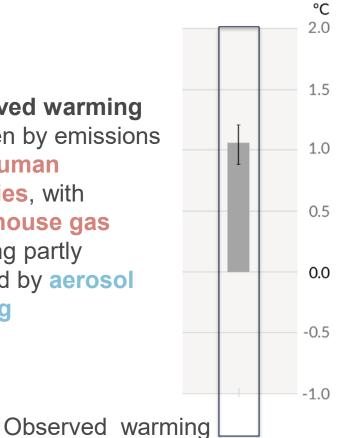

INTERGOVERNMENTAL PANEL ON CLIMATE CHANEE

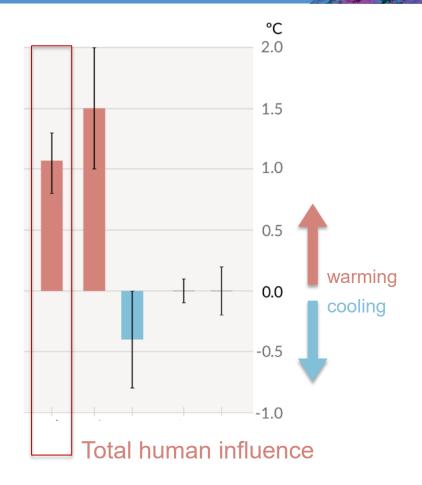

IOCC


IOCC



IPUU 🎲 🛞


IOCC



INTERGOVERNMENTAL PANEL ON CLIMATE CHANEE

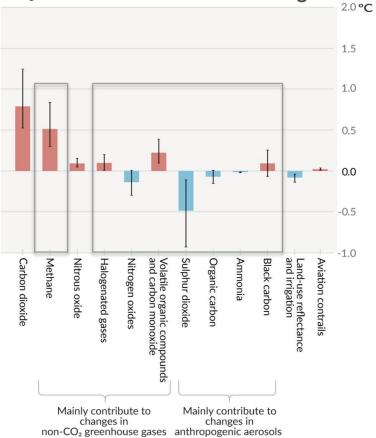
IOCC

SIXTH ASSESSMENT REPORT Working Group I – The Physical Science Basis

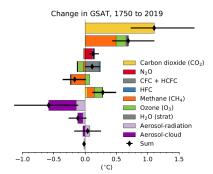
INTERGOVERNMENTAL PANEL ON Climate change 📈

IOCC

6


Contributions by component to 2010-2019 warming relative to 1850-1900.

CO₂ emissions dominate historical warming


Among non-CO₂ emissions, methane contributes the most to historical warming

SO₂ emissions (via sulfate aerosols) have contributed the most to cooling

SPM.2c

More details in chapter 6

[Credit: Peter John Maridable]

Unless there are immediate, rapid, and large-scale reductions in greenhouse gas emissions, limiting warming to 1.5°C will be beyond reach.

