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3 UNCERTAINTIES 

3.1 INTRODUCTION 
This chapter provides guidance in estimating and reporting uncertainties associated with both annual estimates of 
emissions and removals, and emission and removal trends over time. It is written from the viewpoint of the 
inventory compiler and provides, with examples, two approaches for combining category uncertainties into 
uncertainty estimates for total national net emissions and the trend.  

3.1.1 Overview of uncertainty analysis 
Uncertainty estimates are an essential element of a complete inventory of greenhouse gas emissions and 
removals. They should be derived for both the national level and the trend estimate, as well as for the component 
parts such as emission factors, activity data and other estimation parameters for each category. This guidance 
therefore develops a structured approach to estimating inventory uncertainty. It includes methods for:  

• Determining uncertainties in individual variables used in the inventory (e.g., estimates of emissions from 
specific categories, emission factors, activity data); 

• Aggregating the component uncertainties to the total inventory;  

• Determining the uncertainty in the trend; and 

• Identifying significant sources of uncertainty in the inventory to help prioritise data collection and efforts to 
improve the inventory.  

While the methods outlined below are intended to estimate uncertainties for the national inventory, it is 
important to recognize that some uncertainties that are not addressed by statistical means may exist, including 
those arising from omissions or double counting, or other conceptual errors, or from incomplete understanding of 
the processes that may lead to inaccuracies in estimates developed from models.  

An uncertainty analysis should be seen, first and foremost, as a means to help prioritise national efforts to reduce 
the uncertainty of inventories in the future, and guide decisions on methodological choice. For this reason, the 
methods used to attribute uncertainty values must be practical, scientifically defensible, robust enough to be 
applicable to a range of categories of emissions by source and removals by sinks, methods and national 
circumstances, and presented in ways comprehensible to inventory users. A reference section is provided for 
more detailed and more theoretical information on topics discussed in this chapter.  

Quantitative uncertainty analysis is performed by estimating the 95 percent confidence interval of the emissions 
and removals estimates for individual categories and for the total inventory. The definition of the 95 percent 
confidence interval is given in Section 3.1.3, Key Concepts and Terminology.  

3.1.2 Overall structure of uncertainty analysis 
This section provides a brief overview of the overall structure of uncertainty analysis, as illustrated in Figure 3.1. 
Emissions/removals estimates are based on: (1) conceptualisation; (2) models; and (3) input data and 
assumptions (e.g., emission factor and activity data). Each of these three can be a source of uncertainty. The 
analysis begins with a conceptualisation. This is a set of assumptions regarding the structure of an inventory or 
of a sector. These assumptions typically include the scope of geographic area, temporal averaging time, 
categories, emissions or removal processes, and gases that are included. The assumptions and the methodological 
choice determine the needs for data and information. There can be some interaction between data and 
assumptions and methodological choice, indicated by the two-way arrow in the figure. For example, the ability 
to disaggregate categories, which may be necessary for higher tier methodologies, can depend on the availability 
of data. Data, whether empirical or based on expert judgment, should undergo appropriate data collection and 
QC procedures, as detailed in Chapters 2, Approaches to Data Collection, and Chapter 6, Quality 
Assurance/Quality Control and Verification, respectively. 

Models can be as simple as arithmetic multiplication of activity and emission factors for each category and 
subsequent summation over all categories, but they may also include complex process models specific to 
particular categories. The data and information obtained from data collection become input to a more specific 
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knowledge base of data and judgment for uncertainty, as shown in the figure and as discussed in detail in Section 
3.2.1, Sources of Data and Information. Specific causes of uncertainty in the conceptualisation, models, and data 
are discussed in Section 3.2.1 and techniques for quantifying uncertainties in input data are set out in Section 
3.2.2. These necessary data include percentage uncertainty estimates and underlining probability density 
functions (PDFs - discussed in Section 3.1.4) for input to an emission inventory uncertainty analysis. Methods 
for combining input uncertainties to arrive at uncertainty estimates for single categories and the overall inventory 
result are detailed in Section 3.2.3. Two Approaches are given for combining uncertainties. Approach 1 is a 
relatively simple spreadsheet-based calculation procedure based upon some assumptions to simplify the 
calculations. Approach 2 is based upon Monte Carlo simulation and can be applied more generally. Either 
approach provides an estimate of the overall uncertainties associated with the total greenhouse gas inventory. 

Figure 3.1 Overall structure of a generic uncertainty analysis 

 

3.1.3 Key concepts and terminology  
Definitions associated with conducting an uncertainty analysis include uncertainty, accuracy, precision and 
variability. These terms are sometimes used loosely and may be misunderstood. They have in fact clear 
statistical definitions that should be used in order to be clear about what is being quantified and reported. Several 
definitions are given here, in alphabetical order: 

Accuracy: Agreement between the true value and the average of repeated measured observations or estimates of 
a variable. An accurate measurement or prediction lacks bias or, equivalently, systematic error.  

Bias: Lack of accuracy. Bias (systematic error), can occur because of failure to capture all relevant processes 
involved or because the available data are not representative of all real-world situations, or because of instrument 
error. 

Confidence Interval: The true value of the quantity for which the interval is to be estimated is a fixed but 
unknown constant, such as the annual total emissions in a given year for a given country. The confidence 
interval is a range that encloses the true value of this unknown fixed quantity with a specified confidence 
(probability). Typically, a 95 percent confidence interval is used in greenhouse gas inventories. From a 
traditional statistical perspective, the 95 percent confidence interval has a 95 percent probability of enclosing the 
true but unknown value of the quantity. An alternative interpretation is that the confidence interval is a range that 
may safely be declared to be consistent with observed data or information. The 95 percent confidence interval is 
enclosed by the 2.5th and 97.5th percentiles of the PDF. 

Precision: Agreement among repeated measurements of the same variable. Better precision means less random 
error. Precision is independent of accuracy. 

Probability density function (PDF): The PDF describes the range and relative likelihood of possible values. The 
PDF can be used to describe uncertainty in the estimate of a quantity that is a fixed constant whose value is not 
exactly known, or it can be used to describe inherent variability. The purpose of the uncertainty analysis for the 
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emission inventory is to quantify uncertainty in the unknown fixed value of total emissions as well as emissions 
and activity pertaining to specific categories. Thus, throughout this chapter it is presumed that the PDF is used to 
estimate uncertainty, and not variability, unless otherwise stated. 

Random errors: Random variation above or below a mean value. Random error is inversely proportional to 
precision. Usually, the random error is quantified with respect to a mean value, but the mean could be biased or 
unbiased. Thus, random error is a distinct concept compared to systematic error. 

Systematic error: Another term for bias, which refers to lack of accuracy. 

Uncertainty: Lack of knowledge of the true value of a variable that can be described as a probability density 
function (PDF) characterising the range and likelihood of possible values. Uncertainty depends on the analyst’s 
state of knowledge, which in turn depends on the quality and quantity of applicable data as well as knowledge of 
underlying processes and inference methods. 

Variability: Heterogeneity of a variable over time, space or members of a population (Morgan and Henrion, 1990; 
Cullen and Frey, 1999). Variability may arise, for example, due to differences in design from one emitter to another 
(inter-plant or spatial variability) and in operating conditions from one time to another at a given emitter (intra-plant 
variability). Variability is an inherent property of the system or of nature, and not of the analyst.   

Figure 3.2 Illustration of accuracy and precision  

(a) inaccurate but precise;  (b) inaccurate and imprecise; (c) accurate but imprecise; and (d) precise and accurate 

           
                        (a)                                       (b)                                       (c)                                      (d) 

Inventories should be accurate in the sense that they are neither over- nor underestimated as far as can be judged, 
and precise in the sense that uncertainties are reduced as far as practicable. Figure 3.2 provides a conceptual 
comparison of accuracy and precision. An accurate inventory is one that is free of bias but that could be precise 
or imprecise. A precise inventory may appear to have low uncertainty but if the inventory is inaccurate, then the 
inventory systematically over- or under-estimates the true emissions or removals. Inaccuracy, or bias, can occur 
because of failure to capture all relevant emissions or removal processes or because the available data are not 
representative of real-world situations. There is no predetermined level of precision, in part because of the 
inherent variability of some categories.  

3.1.4 Basis for uncertainty analysis  
The chapter uses two main statistical concepts – the probability density function (PDF) and confidence interval 
defined in the previous section. While this chapter focuses on aspects of uncertainty that are amenable to 
quantification, there are typically nonquantifiable uncertainties as well. The quantitative uncertainty analysis 
tends to deal primarily with random errors based on the inherent variability of a system and the finite sample size 
of available data, random components of measurement error, or inferences regarding the random component of 
uncertainty obtained from expert judgement. In contrast, systematic errors that may arise because of 
imperfections in conceptualisation, models, measurement techniques, or other systems for recording or making 
inferences from data, can be much more difficult to quantify. As mentioned in Section 3.5, Reporting and 
Documentation, it is good practice for potential sources of uncertainty that have not been quantified to be 
described, particularly with respect to conceptualisation, models, and data and to make every effort to quantify 
them in the future. 

Good practice requires that bias in conceptualisations, models, and inputs to models be prevented wherever 
possible, such as by using appropriate QA/QC procedures. Where biases cannot be prevented, it is good practice 
to identify and correct them when developing a mean estimate of the inventory. In particular, the point estimate 
that is used for reporting the inventory should be free of biases as much as it is practical and possible. Once 
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biases are corrected to the extent possible, the uncertainty analysis can then focus on quantification of the 
random errors with respect to the mean estimate. 

Good practice requires the use of a 95 percent confidence interval for quantification of random errors. This may 
also be expressed as a percentage of the central estimate. Where the PDF is symmetrical the confidence interval 
can be conveniently expressed as plus or minus half the confidence interval width divided by the estimated value 
of the variable (e.g., ± 10%). Where the PDF is not symmetrical upper and lower limits of the confidence 
interval need to be specified separately (e.g., -30%,+50%).  

