Using Source-Resolved Aerial Surveys to Create Measurement-Based Methane Inventories

IPCC TFI Meeting, Geneva, September 5-7, 2022

Prof. Matthew R. Johnson, Ph.D., P.Eng

Professor & Scientific Director Energy & Emissions Research Lab., Mechanical & Aerospace Engineering, Carleton University, Ottawa, ON <u>Matthew.Johnson@carleton.ca</u> https://carleton.ca/eerl

Why We Need to Incorporate Measurements in (Methane) Inventories

- Multiple studies, in multiple jurisdictions, using multiple techniques consistently show current oil and gas sector methane inventories are underestimated
 - Airplane source/site-resolved (e.g., Tyner & Johnson, EST 2021; Chen et al., EST 2022)
 - Airplane mass balance (e.g., Johnson et al., EST 2017; Karion et al., EST 2015; Peischl et al., J. Geophys. Res., 2015, 2016; Alvarez et al., Science 2018)
 - Mobile (truck) measurements (e.g., Mackay et al., Sci. Reports, 2021)
 - Inverse modelling of ground station data (e.g., Chan et al., EST 2020; Miller et al., PNAS 2013)
 - Satellite measurements (e.g., Zhang et al., Sci. Adv., 2020)
 - Isotope measurements (e.g., Hmiel et al., Nature, 2020)
- Emissions must be expected to rapidly change!
 - <u>Emission factors</u> and inventories must be *continually updated* if we are to track reductions

Key Challenges: Why We Don't Generally Use Measurements in Inventories

- Inventories must preserve source / site / facility-type resolution
 - Bottom-up resolution is critical for regulatory and mitigation decisions
 - Simple-scaling of bottom-up totals to match some other total measurement misses a key part of the problem
- Unknown / unverified capabilities of available measurement technologies
 - What is the Probability of Detection (POD) of a source under general conditions?
 - What is the quantification uncertainty of a source/site under general conditions?

Protocols to incorporate measurements?

- What about unmeasured sources?
- How do determine required sample sizes with skewed distributions?
- Finite sample effects
- Etc.

Potential for Airborne Measurement Approaches

Scientific Aviation (Conley et al., AMT 2017)

Scientific Aviation (Johnson et al., EST 2017)

Bridger Photonics (Tyner & Johnson, EST 2021)

Kairos Aerospace (Chen et al., EST 2022)

AVIRIS-NG (Cusworth et al., Energy & Climate 2021)

Example Aerial Technology: Bridger Photonics Gas Mapping LiDAR

- Sites have one or more passes
- Flights with detected emissions are revisited in a subsequent day
- Source quantification for inventory development purposes requires interpretation of data from each pass

Source Attribution: Geo-locating Aerial Survey Imagery

 Combining satellite imagery, geolocated aerial photos, plot plans, & ground survey data to attribute

Source Attribution: Match Sources to Plot Plans

- Plot Plans provide a site schematic and equipment list
- Match Sources to Plot Plan

Carleton eer

ENERGY AND Emissions Research

High Resolution (~1m) Data Enables Attribution to Specific Sources

Key sources:

- a) Tanks
- b) Compressors
- c) Unlit flares

Tyner & Johnson, Environ. Sci. Technol, 2021 (doi: <u>10.1021/acs.est.1c01572</u>)

High Resolution (~1m) Data Enables Attribution to Specific Sources

- Other detected sources in BC:
 - d) Amine boiler unit
 - e) Dehydrator
 - f) Generator
 - g) Cooler
 - h) Etc.

(g)

Tyner & Johnson, Environ. Sci. Technol, 2021 (doi: <u>10.1021/acs.est.1c01572</u>)

Robust, Critical Evaluation of Measurement Technologies

- Fully- and semi-blinded controlled release testing
- B.M. Conrad, D.R. Tyner, M.R. Johnson (2022) Robust Probabilities of Detection and Quantification Uncertainty for Aerial Methane Detection: Examples for Three Airborne Technologies, *Remote Sensing of Environment* (under review: preprint)
- M.R. Johnson, D.R. Tyner, A.J. Szekeres (2021) Blinded evaluation of airborne methane source detection using Bridger Photonics LiDAR, *Remote Sensing of Environment*, 259:112418. (doi: <u>10.1016/j.rse.2021.112418</u>)