INTERGOVERNMENTAL PANEL ON Climate chanee WMO

IOCC

UNEP

2050

2050

SSP3-7.0

SSP5-8.5

SSP2-4.5

SSP1-2.6

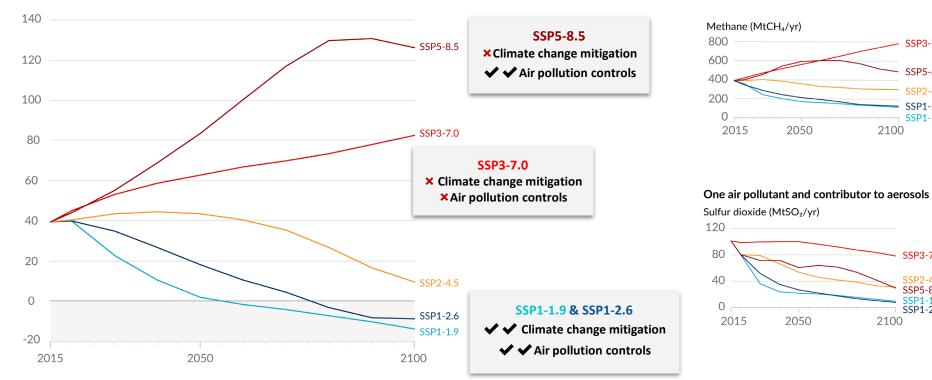
SSP1-1.9

SSP3-7.0

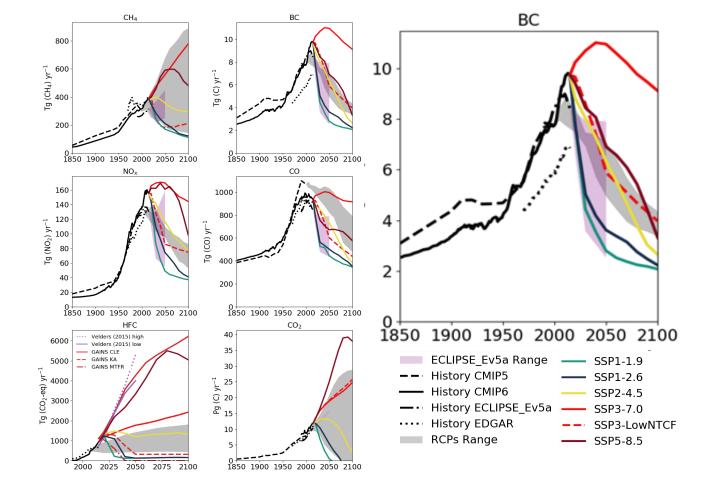
SSP2-4.5

SSP5-8.5

SSP1-1.9


SSP1-2.6

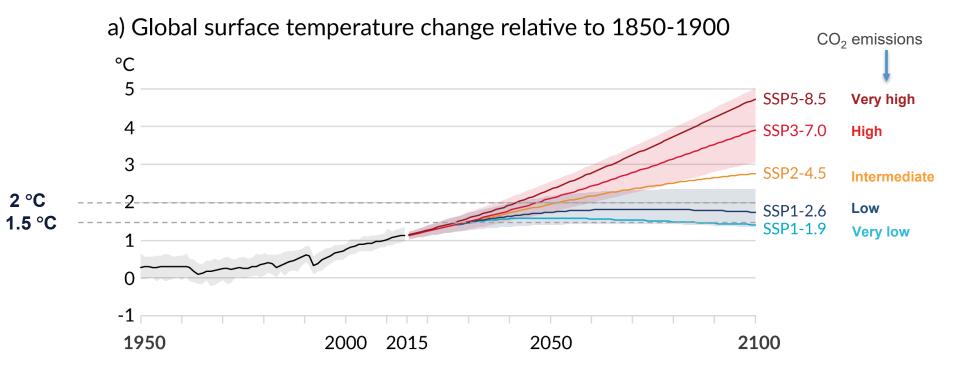
2100


2100

Scenarios used in IPCC AR6 WGI

Carbon dioxide (GtCO₂/yr)

Feasibility or likelihood of individual scenarios is not part of the assessment



Wider range between SSP scenarios than RCPs

Rapid evolution of emissions, hard to catch in inventories

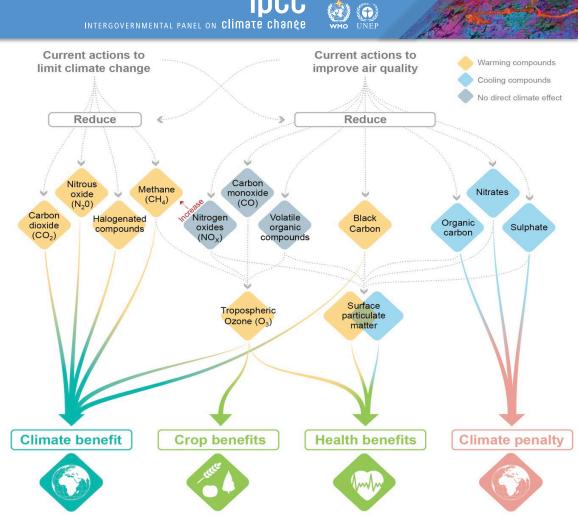
Figure 6.18. Global anthropogenic and biomass burning short-lived climate forcer (SLCF) and CO₂ emissions from 1850 to 2100 and HFC emissions from 1990 to 2100. Emissions for the Coupled Model Intercomparison Project Phase 6 (CMIP6) for the period 1850-2014 are based on Hoesly et al. (2018)

Global surface temperature will continue to increase until at least the mid-century under all emission scenarios considered

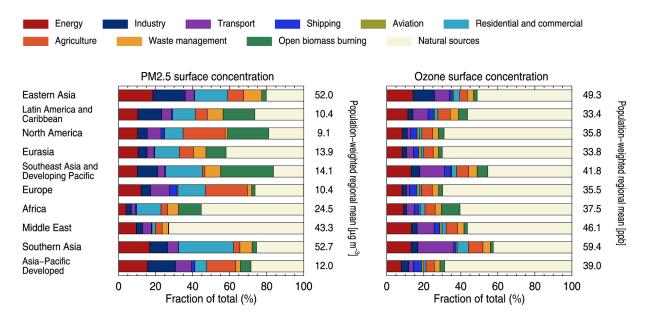
[Credit: evgeny-nelmin.]