If the range of uncertainty for a non-negative variable is small enough relative to the mean value, then the 
uncertainty often can be described as a symmetric range with respect to a mean value, as shown in Figure 3.3(a). 
For example, if the mean emissions are 1.0 units, the 2.5th percentile of uncertainty is 0.7 units, and the 97.5th 
percentile of uncertainty is 1.3 units, then the uncertainty range could be described as 1.0 units ±30%. However, 
when the relative range of uncertainty is large, and if the uncertainty is regarding a variable that must be non-
negative (such as an emission factor), then the uncertainty range becomes asymmetric with respect to the mean, as 
shown in Figure 3.3(b). As an example, if the mean emissions are 1.0 units, the 2.5th percentile of uncertainty is 0.5 
units, and the 97.5th percentile of uncertainty is 2.0 units, then the range of uncertainty can be described as 1.0 units 
-50% to +100%. In situations such as the latter, it is often more convenient to summarise uncertainties in a 
multiplicative, rather than additive, manner. In this particular example, the lower end of the 95 percent probability 
range is a half the mean, and the upper end is a multiplier of 2 larger than the mean. Such a range is commonly 
summarised as a “factor of 2.” An uncertainty of a “factor of n” refers to a range bounded at the low end by 
(mean/n) and at the high end by (mean × n). Thus, a factor of 10 uncertainty would have a range of 0.1×mean to 
10×mean. The factor 10 uncertainty is also often called “an order of magnitude”. Higher powers of 10 are referred 
to as “orders of magnitude;” for example, a factor of 103 would be referred to as three orders-of-magnitude. 

Figure 3.3 Examples of symmetric and asymmetric uncertainties in an emission factor 

(a)  Example of  a  symmetric uncertainty of  ±30% relat ive to  the mean 
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 (b)  Example of  an asymmetric uncertainty of  -50% to +100% relat ive to the mean,  or 
a factor of  two 
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3.1.5 Causes of uncertainty 
Inventory estimates of emissions and removals differ from the true underlying value for many reasons. Some 
causes of uncertainty (e.g., sampling error or limitations on instrument accuracy) may generate well-defined, 
easily characterised estimates of the range of potential uncertainty. Other causes of uncertainty (e.g., biases) may 
be much more difficult to identify and quantify (Rypdal and Winiwarter, 2001). It is good practice to account, as 
far as possible, for all causes of uncertainties in an uncertainty analysis and clearly document if some causes of 
uncertainties have not been included.  

The inventory developer should consider eight broad causes of uncertainty1: 

• Lack of completeness: This is a case where measurement or other data are not available either because the 
process is not yet recognized or a measurement method does not yet exist. Typically, this cause can lead to 
incomplete conceptualisation, which results in bias, but can also contribute to random error depending on 
the situation. 

• Model: Models can be as simple as a constant multiplier (e.g., an emission factor) and increase in 
complexity, such as for complicated process models. The use of models to estimate greenhouse gas 
emissions and removals can introduce uncertainty, including both bias and random error, for a variety of 
reasons: 

(i) Models are a simplification of real systems and therefore are not exact. For example, computer 
programming may involve errors or approximations; model resolution may not be representative, 
and spatial and temporal coverage may not be fully representative; 

(ii) Interpolation is application of a model within a range of inputs for which the model is considered to 
be valid. However, in some cases, a ‘hidden extrapolation’ can occur when the model is evaluated 
based on combinations of values of its inputs for which validation has not been done (Cullen and 
Frey, 1999).  

(iii) Extrapolation (application of the model beyond the domain for which model predictions are known 
to be valid) can lead to uncertainty; 

(iv) Alternative formulations of the model may result in different estimates; and 

(v) Model inputs including activity data and parameters are generally approximated based on limited 
information that create additional uncertainties beyond the model formulation.  

• Lack of data: In some situations, there simply may not yet be data available that would be necessary to 
characterise a particular emission or removal. In these situations, a common approach is to use proxy (or 
surrogate) data for analogous or similar categories or to use interpolation or extrapolation as a basis for 
making estimates. 

• Lack of representativeness of data: This source of uncertainty is associated with lack of complete 
correspondence between conditions associated with the available data and the conditions associated with 
real world emissions/removals or activity. For example, emissions data may be available for situations in 
which a plant is operating at full load but not for situations involving start-up or load changes. In this case, 
the data are only partly relevant to the desired emission estimate. Lack of representativeness typically leads 
to bias. 

• Statistical random sampling error: This source of uncertainty is associated with data that are a random 
sample of finite size and typically depends on the variance2 of the population from which the sample is 
extracted and the size of the sample itself (number of data points). It can often be reduced by increasing the 
number of independent samples taken. Here, it is good practice to distinguish properly between variability 
and uncertainty, as previously defined. For purposes of uncertainty analysis of inventories, one is typically 
interested in uncertainty in the annual average at the national level, rather than the entire range of variability 
that might occur over shorter periods of time or small geographic scales. Larger sample sizes will not reduce 
the inherent variability, but will lead to narrower confidence intervals that are a basis for estimating the 
random component of uncertainty. 

                                                           
1  Further discussion can be found in Morgan and Henrion (1990) and Cullen and Frey (1999). 
2  The variance of a whole population of values is the average of the square of the difference between individual values in the 

population and the mean value. The variance of a sample drawn from a population is the sum of the squares of differences 
between values in the sample and the mean of the sample, divided by the number of values in the sample less 1. 
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• Measurement error: Measurement error, which may be random or systematic, results from errors in 
measuring, recording and transmitting information; finite instrument resolution; inexact values of 
measurement standards and reference materials; inexact values of constants and other parameters obtained 
from external sources and used in the data-reduction algorithm (e.g., default values from the IPCC 
Guidelines); approximations and assumptions incorporated in the measurement method and estimation 
procedure; and/or variations in repeated observations of the emission or removal or associated variable 
under apparently identical conditions. 

• Misreporting or misclassification: Uncertainty here may be due to incomplete, unclear, or faulty definition 
of an emission or removal. This cause of uncertainty typically leads to bias. 

• Missing data: Uncertainties may result where measurements were attempted but no value was available. An 
example are measurements that are below a detection limit. This cause of uncertainty can lead to both bias 
and random error. When measured values are below a detection limit, an upper bound on the uncertainty can 
be estimated. There are rigorous statistical techniques for dealing with non-detected data as well as other 
types of missing data, such as data that are missing at random (Cohen and Whitten, 1998; Gelfand, 1996; 
Zhao and Frey, 2004b). These techniques may involve estimation or imputation in portions of the 
distribution where data are not available.  

Particularly on the issue of extrapolation, uncertainty occurs when extrapolating from recent source and sink data 
for the purpose of estimating an inventory for a year of interest for which data are not yet available (see also 
Chapter 5, Time Series Consistency). Usually, the extrapolated estimates are reported as ‘provisional’ estimates 
and then later are updated when the relevant data become available. However, until the update occurs, the 
provisional inventory might be used. The additional uncertainty associated with extrapolation is a type of model 
uncertainty. Errors associated with extrapolation can be systematic, random, or both. If there is a history of 
extrapolations and subsequent correction, then it is possible to develop data regarding the distribution of the 
errors that have been observed in the past. If there are biases in the provisional estimates, then the mean of this 
distribution will not be zero and the biases can be quantified. This distribution would represent error in the 
ability to predict actual source and sink fluxes based upon the extrapolation methods used in the past. If the 
extrapolation methods change, then expert judgement could be used to quantify the uncertainty.  

Where a PDF for the mean can be identified, various causes of uncertainty can be quantified by statistical means. 
As noted in Section 3.2, uncertainties can be quantified by statistical analysis of empirical data, by encoding 
(quantifying) of expert judgement in the form of PDFs, or by combinations of both. However, there can be 
structural uncertainties that are not easily incorporated into a quantitative uncertainty analysis in the form of a 
PDF. Examples of structural uncertainties include possible misidentification or mis-specification of the system to 
be analysed, as well as possible problems associated with the models that are used, e.g., inappropriateness of the 
model, or model errors. These latter types of situations are typically outside the scope of statistics (ISO 1993)3, 
although probabilistic methods for dealing with model uncertainties have been proposed (e.g., Evans et al., 
1994). For example, expert judgement can be used to assign weights to alternative models.  

Table 3.1 suggests how different causes of uncertainties can be treated in an analysis. Some causes of 
uncertainties (e.g., misreporting/misclassification) may be reduced or eliminated by implementing QA/QC 
procedures and improvements in data collection and/or methodologies when identified. 

                                                           
3   There are some opportunities for addressing these sources of uncertainty.  For example, uncertainties associated with model 

error at least partly can be addressed by comparing modelled output with measured values. Depending on how modelled 
outputs compare with measurements, one can identify biases associated with the model that may vary depending on the 
type of system being modelled. 
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3.1.6 Reducing uncertainty 
Uncertainties should be reduced as far as is practicable during the process of compiling an inventory, and it is 
particularly important to ensure that the model and the data collected are fair representations of the real world. 
When focusing efforts to reduce uncertainty, priority should be given to those inputs to the inventory that have 
the most impact on the overall uncertainty of the inventory, as opposed to inputs that are of minor or negligible 
importance to the assessment as described in Chapter 4, Methodological Choice and Identification of Key 
Categories. Tools for prioritising where uncertainties should be reduced include key category analysis (see 
Chapter 4) and assessment of the contribution of uncertainties in specific categories to the total uncertainty in the 
inventory (see Section 3.2.3). Depending on the cause of uncertainty present, uncertainties could be reduced in 
seven broad ways:  

• Improving conceptualisation: Improving the inclusiveness of the structural assumptions chosen can reduce 
uncertainties. An example is better treatment of seasonality effects that leads to more accurate annual 
estimates of emissions or removals for the AFOLU Sector.  

• Improving models: Improving the model structure and parameterisation can lead to better understanding and 
characterisation of the systematic and random errors, as well as reductions in these causes of uncertainty.  