1. Fully-Blinded Controlled Release Testing of <u>Sensitivity Limits</u>

- Conducted under cover of parallel survey of oil and gas facilities
 - Airplane has no knowledge they are even being tested

M.R. Johnson, D.R. Tyner, A.J. Szekeres (2021) Blinded evaluation of airborne methane source detection using Bridger Photonics LiDAR, *Remote Sensing of Environment*, 259, 112418. (doi: <u>10.1016/j.rse.2021.112418</u>)

Continuous Probability of Detection (POD) Functions

Probability of detection any source Q for a given wind speed u and altitude h

B.M. Conrad, D.R. Tyner, M.R. Johnson (2022) Robust Probabilities of Detection and Quantification Uncertainty for Aerial Methane Detection: Examples for Three Airborne Technologies, *Remote Sensing of Environment* (under review: preprint)

Continuous Probability of Detection (POD) Functions

Probability of detection any source Q for a given wind speed u and altitude h

B.M. Conrad, D.R. Tyner, M.R. Johnson (2022) Robust Probabilities of Detection and Quantification Uncertainty for Aerial Methane Detection: Examples for Three Airborne Technologies, *Remote Sensing of Environment* (under review: preprint)

2021 Carleton-EERL National Methane Survey

- National-scale effort
 - ~8200 sites across 4 provinces

Research and Innovation Society

environment

- Similar, highly-skewed distributions across all provinces
 - Note these measured sources are ~80% of total methane (shown later)
- 95% of GML measured sources less than 30 kg/h
 - 2/3 of measure methane / ~81% of all methane
 - Not just about "super-emitters"
 - Mid-sized source key and will become more important as mitigation efforts succeed

Measured distributions represent
 ~80% of total methane (shown later)

- Measured distributions represent
 ~80% of total methane (shown later)
- At 13 kg/h sensitivity can see:
 - ~18% of these sources /
 62% of this methane
 - ~50% (0.62*0.8) of all methane

- Measured distributions represent
 ~80% of total methane (shown later)
- At 13 kg/h sensitivity can see:
 - ~18% of these sources /
 62% of this methane
 - ~50% (0.62*0.8) of all methane
- At 27 kg/h sensitivity can see:

- Measured distributions represent
 ~80% of total methane (shown later)
- At 13 kg/h sensitivity can see:
 - ~18% of these sources /
 62% of this methane
 - ~50% (0.62*0.8) of all methane
- At 27 kg/h sensitivity can see:
 - ~7% of these sources / 40% of this methane
 - ~32% (0.4*0.8) of all methane

- Measured distributions represent
 ~80% of total methane (shown later)
- At 13 kg/h sensitivity can see:
 - ~18% of these sources /
 62% of this methane
 - ~50% (0.62*0.8) of all methane
- At 27 kg/h sensitivity can see:
 - ~7% of these sources / 40% of this methane
 - ~32% (0.4*0.8) of all methane
- At 200 kg/h sensitivity can see:

- Measured distributions represent
 ~80% of total methane (shown later)
- At 13 kg/h sensitivity can see:
 - ~18% of these sources /
 62% of this methane
 - ~50% (0.62*0.8) of all methane
- At 27 kg/h sensitivity can see:
 - ~7% of these sources / 40% of this methane
 - ~32% (0.4*0.8) of all methane
- At 200 kg/h sensitivity can see:
 - <1% of these sources / 5% of this methane
 - ~4% (0.05*0.8) of all methane
- Critical to understand sensitivity limits when Source Em incorporating measurements from different technologies

Carleton

University

2. Semi-Blinded Controlled Release Testing of *Quantification Accuracy*

- Semi-blinded (collaborative) controlled release tests
 - Plane flies laps over controlled release points and quantifies
 - Actual release rates are not shared with plane

2. Semi-Blinded Controlled Release Testing of *Quantification Accuracy*

- Semi-blinded (collaborative) controlled release tests
 - Plane flies laps over controlled release points and quantifies
 - Actual release rates are not shared with plane

B.M. Conrad, D.R. Tyner, M.R. Johnson (2022) Robust Probabilities of Detection and Quantification Uncertainty for Aerial Methane Detection: Examples for Three Airborne Technologies, *Remote Sensing of Environment* (under review: preprint)