"

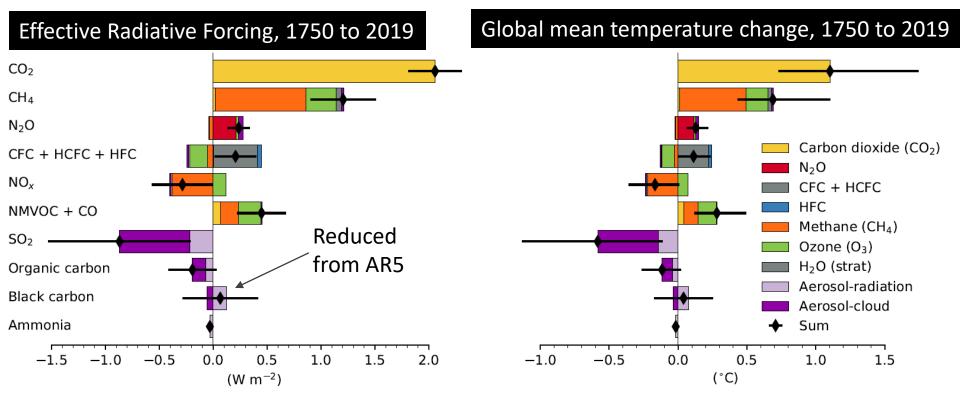
To limit global warming, strong, rapid, and sustained reductions in CO_2 , methane, and other greenhouse gases are necessary.


This would not only reduce the consequences of climate change but also improve air quality.

INTERGOVERNMENTAL PANEL ON Climate change


IOCC INTERGOVERNMENTAL PANEL ON Climate chanee

Links between actions aiming to limit climate change and actions to improve air quality



Impacts on air quality. PM2.5 and ozone

Attribution of regional, population-weighted PM2.5 and ozone to sectors

Figure 6.17 Emission source-sector attribution of regional population weighted mean concentrations of PM_{2.5} and ozone for present day **emissions (year 2014)**. Regional concentrations and source apportionment calculated with the TM5-FASST model (Van Dingenen et al., 2018) for the 2014 emission data from the Community Emissions Data System (CEDS) (Hoesly et al., 2018) and van Marle et al.(2017) for open biomass burning.


INTERGOVERNMENTAL PANEL ON CLIMATE CHANEE

Implications of COVID-19 Restrictions for Emissions, Air Quality and Climate

Emissions reductions in 2020 associated with measures to reduce the spread of COVID-19 led to temporary but detectible effects on air pollution (*high confidence*), and an associated small, temporary increase in total radiative forcing, primarily due to reductions in cooling caused by aerosols arising from human activities (*medium confidence*).

Global and regional climate responses to this temporary forcing are, however, undetectable above natural variability (*high confidence*).

Atmospheric CO_2 concentrations continued to rise in 2020, with no detectable decrease in the observed CO_2 growth rate (*medium confidence*).

Regional contribution

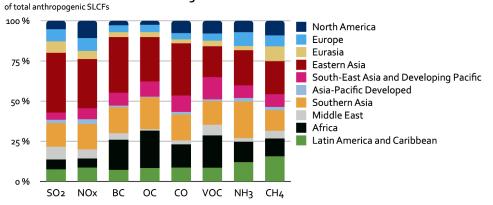
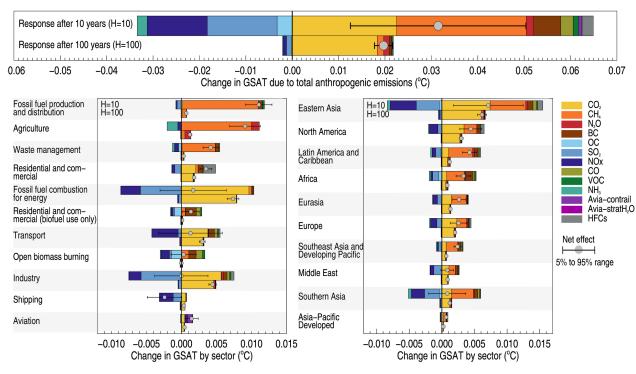
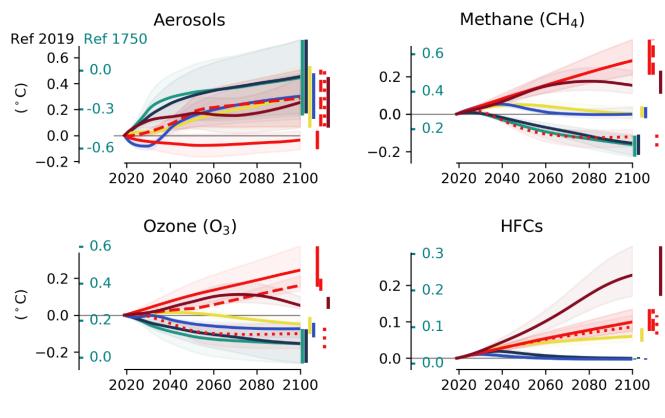



Figure 6.3. Relative regional and sectoral contributions to the present day (year 2014) anthropogenic emissions of Short Lived Climate Forcers (SLCFs).