TABLE 3.1 
 TYPICAL STRATEGIES FOR DEALING WITH DIFFERENT CAUSES OF UNCERTAINTIES 

Strategy  

Causes of Uncertainty 
Evaluated 

Conceptualisation 
and Model 

Formulation 

Empirical 
and 

Statistical

Expert 
judgement

Other Comments 1 

Lack of completeness √   

Have key components of the system been 
omitted? If so, what is the quantifiable or 
nonquantifiable effect on systematic error? 
Proper QA/QC should help avoid this. 

Model  
(bias and random errors) √ √ √ 

Is the model formulation complete and 
accurate? What is the uncertainty in model 
predictions based on validation of the model? 
What is the estimate of model accuracy and 
precision based on expert judgment if 
statistical validation data are not available? 

Lack of data   √ 

If data are lacking, can expert judgment be 
used to make inferences based on analogous 
(surrogate, proxy) data or theoretical 
considerations? May be related to lack of 
completeness and model uncertainty. 

Lack of 
representativeness of 
data 

√ √ √  

Statistical random 
sampling error  √  

E.g., statistical theory for estimating 
confidence intervals based on variability in 
the data and sample size. 

Measurement error: 
random component  √ √  

Measurement error: 
systematic component 
(bias) 

√  √ QA/QC and verification may provide insight. 

Misreporting or 
Misclassification  √ √ Proper QA/QC should help avoid this. 

Missing data  √ √ 

Statistical or judgment-based approaches to 
estimating uncertainty because of non-
detected measurements or other types of 
missing data. 

1 It is good practice to apply procedures for QA/QC and verification prior to or combining with developing uncertainty estimates 
according to the guidance in Chapter 6. The QA/QC and verification procedures provide a useful basis for preventing mistakes and for 
identifying (and preferably correcting) biases. Furthermore, QA/QC should prevent or help detect and correct misreporting and 
misclassification errors, and there should be iteration between uncertainty analysis and QA/QC if application of the uncertainty methods 
uncovers potential QA/QC problems. 
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• Improving representativeness: This may involve stratification or other sampling strategies, as set out in Section 
3.2.1.2. This is particularly important for categories in the agriculture, forestry and land use parts of an 
inventory, but also applies elsewhere, e.g., wherever different technologies are operating within a category. For 
example, continuous emissions monitoring systems (CEMS) can be used to reduce uncertainty for some 
sources and gases as long as the representativeness is guaranteed. CEMS produces representative data at the 
facilities where it is used, but in order to be representative of an entire source category, CEMS data must be 
available for a random sample or an entire set of individual facilities that comprise the category. When using 
CEMS both concentration and flow will vary, requiring simultaneous sampling of both attributes.  

• Using more precise measurement methods: Measurement error can be reduced by using more precise 
measurement methods, avoiding simplifying assumptions, and ensuring that measurement technologies are 
appropriately used and calibrated. See Chapter 2, Approaches to Data Collection. 

• Collecting more measured data: Uncertainty associated with random sampling error can be reduced by 
increasing the sample size. Both bias and random error can be reduced by filling in data gaps. This applies 
both to measurements and surveys. 

• Eliminating known risk of bias: This is achieved by ensuring instrumentation is properly positioned and 
calibrated (see Section 2.2 in Chapter 2), models or other estimation procedures are appropriate and 
representative as indicated by the decision trees and other advice on methodological choice in sectoral 
volumes, and by applying expert judgements in a systematic way.  

• Improving state of knowledge: Generally, improving the understanding of the categories and the processes 
leading to emissions and removals can help to discover, and correct for, problems of incompleteness. It is 
good practice to continuously improve emissions and removal estimates based on new knowledge (see 
Chapter 5, Time Series Consistency).  

3.1.7 Implications of methodological choice 
Choice of methodological tier for emissions and removals estimation can affect the uncertainty analysis in two 
different ways. Firstly, moving to higher tier inventory methods should typically reduce uncertainties, provided 
the higher tier methods are well implemented, because they should reduce bias and better represent the 
complexity of the system. Secondly, moving to higher tier methods may result in increased estimates of 
uncertainty in some circumstances. Often, this increase in the estimated uncertainty does not actually represent a 
decrease in knowledge; rather, it typically reveals a more realistic acknowledgment of the limitations of existing 
knowledge. This may occur where there was an incomplete accounting of the greenhouse gas emissions in the 
lower tier method, or where application of higher tier methods reveals additional complexity and uncertainties 
that were not fully apparent in the lower tier method. This really means that the uncertainty was underestimated 
previously and moving to the higher tier method in reality produces a more accurate estimate of uncertainty. In 
some cases, an increase in uncertainty may occur for one inventory development method versus another because 
each method has different data requirements. For example, sometimes aggregate estimates of emissions are more 
accurate because they are based upon or can be compared to easily measured values, whereas disaggregated 
estimates may require additional assumptions for which data or the capability to verify estimates are not as 
readily available. The appropriate level of disaggregation can differ within and between categories. 

 

3.2 QUANTIFYING UNCERTAINTIES 
After identifying the causes of uncertainties associated with inventory estimates, the inventory compiler should 
collect the appropriate information to develop national, and category-specific estimates of uncertainty at the 95 
percent confidence interval. Ideally, emission and removal estimates and uncertainty ranges would be derived from 
category-specific measured data. Since it may not be practical to measure every emission source or sink category in 
this way, other methods for quantifying uncertainty may be required. The pragmatic approach for producing 
quantitative uncertainty estimates is to use the best available estimates, which are often a combination of measured 
data, published information, model outputs, and expert judgement. The sectoral guidance in Volumes 2 to 5 of these 
Guidelines provides default uncertainty estimates for use with the methods described in this chapter.  

Although uncertainties determined from measured data are often perceived to be more rigorous than uncertainty 
estimates based on models, and similarly, model-based estimates are often perceived as more rigorous than those 
based on expert judgement, the actual hierarchy depends on the category and/or country-specific circumstances. 
In particular it is good practice to ensure that uncertainties are representative for the application in the inventory 
and national circumstances and includes all causes of uncertainty listed in Table 3.1. 
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This section is organised into three major subsections that are interrelated. Section 3.2.1 focuses on sources of data 
and information that can be used to identify and, where possible, quantify uncertainties. Section 3.2.2 focuses on 
methods for attempting to prevent or correct for biases and for quantifying the random component of uncertainty in 
the inputs to models. Section 3.2.3 presents two Approaches for combining uncertainties in inputs in order to arrive 
at uncertainty estimates for single emission and removal categories and the total emission inventory.   

3.2.1 Sources of data and information 
This section identifies sources of data and information for acquiring quantitative estimates of uncertainty. There 
are three broad sources of data and information: information contained in models; empirical data associated with 
measurements of emissions, and activity data from surveys and censuses; and quantified estimates of 
uncertainties based upon expert judgement.  

3.2.1.1 UNCERTAINTIES ASSOCIATED WITH MODELS 
A model is a representation of a real-world system. Modelling typically involves choices regarding what to 
include versus what to exclude, as well as choices regarding the level of detail (or aggregation) for those 
phenomena that are included in the model. Thus, the model typically does not exactly mimic the real-world 
system. The structure of the model is often thought of in terms of the equations used and in terms of inputs and 
outputs of the model (Kirchner, 1990). More generally, a model may be thought of as a hypothesis regarding 
how the real-world system behaves. Thus, there are two key considerations in model uncertainty: (1) has the 
correct, most relevant real-world system been identified, and have conceptualisations been constructed in a way 
that properly serve as the basis for model development; and (2) is the model an accurate representation of the 
chosen system. Conceptualisation uncertainty describes the lack of proper identification of the system for which 
a model should be developed and of the conceptualisation(s) of interest. Model uncertainty describes the lack of 
proper model development relative to the intended system and conceptualisation(s). 

Conceptualisation Uncertainty: The failure to specify properly appropriate and relevant inventory structural 
assumptions is known as conceptualisation uncertainty (Cullen and Frey, 1999) and typically results in a bias in 
estimates. The causes of conceptualisation uncertainty typically include descriptive errors, errors in professional 
judgement, and incomplete specification of the assumptions (EPA, 1997).  

Model uncertainty: Uncertainty arises from imperfections in how the chosen conceptualisations are modelled. 
Sometimes these imperfections occur because of limitations of available data. A model may have other sources 
of structural errors, such as failure to properly take into account the sensitivity of emissions to ambient 
conditions or other factors. Modelling can be a basis for estimating emissions or removals for specific categories 
as well as for managing data in the entire inventory. In some cases, model uncertainty can be significant. It is 
typically poorly characterised and may not be characterised at all.  

3.2.1.2 EMPIRICAL DATA FOR SOURCES AND SINKS AND ACTIVITY 
This section describes sources of empirical data, and their implications for uncertainty, and is relevant to 
measured emissions data, data obtained from literature, and activity data. 

UNCERTAINTY ESTIMATES OBTAINED FROM MEASURED 
EMISSIONS/REMOVALS DATA 
This section assumes that good practices are used to obtain the data, as outlined in Chapters 2 and Chapter 6, 
Quality Assurance/Quality Control and Verification. When estimating uncertainty from measured emissions data, 
considerations include: (a) representativeness of the data and potential for bias; (b) precision and accuracy of the 
measurements; (c) sample size and inter-individual variability in measurements, and their implications for 
uncertainty in mean annual emissions/removals; (d) inter-annual variability in emissions/removals and whether 
estimates are based upon an average of several years or on the basis of a particular year.  