A Measurement-Based Methane Inventory for British Columbia (BC), Canada

- Demonstrate feasibility of measurement-based methane inventories using aerial measurements
- Key enabling pieces:
 - Technology with sufficient sensitivity to capture majority of sources
 - Detailed probability of detection (POD) functions in varying conditions
 - Detailed uncertainty model for technology
 - Bottom-up data for unmeasured sources

A Measurement-Based Methane Inventory for British Columbia (BC), Canada

- Survey includes:
 - 59% of all active facilities
 - 8% of all active wells

Protocol to Create a *"Hybrid"* Bottom-Up *Measurement-*Based Inventory

Johnson et al., (2022) to be submitted

Very powerful approach to quantify, analyze, and *minimize* uncertainty

Measurement-Based Methane Inventory for BC

Stark Differences in Sources Among Provinces

Saskatchewan

British Columbia

Rapid Changes as Sources Evolve and Regulations Take Effect

Carleton University

Conclusions

- Traditional bottom-up, emission factor based inventories face many challenges
 - Persistent underestimation
 - Rapid evolution of sources and source distributions as regulations take hold
- New aerial technologies are a revolution in possibilities, but:
 - Robust, independently-proven probabilistic sensitivity and uncertainty models are critical
 - Not all technologies are interchangeable and not all are sufficient for creating source- and site-resolved inventories
- Measurement-based methane inventories are possible now using careful application of statistical methods using current technologies
 - Province of BC Canada looking to transition to measurement-based inventories this year!

Acknowledgements

Environnement et Changement climatique Canada

Website: <u>https://carleton.ca/eerl</u> Email: <u>Matthew.Johnson@carleton.ca</u>

Selected References

- B.M. Conrad, D.R. Tyner, M.R. Johnson (2022) Robust Probabilities of Detection and Quantification Uncertainty for Aerial Methane Detection: Examples for Three Airborne Technologies, Remote Sensing of Environment (under review: preprint)
- S.A. Festa-Bianchet, D.R. Tyner, S.P. Seymour, M.R. Johnson (2022) Methane Venting at Cold Heavy Oil Production with Sand (CHOPS) Facilities is Significantly Underreported and led by High-Emitting Wells with Low or Negative Value, Environmental Science & Technology (under review)
- D.R. Tyner, M.R. Johnson (2021) Where the Methane Is—Insights from Novel Airborne LiDAR Measurements Combined with Ground Survey Data, Environmental Science & Technology, 55, 14, 9773–9783 (doi: <u>10.1021/acs.est.1c01572</u>)
- M.R. Johnson, D.R. Tyner, A.J. Szekeres (2021) Blinded evaluation of airborne methane source detection using Bridger Photonics LiDAR, Remote Sensing of Environment, Volume 259, 112418. (doi: <u>10.1016/j.rse.2021.112418</u>)
- M.R. Johnson*, D.R. Tyner (2020) A case study in competing methane regulations: Will Canada's and Alberta's contrasting regulations achieve equivalent reductions? *Elementa: Science of the Anthropocene*, 8(1), p.7. (doi: <u>10.1525/elementa.403</u>)
- C.A. Brereton, L.J. Campbell, M.R. Johnson* (2020) Influence of turbulent Schmidt number on fugitive emissions source quantification, *Atmospheric Environment X*, 7:100083 (doi: <u>10.1016/j.aeaoa.2020.100083</u>)
- T.A. Fox, A.P. Ravikumar, C.H. Hugenholtz, D. Zimmerle, T.E. Barchyn, M.R. Johnson, D. Lyon, T. Taylor (2019) A methane emissions reduction equivalence framework for alternative leak detection and repair programs, *Elementa*, 7(1), p.30 (doi: <u>10.1525/elementa.369</u>)
- C.A. Brereton, L.J. Campbell, M.R. Johnson* (2019) Computationally Efficient Quantification of Unknown Fugitive Emissions Sources, Atmospheric Environment, 3(100035):1-13 (doi: <u>10.1016/j.aeaoa.2019.100035</u>)
- D.R. Tyner, M.R. Johnson* (2018), A Techno-Economic Analysis of Methane Mitigation Potential from Reported Venting at Oil Production Sites in Alberta, Environmental Science & Technology, 52(21):12877-12885 (doi: <u>10.1021/acs.est.8b01345</u>)