Effect of a one year pulse of present-day emissions on global surface temperature



Emission based temperature change for

- Regions
- Sectors

Figure 6.16. Global-mean temperature response 10 and 100 years following one year of present-day (year 2014) emissions. The temperature response is broken down by individual species and shown for total anthropogenic emissions (top), sectoral emissions (left) and regional emissions (right). Sectors and regions are sorted by (high-to-low) net temperature effect on the 10-year time scale. Error bars in the top panel show uncertainty (5-95% interval) in net temperature effect due to uncertainty in radiative forcing

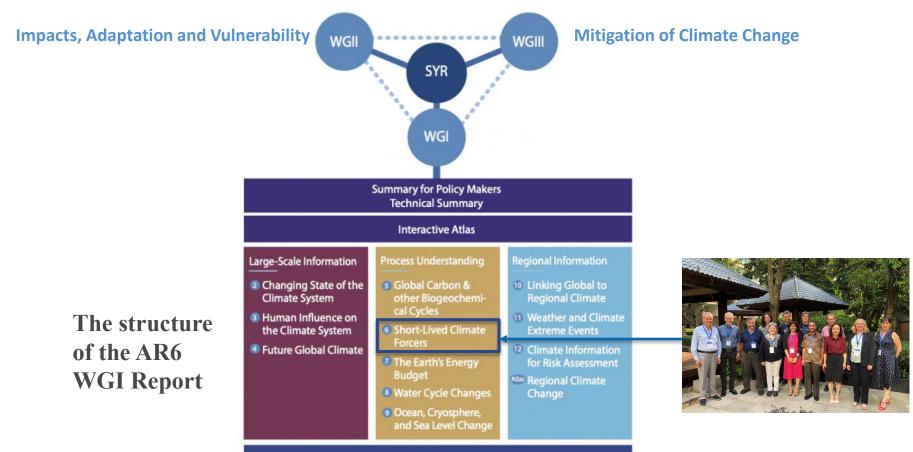
Effect on Global Surface Air Temperature (GSAT) relative to 2019

Evolution of the effects of short-lived climate forcers (SLCFs) and HFCs on global temperature across the core Shared Socio-Economic Pathways (SSPs). Effects of net aerosols, methane, tropospheric ozone and hydrofluorocarbons (HFCs) (with lifetimes <50years), relative to year 2019 and to year 1750.

SSP1-1.9
SSP1-2.6
SSP2-4.5
SSP3-7.0-LowSLCF-HighCH₄
SSP3-3.4
SSP5-8.5

Remaining carbon budgets

Approximate global warming	Estimated remaining carbon budgets from the beginning of 2020 (<i>GtCO</i> ₂)						
relative to 1850–1900 until temperature	Likelihood of limiting global warming to temperature limit*(2)						
limit (°C)*(1)	17%	33%	50%	67%	83%		
1.5	900	650	500	400	300		
1.7	1450	1050	850	700	550		
2.0	2300	1700	1350	1150	900		


Estimates may vary by ± 220 GtCO₂ depending on the level of non-CO₂ emissions at the time global anthropogenic CO₂ emissions reach net zero levels. This variation is referred to as **non-CO₂ scenario uncertainty** and will be further assessed in the AR6 Working Group III Contribution.

Geophysical uncertainties

surrounding the climate response to these non-CO₂ emissions (such as CH₄, N₂O, and aerosols) result in an additional uncertainty of at least ± 220 GtCO₂

INTERGOVERNMENTAL PANEL <u>ON **Climate** change</u>

IOCC

Framing, Context, Methods

Thank you.

More Information:

IPCC: www.ipcc.ch Interactive Atlas: interactive-atlas.ipcc.ch

IPCC Working Group I TSU:

IPCC Press Office: ipcc-media@wmo.int

Follow Us:

in

f Ø @IPCC **y** Ø @IPCC_CH

linkedin.com/company/ipcc

#ClimateReport #IPCC