Representative sampling (or sampling design) implies that measurements are made for typical system 
characteristics, operating conditions, time periods, and/or geographic areas of interest. The precision and 
accuracy of individual measurements will depend upon the equipment and protocols used to make the 
measurements. The sample size will often be a trade-off between the desirability for more data and the cost of 
making measurements. In some cases, such as for continuous monitoring, the sample size may be large enough 
to effectively serve as a census, rather than a partial sample, of data. In general the variability in the data from 
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one short-term time period (e.g., hour, day, week) to another will depend upon the characteristics of the category. 
If the goal is to develop an estimate of annual average emissions or removals, then judgement may be required as 
to whether measurements conducted over a short term are representative of rates over a longer time period and, if 
not, whether the measurement programme can be expanded to additional time periods. For example, flux 
measurements (data on emission factors) should represent the entire year. In the AFOLU Sector this is crucial, 
since emissions are highly dependent on climatic conditions which typically are not the same for the growing 
period and winter period. 

Figure 3.4 Example of uncertainty in emission measurements and mean emission rate 

(a) Fitted distribution for inter-unit variability in emissions;  
(b) Uncertainty in fitted distribution because of small sample size (n=20);  
(c) Uncertainty in mean emission rate.  

(a) Inter-Unit Variability 
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(c) Uncertainty in Mean 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For a second example, suppose that one wishes to estimate the uncertainty in national annual emissions for a 
particular category, such as emissions from gasoline-fuelled passenger automobiles. The rate of emission varies 
from one individual vehicle to another, illustrated by the inter-unit variability shown in Figure 3.4(a). Because 
the distribution for inter-vehicle variability is estimated from a small, finite sample of data that could be subject 
to random sampling error, there is uncertainty regarding what the true but unknown population distribution for 
inter-vehicle variability might be, as suggested in Figure 3.4(b). There is also intra-unit variability in emissions 
over time for any particular vehicle. However, for purposes of the national annual estimate, the focus is on the 
combined contribution of all such vehicles to total emissions during a year long time frame. In this case, we are 
not interested in the range of inter-vehicle variability, but rather in the range of uncertainty for the average 
emission rate among all such vehicles (e.g., Figure 3.4(c)). Often, the range of uncertainty is substantially less 
than that for inter-vehicle (or, more generally, inter-unit) variability (e.g., Frey and Zheng, 2002). Therefore, 
when the objective of an analysis requires that the assessment be based upon uncertainty in the mean, rather than 
variability among individual units, it is important to properly focus the analysis on the former. Failure to do so 
can lead to a misleading over-estimate of the range of uncertainty.  

In the case of continuous monitoring of point emissions, or a periodic sampling scheme that captures typical 
activity patterns, there may be adequate and representative empirical data upon which to base an estimate of 
uncertainty in mean annual emissions. For example, if there are several years of such data, then the average 
annual emissions over several years can be quantified, and the distribution of annual emissions from year-to-year 
can be used to assess a 95 percent confidence interval in the annual average. Provided that the annual average is 
based upon data from many individual categories, it is unlikely that there will be correlation of errors between 
years. This has implications for estimation of uncertainty in trends, as discussed in Section 3.3, Uncertainty and 
Temporal Autocorrelation. However, for diffuse categories, such as agricultural crops, there could be high 
autocorrelations if they are determined by climate, and this could affect the representativeness of the data for a 
particular assessment purpose.  

Where continuous emission measurements are not available, there may be periodic emission measurements 
available from which to estimate uncertainty. If these measurements can be linked to representative activity data, 
which of course is crucial, then it is possible to determine a site-specific emission factor, together with an 
associated PDF to represent annual emissions. This can be a complex task. To achieve representativeness it may 
be necessary to partition (or stratify) the data to reflect typical operating conditions. For example:  

• Start-up and shut down can give different emission rates relative to activity data. In this case, the data should 
be partitioned, with separate emission factors and probability density functions derived for steady state, 
start-up and shut down conditions. 

• Emission factors can depend on load. In this case, the total emissions estimation and uncertainty analysis 
may need to be stratified to take account of load, expressed, for example, as percentage of full capacity. This 
could be done by regression analysis and scatter plots of the emission rate against likely controlling 
variables (e.g., emissions versus load) with load becoming part of the activity data needed. 
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• Measurements taken for another purpose may not be representative. For example, methane measurements 
made for safety reasons at coal mines and landfills may not necessarily reflect total emissions because they 
may have been made only when methane emissions were suspected of being high, as a compliance check. In 
such cases, the ratio between the measured data and total emissions should be estimated for the uncertainty 
analysis.  

• Systematic short-term measurements might not adequately sample episodic events (such as rainfall) that 
initiate large fluxes of short duration that may nevertheless account for a major fraction of annual emissions. 
If the sampling strategy misses a significant proportion of these events, then the annual average emission 
estimate could be substantially biased. Nitrous oxide emissions from agricultural soils can fall into this class.  

If the data sample size is large enough, standard statistical goodness-of-fit tests can be used, in combination with 
expert judgement, to help in deciding which PDF to use for describing variability in the data (partitioned if 
necessary) and how to parameterise it. However, in many cases, the number of measurements from which to make 
an inference regarding uncertainty will be small. Theoretically, as long as there are three or more data points, and 
they are a random representative sample of the variable of interest, it is possible to apply statistical techniques to 
estimate the values of the parameters of many two-parameter distributions (e.g., normal, lognormal) that can be 
used to describe variability in the data set (Cullen and Frey, 1999, pp. 116-117). While it is commonly perceived 
that one must have approximately 8 or 9 data points, and preferably more, as the basis for fitting a distribution to 
data, the more fundamental and key assumption that must be made in order to fit a distribution to data is that the 
data are a random, representative sample. If this assumption is valid, then the sample size influences the width of 
the confidence intervals for any statistic estimated from the sample. As a matter of preference, many analysts may 
prefer to have a minimum sample size, but this preference is not related to the key issue of representativeness. Data 
do not become more representative only because of an increase in sample size.  

With small sample sizes, there will be large uncertainties regarding the parameter estimates that should be 
reflected in the quantification of uncertainty for use in the inventory. Furthermore, it is typically not possible to 
rely on statistical methods to differentiate goodness-of-fit of alternative parametric distributions when sample 
sizes are very small (Cullen and Frey, 1999, pp. 158-159). Therefore judgement will be required in selecting an 
appropriate parametric distribution to fit to a very small data set. In situations where the coefficient of variation 
(standard deviation divided by the mean) is less than approximately 0.3 and is known with reasonable confidence, 
a normal distribution may be a reasonable assumption (Robinson, 1989). When the coefficient of variation is 
large and the variable is non-negative, then a positively skewed distribution such as a lognormal may be 
appropriate. Guidance on the selection of distributions is elaborated in Sections 3.2.2.2 and 3.2.2.4 below. 

In cases with large data sets, the uncertainty in the mean can often be estimated as plus or minus 1.96 (or 
approximately 2) multiples of the standard error, where the standard error is the sample standard deviation 
divided by the square root of the sample size. This calculation is based on an assumption of a normal distribution. 
However, in cases of a small number of samples/measurements that will often be the case in determining 
emission factors, the multiple of 1.96 is replaced with a “coverage factor,” referred to as k, that is obtained from 
the student’s t-distribution. For small sample sizes, k is greater than 1.96 for a 95 percent interval, but 
asymptotically approaches 1.96 as the sample size increases to approximately 30 or more. However, in cases 
where the uncertainty in the mean is not a symmetric distribution, then numerical methods such as bootstrap 
simulation can be used instead to obtain the confidence interval for the mean. 

Where an annual estimate is based on an average over several years, the uncertainty in the average represents the 
uncertainty in an average year and not the inter-annual variability. If the objective is to estimate uncertainty in 
source or sink fluxes for a specific year, then good practice is to make a best estimate of the annual total and to 
quantify uncertainty associated with the models and data used consistent with the one year time period. If, 
instead, an averaged annual estimate is used, then the uncertainty in the estimate when applied to a specific year 
would be described by the inter-annual variability (including measurement errors) relative to the mean, whereas 
when applied to an average year it would be the confidence interval of the average. 

UNCERTAINTY ESTIMATES FOR EMISSION FACTORS AND OTHER 
PARAMETERS OBTAINED FROM PUBLISHED REFERENCES 
When site-specific data are unavailable, inventories should where possible be based on emission factors derived 
from published studies specific to the conditions in that country. Where sufficient country-specific information is 
unavailable, information may be derived from other published studies if those studies are reflective of conditions 
in the country, or emission factors or other estimation parameters may be drawn from sectoral Volumes 2 to 5 of 
these Guidelines. Factors provided in the sectoral volumes have been derived for circumstances that are judged 
to be typical. There are uncertainties associated with the original measurements, as well as with the use of the 
factors in circumstances other than those associated with the original measurements.  
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Where published emission factors or other estimation parameters are used, the associated uncertainties should be 
estimated from: 

• Original research including country-specific data: For measurement-based emission factors, the data from the 
original measurement programme or experiments may enable an assessment of the uncertainty and possibly the 
PDF. Well-designed measurement programmes and experiments will provide sample data that cover the range 
of types of plants and their maintenance, size and age, so that the factors and their uncertainties can be used 
directly. In other cases, expert judgement, taking into account the causes of uncertainty identified in Table 3.1, 
will be needed to extrapolate from the measurements to the full population of plants in that particular category 
(detail on how to elicit expert judgement is elaborated in Section 3.2.1.3).  

• Default Values from Guidelines: For most emission factors and other estimation parameters, sectoral 
guidelines provide default uncertainty estimates that should be used in the absence of other information. 
Unless clear evidence to the contrary is available, the PDFs are assumed to be normal. However, the 
inventory compiler should evaluate the representativeness of the default for its own national circumstances. 
If the default is judged to be not representative and the category is important to the inventory, improved 
assumptions based upon expert judgement should be developed, assuming sufficient original research is 
unavailable to derive country-specific emission factors or other estimation parameters.    

Default methods represent a compromise between the level of detail that would be needed to create the most 
accurate estimates for each country, and the input data likely to be available or readily obtainable in most 
countries. Default methods are often simplifications, and may introduce large uncertainties into a national 
estimate. Within many of the default methods different optional levels of detail are provided to reflect whether 
users have detailed data for their national situation or have to rely strictly on general default values. There may 
be considerable variation in how well the general default values represent conditions of the actual population of 
activities in a particular country. For example, the uncertainty relating to default carbon emission factors for the 
global population of fossil fuel combustion sources may be characterised as quite low (5-10 percent) in the IPCC 
methodology; but national experts for a particular country may know that the characteristics of such fuels in their 
country vary from global average values. In such a country, use of default values would introduce a larger 
uncertainty, and thus it is good practice to use country-specific estimates where possible. Thus the applicability 
of default uncertainty values should always be considered.  

Another example is the use of default values to estimate country-specific emissions and removals of the AFOLU 
Sector. Uncertainty could be high unless the suitability of the available default parameters to a country’s 
circumstances is known. The application of default data in a country or region that has very different characteristics 
from those of the category data can lead to large systematic (bias) errors in estimates of emissions or removals.  

UNCERTAINTIES ASSOCIATED WITH ACTIVITY DATA 
Activity data are often more closely linked to economic activity than are emission factors are. However, unlike 
emission factor data, there is typically no statistical sample of alternative activity data estimates readily available 
to fit distributions and estimate uncertainty. There are often well established price incentives and fiscal 
requirements for accurate accounting of economic activity. Activity data therefore tend to have lower 
uncertainties and a lower correlation between years than emission factor data. Activity data are often collected 
and published regularly by national statistical agencies, which may have already assessed the uncertainties 
associated with their data as part of their data collection procedures. These previously developed uncertainty 
estimates can be used to construct PDFs. This information will not necessarily have been published, so it is 
recommended to contact the statistical agencies directly. Since economic activity data are not usually collected 
for the purpose of estimating greenhouse gas emissions and removals, it is good practice to assess the 
applicability of the uncertainty estimates before using them.   

There are several approaches that may be helpful in assessing the uncertainty of activity data in particular 
circumstances: 

Activity data based on complete samples (censuses): Census data are activity data that are based, in principle, on 
counting every instance of a particular activity. Census typically includes both systematic and random errors. 
Systematic errors arise through systematic undercounting or double counting. Random errors are typically the 
sum of a range of commonplace errors. Random errors usually can be expected to be normally distributed and 
serially uncorrelated. Because activity data are usually collected by the same people, using the same processes, 
for each observation, systematic errors are likely to take approximately the same value each year. There are 
several approaches to identifying the potential uncertainty of activity data for complete samples. These 
approaches are often an integrated part of a QA/QC plan: 

• To check for the size of random errors, look for fluctuations over time, and differential fluctuations in series 
that ought to be highly correlated with the data of interest. 
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• To check for bias errors, cross-check the data of interest with other, related information. One might, for 
instance, look up and down the supply chain for fuels, comparing coal production, coal import/export, and 
reported consumption. Or, one might study activities for which data are collected independently but which 
ought to be highly correlated with the data of interest, for instance reported fuel input vs. electricity output. 
One might also look at activity data of different frequencies (e.g., monthly, annual), if they are collected 
using different approaches. 

• Interpretation of statistical differences, within, for instance, national energy data are an example of cross-
checking. The comparison between energy-related carbon dioxide emissions derived from the IPCC 
reference approach is a formal cross-check with emissions estimates derived from other sources. 

Census-based activity data are often ‘precise but inaccurate’ in the taxonomy shown in Figure 3.2, the random 
errors are small, but there may be larger bias errors. Cross-checking can suggest upper and lower bounds for 
possible bias errors, and sometimes will permit an actual estimate of the bias error. A possible bias error lurking 
within these bounds may often be characterised as a truncated uniform distribution: cross-checking shows that 
the unobservable true value must lie within a particular range, but there may be no reason to think any point 
within that range is more or less likely. However, because the bias errors in activity data are likely to be highly 
correlated, the difference between the reported value and the unknown true value is likely to be about the same 
every year, and this characteristic should be taken into account when estimating trend uncertainty. 

Activity data based on random samples: Some kinds of activity data are derived from sample surveys, for 
instance consumer surveys, land use surveys, or forest cover surveys. In these cases, the data will be subject to 
sampling errors, which will be normally distributed and uncorrelated over time. The agency conducting the 
sample will normally be able to advise on sampling error. If this information is unavailable, it may be possible to 
identify or infer the sample and population sizes and calculate sampling error directly.  

3.2.1.3 EXPERT JUDGEMENT AS A SOURCE OF INFORMATION 
In many situations, directly relevant empirical data are not available for sources, sinks, or activity inputs to an 
inventory. In such situations, a practical solution to dealing with the absence of adequate data is to obtain well-
informed judgements from domain experts regarding best estimates and uncertainties of inputs to the inventory. 
Chapter 2, Approaches to Data Collection, discusses the basis of formal expert elicitation protocols. In particular, 
Section 2.2 and Annex 2A.1 provides a general treatment of expert judgment and elicitation. Annex 2A.1 
provides details regarding expert elicitation protocol. In this chapter, methods for encoding uncertainties based 
upon expert judgement are recommended in Section 3.2.2.3. 

3.2.2 Techniques for quantifying uncertainties 
This section discusses key techniques for quantifying uncertainties, building upon the sources of data and 
information described in the previous section. This section focuses on uncertainty in models, statistical analysis of 
empirical data, identifying and selecting PDFs, and methods for encoding expert judgement regarding uncertainties.  

3.2.2.1 UNCERTAINTY IN MODELS 
Conceptualisation and model uncertainty can be more difficult to address than the uncertainties in the inputs to a 
model. The most significant concern with conceptualisation and model uncertainties is that they have the 
potential to produce substantial bias in emissions and removal estimates. Approaches to deal with these causes of 
uncertainties should aim therefore to evaluate and correct for known or suspected biases. 

It is clear that proper specification of a conceptualisation is set by the 2006 Guidelines, the interpretation of 
which depends on input from experts and stakeholders who are familiar with the systems for which emissions or 
removals are to be estimated. A conceptualisation should be complete, within the scope of these Guidelines, in 
enumerating all key components without producing redundancy or overlap, and it should be applicable to the 
geographic scope, time period, and agreed set of greenhouse gases covered.  

Model uncertainty is typically dealt with in several ways. One approach is to simply acknowledge the limitations 
of models that are used and to qualitatively discuss the implications for uncertainty in estimates obtained using 
the model. However, qualitative caveats are not useful in providing quantitative insight regarding the possible 
magnitude of uncertainty, and by themselves are not considered good practice. There are at least three major 
approaches for estimating uncertainty: (1) comparison of model results with independent data for purposes of 
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verification; (2) comparison of the predictions of alternative models; and (3) expert judgement regarding the 
magnitude of model uncertainty. These approaches can be used in combination. 

Comparison of model predictions with independent data can be used to assess the precision and accuracy of the 
model, and is an important aspect of verification, as discussed in Chapter 6. Such comparisons can reveal 
whether the model systematically over- or under-predicts the quantities of interest. However, it can be difficult to 
obtain data for direct verification of a model. Nonetheless, sometimes these types of comparisons are the best or 
only available ones, and might help in identifying unexplained inconsistencies that, in turn, might imply model 
bias that could be corrected for by parameter choice.  

In other cases, there may be alternative models that could be used to make predictions for the same quantities of 
interest. To the extent that the alternative models are based upon different data or theoretical assumptions, a 
comparison of model predictions may provide useful insight regarding the magnitude of disagreement. The fact 
that two or more models disagree is not conclusive proof that either of the models is wrong, since both or all of 
the models could be wrong.  

Based on the results of the comparison of the model used for inventory development with independent data 
and/or alternative models, it may be desirable to revise model assumptions or parameters to reduce the bias. The 
remaining uncertainty can then be quantitatively assessed by expert judgement about how uncertainties in the 
data used to drive the model and the model parameters combine, or more formally by Monte Carlo analysis.  

3.2.2.2 STATISTICAL ANALYSIS OF EMPIRICAL DATA 
Statistical analysis of empirical data is an approach that can be employed to quantify uncertainty in inventories, 
emission factors and other estimation parameters, and it can be summarised as the following major steps (e.g., 
Frey and Zheng, 2002):  

Step 1: Compilation and evaluation of a database for emission factors, activity data and other estimation 
parameters. Such data typically represent variability. 

Step 2: Visualisation of data by developing empirical distribution functions (in which the data are plotted 
vertical according to their rank order and are plotted horizontally according to their numerical value – 
see Cullen and Frey, 1999, for details) for individual activity and emission factors. 

Step 3: Fitting, evaluation, and selection of alternative PDF models for representing variability in activity data 
and emission factor data. 

Step 4: Characterisation of uncertainty in the mean of the distributions for variability. If the standard error of the 
mean is small enough (as discussed in Section 3.2.1.2), a normality assumption can be made regardless of 
the sample size or skewness of the data. If the standard error of the mean is large, then either a 
lognormality assumption can be made, or other methods can be employed (e.g., bootstrap simulation) to 
estimate uncertainty in the mean. Publicly available software tools could be used to assist with the latter. 

Step 5: Once uncertainties have been appropriately specified, these can be used as input to a probabilistic 
analysis for purposes of estimating uncertainty in total emissions. 

Step 6: Sensitivity analysis is recommended to determine which of the input uncertainties to an inventory 
contributes most substantially to the overall uncertainty, and to prioritise efforts to develop good estimates 
of these key uncertainties (see Chapter 4, Methodological Choice and Identification of Key categories). 

Step 3 typically involves; identification of candidate parametric PDFs to fit to the data, estimation of the 
parameters of such distributions, and evaluation of goodness-of-fit (e.g., Cullen and Frey, 1999). Rigorous 
methods can be applied to data sets that contain values below the detection limit of a measurement method, 
called non-detects (e.g., Zhao and Frey, 2004a). Distributions can be used in combination even when the data 
contain two or more subgroups that cannot otherwise be separated (e.g., Zheng and Frey, 2004).  

3.2.2.3 METHODS FOR ENCODING EXPERT JUDGEMENTS 
When empirical data are lacking or are not considered fully representative for all causes of uncertainty (Table 3.1), 
expert judgement may be necessary for estimating uncertainty. This section focuses on methods for encoding 
(quantifying) expert judgement regarding uncertainty in the form of PDFs. Encoding is the process of converting an 
expert’s judgement regarding uncertainty into a quantitative PDF. Chapter 2 provides guidance on the definition of 
an expert, considerations in choosing expert(s), sources of possible bias in expert judgement and how to avoid them, 
and a recommended protocol for expert elicitation. In the context of uncertainties, a key goal of expert elicitation is 
to characterise the state of knowledge regarding possible values of a particular variable. Therefore, it is neither 
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necessary nor desirable to attempt to force consensus among experts; rather, it is more useful to take into account 
the full range of values when obtaining judgements from two or more experts for the same variable. 

The goal of the process of eliciting (obtaining) expert judgement is to develop a PDF taking into account 
relevant information such as: 

• Is the category similar to others? How is the uncertainty likely to compare? 

• How well is the emission or removal process understood? Have all possible sources or sinks been identified? 

• Are there physical limits on how much the emission factor or other estimation parameter can vary? Mass 
balance considerations or other process data may place an upper limit on emissions or removal rates. 

• Are the emissions and removal estimates consistent with independent data that might be used to help verify 
the inventory?  

A key concern with expert elicitation is to overcome the typical heuristic biases of availability, 
representativeness, and anchoring and adjustment (as described in Chapter 2, Annex 2A.1, Protocol for Expert 
Elicitation) to avoid the potential problem of obtaining an ‘overconfident’ estimate of uncertainty. 
‘Overconfidence’ refers to a situation in which the estimated range of uncertainty is too narrow. It is desirable to 
avoid overconfidence so as not to underestimate the true uncertainty. It is good practice to use a formal 
elicitation protocol, such as the Stanford/SRI protocol that is detailed in Chapter 2, Annex 2A.1. In particular, 
these protocols include several steps prior to the actual encoding step for the purpose of familiarising the expert 
with the purpose and methods of the elicitation and encouraging the expert to think about all relevant data, 
models, theories, and other inference approaches. With this background, the expert is in a better position to make 
an unbiased estimate of uncertainty. 

The method to be used for encoding should depend upon the expert’s familiarity with PDFs. Some commonly 
used methods are: 

• Fixed Value: Estimate the probability of being higher (or lower) than an arbitrary value and repeat, typically 
three or five times. For example, what is the probability that an emission factor would be less than 100? 

• Fixed Probability: Estimate the value associated with a specified probability of being higher (or lower). For 
example, what is the emission factor such that there is only a 2.5 percent probability (or 1 in 40 chance) that 
the emission factor could be lower (or higher) than that value. 

• Interval Methods: This method focuses on the median and the quartiles. For example, the expert would be 
asked to choose a value of the emission factor such that it is equally likely that the true emission factor 
would be higher or lower than that value. This yields the median. Then the expert would divide the lower 
range into two bins such that he or she felt it to be equally likely (25 percent probability) that the emission 
factor could be in either bin, and this would be repeated for the other end of the distribution. Finally, either 
fixed probability or fixed value methods could be used to get judgements for extreme values. 

• Graphing: The expert draws his/her own distributions. This should be used cautiously because some experts 
are overconfident about their knowledge of PDFs.  

An example of an expert elicitation that results in encoding (quantification) of a PDF is given in Box 3.1. 

Sometimes the only available expert judgement will consist of a range, perhaps quoted together with a most 
likely value. Under these circumstances the following rules are considered good practice: 

• Where experts only provide an upper and a lower value, assume that the probability density function is 
uniform and that the range corresponds to the 95 percent confidence interval. 

• Where experts also provide a most likely value (which is often likely to be the same as the point estimate 
used in developing the inventory), assume a triangular probability density function using the most likely 
values as the mode and assume that the upper and lower values each exclude 2.5 percent of the population. 
The distribution needs not to be symmetrical. Other reasonable distribution choices, such as a normal or 
lognormal distribution, can be made given appropriate justifications. 

Some other sources of information on expert elicitation include Spetzler and von Holstein (1975), Morgan and 
Henrion (1990), Merkhofer (1987), Hora and Iman (1989), and NCRP (1996).  

The subjective nature of expert judgement increases the need for quality assurance and quality control 
procedures to improve comparability of uncertainty estimates between countries. Therefore expert judgements 
should be documented as part of the national archiving process, and inventory compilers are encouraged to apply 
QA/QC procedures to expert judgements, particularly for key categories (see Chapter 6). 

Documentation requirements for expert judgement are discussed in Annex 2A.1 of Chapter 2. 
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BOX 3.1 
A BRIEF EXAMPLE OF DETAILED EXPERT JUDGEMENT 

Suppose that the inventory compiler has identified an expert for emissions of CH4 from power 
plants and wishes to obtain his/her judgement regarding the uncertainty in annual average 
emissions for this category. As part of the motivation step, the elicitor has explained to the expert 
the general purpose of the analysis and the expert elicitation protocol to be used. In the structuring 
step, the elicitor works with the expert to set up the specific elicitation protocol. For example, 
although all the inventory compiler may want is an annual average uncertainty estimate, the expert 
may tell the elicitor that he/she prefers to provide judgements separately for start-up, part load, and 
full load operation of the plant, and that these three judgements should be weighted in order to 
come up with the combined uncertainty for an annual average. After structuring the problem, the 
elicitor then reviews the expert information relevant to the assessment, such as measurements that 
may have been made on similar types of power plants or other combustion sources. In the 
elicitation step, the elicitor might ask the expert for an upper value such that there is only a one in 
40 chance (2.5 percent probability) of obtaining a higher value. After getting the value, the elicitor 
asks the expert to explain the logical basis for this estimate, such as the scenario of operation at the 
plant that might lead to such a high emission rate. Then the process might be repeated for the lower 
end of the range, and perhaps for the median, 25th percentile, and 75th percentile. A mixture of 
fixed value and fixed probability questions might be used. The elicitor should plot these on a graph 
so that any inconsistencies can be identified and corrected during the time available with the 
expert. In the verification step, the elicitor would make sure that the expert is comfortable that their 
judgement has been well represented. The elicitor might also see how the expert would react to the 
possibility of values outside of the interval for which judgements were provided, so as to ensure 
that the expert is not being overconfident. 

3.2.2.4 GOOD PRACTICE GUIDANCE FOR SELECTING PROBABILITY 
DENSITY FUNCTIONS 

Prior to selecting a PDF, it is good practice to account for biases in the data to the extent possible. As noted 
previously, data collection and QA/QC procedures can assist in preventing or correcting biases. For example, if 
national statistics on timber harvest exist, but it is also suggested that these statistics have a bias of 5 percent, 
then the mean estimate can be adjusted by 5 percent prior to estimating the random component of the uncertainty. 
It is good practice that adjustments for bias should be done in developing the point estimate emission inventory. 
Another consideration is that the amount of bias can change over time as data measurement or collection 
procedures change, or as the geographic and temporal scope of data collection changes. Thus, the bias 
corrections may be different for different years.  

However, to the extent that biases are believed or known to exist in data even after QA/QC procedures have been 
applied, then either empirical or judgment based techniques can be applied to account for the bias. Apparent 
biases can arise in probabilistic analysis for at least two reasons: (1) a fitted distribution may have a mean that is 
different from the most likely value used in the point estimate of the inventory (e.g., a skewed triangular 
distribution based on expert judgment); and (2) the mean value of a prediction from a nonlinear model that has 
uncertain inputs can be different from the point estimate obtained from the same model if only point estimates of 
the mean values of the inputs are used. Thus, there are some types of biases that may be revealed only after an 
uncertainty analysis has been done. 

TYPES OF PROBABILITY DENSITY FUNCTIONS 
There are many PDFs outlined in the statistical literature that often represent particular real situations. The 
choice of a particular type of PDF depends, at least in part, on the domain of the function (e.g., can it have both 
positive or negative values, or only non-negative values), the range of the function (e.g., is the range narrow or 
does it cover orders-of-magnitude), the shape (e.g., symmetry), and processes that generated the data (e.g., 
additive, multiplicative). These considerations are elaborated below in a brief discussion of many commonly 
used distributions of practical importance. Examples of such functions and the situations they represent are4: 

                                                           
4 Further information on methods for developing distributions based upon statistical analysis of data are described and 

illustrated by Cullen and Frey (1999). Other useful references include Hahn and Shapiro (1967), Ang and Tang (1975) 
D’Agostino and Stephens (1986), Morgan and Henrion (1990), and U.S.EPA (1996, 1997, 1999). Some examples of 
probabilistic analyses applied to emission inventories are given by Frey and Zheng (2002) and Frey and Zhao (2004).  
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• The normal distribution is most appropriate when the range of uncertainty is small, and symmetric relative 
to the mean. The normal distribution arises in situations where many individual inputs contribute to an 
overall uncertainty, and in which none of the individual uncertainties dominates the total uncertainty. 
Similarly, if an inventory is the sum of uncertainties of many individual categories, however, none of which 
dominates the total uncertainty, then the overall uncertainty is likely to be normal. A normality assumption 
is often appropriate for many categories for which the relative range of uncertainty is small, e.g.,  fossil fuel 
emission factors and activity data. 

• The lognormal distribution may be appropriate when uncertainties are large for a non-negative variable and 
known to be positively skewed. The emission factor for nitrous oxide from fertiliser applied to soil provides 
a typical inventory example. If many uncertain variables are multiplied, the product asymptotically 
approaches lognormality. Because concentrations are the result of mixing processes, which are in turn 
multiplicative, concentration data tend to be distributed similar to a lognormal. However, real-world data 
may not be as tail-heavy as a lognormal distribution. The Weibull and Gamma distributions have 
approximately similar properties to the lognormal but are less tail-heavy and, therefore, are sometimes a 
better fit to data than the lognormal. 

• Uniform distribution describes an equal likelihood of obtaining any value within a range. Sometimes the 
uniform distribution is useful for representing physically-bounded quantities (e.g., a fraction that must vary 
between 0 and 1) or for representing expert judgement when an expert is able to specify an upper and lower 
bound. The uniform distribution is a special case of the Beta distribution. 

• The triangular distribution is appropriate where upper and lower limits and a preferred value are provided 
by experts but there is no other information about the PDF. The triangular distribution can be asymmetrical.  

• Fractile distribution is a type of empirical distribution in which judgements are made regarding the relative 
likelihood of different ranges of values for a variable, such as illustrated in Figure 3.5. This type of 
distribution is sometimes useful in representing expert judgement regarding uncertainty. 

Figure 3.5 Examples of some commonly used probability density function models 

 (e.g., based on Frey and Rubin, 1991) 
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ISSUES TO CONSIDER WHEN DEVELOPING THE PROBABILITY DENSITY 
FUNCTION 
The following describes how inventory compilers can satisfy the principles of comparability, consistency and 
transparency in emissions inventories when selecting a PDF: 

• Where empirical data are available, the first consideration should be whether a normal distribution would be 
appropriate as a representation of uncertainty. If the variable must be non-negative, then the standard 
deviation of the normal distribution should not exceed 30 percent of the mean value to avoid an 
unacceptably high probability of erroneously predicting negative values. Truncation of the lower tail of the 
normal distribution should generally be avoided, because it changes the mean and other statistics of the 
distribution. Typically, a better alternative to truncation is to find a more appropriate distribution that is a 
better fit to the data. For example, for positively skewed data that must be non-negative, lognormal, Weibull, 
or Gamma distributions often can provide an acceptable fit; however, an empirical distribution of the data 
can also be used;  

• Where expert judgement is used, the distribution function adopted might typically be normal or lognormal, 
supplemented by uniform, triangular, or fractile distributions as appropriate; 

• Other distributions may be used where there are compelling reasons, either from empirical observations or 
from expert judgement supported by theoretical argument. 

The issue of identifying which function best fits a set of data can be difficult. One approach is to use the square 
of the skewness and the kurtosis to look for functional forms that can fit the data (Cullen and Frey, 1999). 
Kurtosis and skewness should only be applied if there are sufficient data from which to estimate these values. 
The function is then fitted to the data by least squares fit or other means. Tests are available to assess the 
goodness-of-fit, including the chi-squared test and others (Cullen and Frey, 1999). In many cases, several 
functions will fit the data satisfactorily within a given probability limit. These different functions can have 
radically different distributions at the extremes where there are few or no data to constrain them, and the choice 
of one function over another can systematically change the outcome of an uncertainty analysis. Cullen and Frey 
(1999) reiterate the advice of previous authors in these cases that it must be knowledge of the underlying physical 
processes that governs the choice of a probability function. What the tests provide, in the light of this physical 
knowledge, is guidance on whether this function does or does not satisfactorily fit the data. 

In order to use empirical data as a basis for developing PDFs, the first critical step is to determine if the data are 
a random, representative sample, in the case of a sample from a population. Some key questions to ask regarding 
the data include: 

• Are the data representative of the conditions pertaining to the emission or activity factors specific to national 
circumstances? For example, in AFOLU, are the data representative of management practices and other 
national circumstances? 

• Are the data a random sample? 

• What is the averaging time associated with the data set, and is it the same as for the assessment (which will 
be for annual emissions in a given year)? For example, emissions data might be measured during a short 
time period and not for an entire year. Thus, expert judgment may be required in order to extrapolate short 
term data to a longer term basis. 

If the data are a random, representative sample, then the distribution can be established directly using classical 
statistical techniques, even if the sample size is small. Ideally the available data will represent an annual average 
but may be necessary to convert data using an appropriate averaging time. For normal distributions the 95 
percent confidence interval would be plus or minus twice the estimated standard deviation of the population. In 
other cases, the data may represent an exhaustive census of the sum of all activity (e.g., total energy use for a 
particular fuel). In this case, information regarding errors in the measurements or survey instruments would form 
a basis for assessing uncertainty. The range of uncertainty of activity data might be bounded by using 
independent methods or consistency checks. For example, fuel consumption data can be compared with 
estimates of production, including estimates of production via different methods. 

There is a distinction between uncertainty in the mean and variability in the data for situations in which the data 
represent intra-country variability within a category. Since the goal is to estimate annual average emissions at the 
level of an individual country, data that represent intra-country variability should be averaged over the entire 
geographic area of the country, and uncertainty in this average should be assessed and used as the basis for the 
inventory. Conversely, if international data are available at an aggregate level, without supporting details as to 
how such data can be disaggregated by country, there is a mismatch in scale that is more difficult to correct. 
Typically, in this case, the uncertainty will tend to increase as the geographic scope decreases, i.e., if the number 
of categories included decreases and if site-specific emissions data are not available. Thus uncertainty ranges 
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that are developed for aggregated international data may have to be widened for applicability to individual 
countries. In the absence of any empirical basis for estimating the relative range of uncertainty at the country 
level versus the aggregated international level, expert judgement can be used. 

For a sample of an underlying population, the need is to evaluate whether the data are random and representative 
of the population. If so, classical statistical methods can be used to define the distribution. If not, then some 
combination of data analysis and elicitation of expert judgement regarding distributions will be required. In the 
former case, Cullen and Frey (1999) suggest exploration of the data set using summary statistics and graphics to 
evaluate essential features (e.g., central tendency, range of variation, skewness). The insights obtained by 
examining the data, combined with knowledge of the processes that generated the data, should be considered 
when selecting a mathematical or numerical representation of the distribution for input into Approaches 1 or 2. 
(See Section 3.2.3.) 

If a parametric distribution is selected as a candidate for fitting to the data set, techniques such as ‘maximum 
likelihood estimation5’ or the ‘method of matching moments6’ can be used to estimate the parameters of the 
distribution. The goodness-of-fit of the distribution can be evaluated in numerous ways, including comparison of 
the fitted cumulative distribution function (CDF) with the original data set, probability plots, and goodness-of-fit 
tests (e.g., Cullen and Frey, 1999). It is important that the selection of a parametric distribution to represent a 
data set should be based not solely upon goodness-of-fit tests, but upon similarities in processes that generated 
the data versus the theoretical basis for a distribution (e.g., Hahn and Shapiro, 1967).  

If the data are averaged over less than one year, it may be necessary to extrapolate the uncertainty over the year. 
Consider an example in which the data set represents variability in daily average emissions measurements for a 
particular category. One approach, described in detail by Frey and Rhodes (1996), is to fit a parametric 
distribution to the data set for daily variability, use a numerical technique known as bootstrap simulation to 
estimate uncertainty in the parameters of the distribution, and use Monte Carlo simulation to simulate 
randomised annual averages of the emission factor. Using bootstrap simulation, the uncertainty in the sampling 
distribution for the parameters of the fitted distribution can be simulated (e.g., Efron and Tibshirani, 1993; Frey 
and Rhodes, 1996; Frey and Bammi, 2002).  

DEPENDENCE AND CORRELATION AMONG INPUTS 
This section provides a brief overview of issues pertaining to dependence and correlation among inputs. More 
details on this topic can be found in Morgan and Henrion (1990), Cullen and Frey (1999), and Smith et al. (1992). 

When setting up a probabilistic analysis it is preferable to define the model so that the inputs are as statistically 
independent as possible. For example, rather than to try to estimate activity data for many subcategories for 
which data are derived at least in part by differences, it may be better to assign uncertainties to better known 
aggregate measures of activity. For example, residential fuel use might be estimated as the difference between 
total consumption and usage in the transportation, industrial, and commercial sectors. In this case, the estimate of 
uncertainty in residential fuel use is negatively correlated with the uncertainties in fuel use in the other 
subcategories, and may even be very large compared to the uncertainty in total consumption. Therefore, rather 
than trying to estimate uncertainties separately for each subcategory, it may be more practical to estimate 
uncertainty for aggregated categories, for which good estimates and cross-checks may be available.  

Dependencies, if they exist, may not always be important to the assessment of uncertainties. Dependencies 
among inputs will matter only if the dependencies exist between two inputs to which the uncertainty in the 
inventory is sensitive and if the dependencies are sufficiently strong. In contrast, weak dependencies among 
inputs, or strong dependencies among inputs to which the uncertainty in the inventory is insensitive, will be of 
relatively little consequence to the analysis. Of course, some interdependencies are important and failure to 
account for those relationships can lead to misleading results. Positive correlations between inputs tend to 
increase the range of uncertainty in the output, whereas negative correlations tend to decrease the range of 
uncertainty in the output. However, positive correlations in uncertainties when comparing two years as part of 
trend analysis will decrease uncertainty in the trend. 

Techniques can be considered for incorporating dependencies into the analysis including:  

• stratifying or aggregating the categories to minimise the effect of the dependencies; 

                                                           
5  The method of maximum likelihood selects as estimates the values of the parameters that maximise the likelihood of the 

observed sample (e.g., Holland and Fitz-Simons, 1982).  
6  The method of moments finds estimators of unknown parameters by equating corresponding sample and population 

moments. The method is easy to employ and provides consistent estimators.  In many cases, the method of moments 
estimators are biased (Wackerly, Mendenhall III and Scheaffer, 1996; pp. 395-397).  
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• modelling the dependence explicitly;  

• simulating correlation using restricted pairing methods (that are included in many software packages);  

• use of resampling techniques in cases where multivariate datasets are available;  

• considering bounding or sensitivity cases (e.g., one case assuming independence and another case assuming 
complete positive correlation); and 

• time series techniques can be used to analyse or simulate temporal autocorrelation. 

As a simple example, Zhao and Frey (2004a) evaluated the implications of whether or not emission factor 
uncertainty estimates for different categories obtained from the same data source should be considered as 
dependent or independent among the categories, and found that it did not matter to the overall inventory 
uncertainty. Of course, this result is specific to the particular case studies and should be tested in other 
applications. As a more complex example, given in Box 3.2, Ogle et al. (2003) accounted for dependencies in 
tillage management factors, which were estimated from a common set of data in a single regression-type model, 
by determining the covariance7 between factors for reduced tillage and no-till management, and then using that 
information to generate tillage factor values with appropriate correlation during a Monte Carlo simulation8. One 
should consider the potential for correlations among input variables and focus on those that would be likely to 
have the largest dependencies (e.g., applying management factors for the same practice in different years of an 
inventory, or correlations among management activities from one year to the next). 

BOX 3.2 
EXAMPLE OF MONTE CARLO UNCERTAINTY ASSESSMENT DEALING WITH CORRELATIONS 

Ogle et al. (2003) performed a Monte Carlo analysis to assess uncertainty in a Tier 2 inventory that 
addressed changes in soil C attributed to land use and management of agricultural lands in the 
United States. Management factors were estimated from about 75 published studies using linear 
mixed effect models. PDFs were derived for the management effect at a depth of 30 cm following 
20 years after its implementation. Reference stocks were estimated using a National Soil Survey 
Characterisation Database, which contained pedon data collected by United States Department of 
Agriculture (USDA). PDFs were based on the mean and variance from about 3700 pedons, taking 
into account the spatial autocorrelation of pedon locations due to clumped distribution patterns. 
The land use and management activity data were recorded in the USDA National Resources 
Inventory, which tracks agricultural land management at more than 400,000 point locations in the 
United States, along with supplemental data on tillage practices provided by the Conservation 
Technology and Information Center (CTIC). The Monte Carlo analysis was implemented using a 
commercially available software package and code developed by U.S. analysts. Their analysis 
accounted for dependencies between estimation parameters that were derived from common 
datasets. For example factors for set-aside lands and land use change between cultivated and 
uncultivated conditions were derived from a single regression analysis using an indicator variable 
for set-asides, and hence were interdependent. Their analysis also accounted for dependencies in 
the land use and management activity data. When simulating input values, factors were considered 
completely dependent from the base and current year in the inventory because the relative 
influence of management on soil C was assumed to be the same regardless of the year when a 
practice was implemented. As such, factors were simulated with identical random seed values. In 
contrast, reference carbon stocks for the various soil types in each climate region were simulated 
independently, with different random seeds, because stocks for each region were constructed from 
separate independent sets of data. U.S. analysts chose to use 50,000 iterations for their Monte 
Carlo analysis. This was satisfactory because they were only reporting one digit after the decimal, 
and simulation results were considered relatively stable at that level of significance. Ogle et al. 
(2003) estimated that mineral soils gained an average of 10.8 Tg C yr-1 between 1982 and 1997, 
with a 95 percent confidence interval ranging from 6.5 to 15.3 Tg C yr-1. In contrast, managed 
organic soils lost an average of 9.4 Tg C yr-1, ranging from 6.4 to 13.3 Tg C yr-1. Further, Ogle et 
al. (2003) found that the variability in management factors contributed 90 percent of the overall 
uncertainty for the final estimates of soil carbon change. 

                                                           
7  The covariance between two variables (x and y) measures the mutual dependence between them. The covariance of a 

sample consisting of n pairs of values is the total of the products of the deviation of individual x values from the mean x 
value times the deviation of the corresponding individual y value from the mean of the y values, divided by (n-1). 

8  More discussion and examples of these types of methods are given in Cullen and Frey (1999), Morgan and Henrion (1990), 
and USEPA (1996).  These documents also contain reference lists with citations to relevant literature.  
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3.2.3 Methods to combine uncertainties 
Once the uncertainties in activity data, emission factor or emissions for a category have been determined, they 
may be combined to provide uncertainty estimates for the entire inventory in any year and the uncertainty in the 
overall inventory trend over time. Results from sampling theory, as described in Section 2.5.1, Measurement-
Based Tier 3 Inventories, of Chapter 2 in Volume 4 for the AFOLU Sector, may be used in cases where 
sampling is applied for direct measurement of, e.g., carbon stock changes. In these situations, sampling theory 
provides an estimate of the uncertainty in emissions/removals for a given category, without need to separately 
characterise an activity and emission factor.  

Two approaches for the estimation of combined uncertainties are presented in the following sections: Approach 
1 uses simple error propagation equations, while Approach 2 uses Monte Carlo or similar techniques. Either 
Approach may be used for emission sources or sinks, subject to the assumptions and limitations of each 
Approach and availability of resources. Complementary step by step explanation of the statistical calculation 
methods of Approaches is given in Sections 3.7.1 and 3.7.2.   

Biases should be addressed prior to applying either Approach 1 or 2, as set out in Section 3.2.2.1. For example, as 
discussed in Section 3.2.2.1, an assessment of bias, and potential disagreements among modelling approaches, 
should be conducted, and any action identified to improve the inventory estimate should be taken. Approaches 1 
and 2 focus on quantifying the random component of the uncertainty of the inventory results where known sources 
of bias have been removed. The inventory estimates may still include unknown bias and in the analysis all errors 
are assumed behaving as random (Winiwarter and Rypdal, 2001). 

3.2.3.1 APPROACH 1: PROPAGATION OF ERROR 
Approach 1 is based upon error propagation and is used to estimate uncertainty in individual categories, in the 
inventory as a whole, and in trends between a year of interest and a base year. The key assumptions, 
requirements, and procedures are described here.  

Approach 1 should be implemented using Table 3.2, Approach 1 Uncertainty Calculation, that can be set up on 
commercial spreadsheet software. The table is completed at the category level using uncertainty ranges for 
activity data and emission factors consistent with the sectoral good practice guidance9. Different gases should be 
entered separately as CO2 equivalents.  

KEY ASSUMPTIONS OF APPROACH 1 
In Approach 1 uncertainty in emissions or removals can be propagated from uncertainties in the activity data, 
emission factor and other estimation parameters through the error propagation equation (Mandel, 1984, 
Bevington and Robinson, 1992). If correlations exist, then either the correlation can be included explicitly or 
data can be aggregated to an appropriate level such that correlations become less important. Approach 1 also 
theoretically requires that the standard deviation divided by the mean value is less than 0.3. In practice, however, 
the approach will give informative results even if this criterion is not strictly met and some correlations remain. 
Approach 1 assumes that the relative ranges of uncertainty in the emission and activity factors are the same in 
the base year and in year t. This assumption is often correct or approximately correct. If any of the key 
assumptions of Approach 1 do not apply, then either an alternative version of Approach 1 can be developed (e.g., 
see Section 3.4) or Approach 2 can be used instead. 

Where the standard deviation divided by the mean is greater than 0.3 the reliability of Approach 1 can be 
improved. The section ‘Dealing with Large and Asymmetric Uncertainties in the Results of Approach 1’ in this 
section describes how to do this.  

KEY REQUIREMENTS OF APPROACH 1 
In order to quantify uncertainty using Approach 1, estimates of the mean and the standard deviation for each 
input are required, as well as the equation through which all inputs are combined to estimate an output. The 
simplest equations include statistically independent (uncorrelated) inputs.  

                                                           
9  Where estimates are derived from models, enter the uncertainty associated with the activity data used to drive the model, 

and enter the uncertainty associated with the model parameters instead of the emission factor uncertainty. It may be 
necessary to use expert judgement, or error propagation calculations associated with the model structure.  If it is 
impractical to separate the uncertainty estimate obtained from a model for a category into separate activity and emission 
factor components, then enter the total uncertainty for the category in the emission factor column and assign zero 
uncertainty to the activity factor column. 
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Once the uncertainties in the categories have been determined, they may be combined to provide uncertainty 
estimates for the entire inventory in any year and the uncertainty in the overall inventory trend over time. As 
discussed further below, these uncertainty estimates can be combined using two convenient rules for combining 
uncorrelated uncertainties under addition and multiplication.  

PROCEDURE OF APPROACH 1 
The Approach 1 analysis estimates uncertainties by using the error propagation equation in two steps. First, the 
Equation 3.1 approximation is used to combine emission factor, activity data and other estimation parameter 
ranges by category and greenhouse gas. Second, the Equation 3.2 approximation is used to arrive at the overall 
uncertainty in national emissions and the trend in national emissions between the base year and the current year. 

Uncertainty of an Annual Estimate 
The error propagation equation10 yields two convenient rules for combining uncorrelated uncertainties under 
addition and multiplication: 

• Where uncertain quantities are to be combined by multiplication, the standard deviation of the sum will be 
the square root of the sum of the squares of the standard deviations of the quantities that are added, with the 
standard deviations all expressed as coefficients of variation, which are the ratios of the standard deviations 
to the appropriate mean values. This rule is approximate for all random variables. Under typical 
circumstances this rule is reasonably accurate as long as the coefficient of variation is less than 
approximately 0.3. This rule is not applicable to division. 

A simple equation (Equation 3.1) can then be derived for the uncertainty of the product, expressed in 
percentage terms: 

EQUATION 3.1 
COMBINING UNCERTAINTIES – APPROACH 1 – MULTIPLICATION  

22
2

2
1 ... ntotal UUUU +++=  

Where: 

Utotal  =  the percentage uncertainty in the product of the quantities (half the 95 percent confidence 
interval divided by the total and expressed as a percentage); 

Ui  =  the percentage uncertainties associated with each of the quantities. 

• Where uncertain quantities are to be combined by addition or subtraction, the standard deviation of the sum 
will be the square root of the sum of the squares of the standard deviations of the quantities that are added 
with the standard deviations all expressed in absolute terms (this rule is exact for uncorrelated variables). 

Using this interpretation, a simple equation (Equation 3.2) can be derived for the uncertainty of the sum,  
expressed in percentage terms: 

EQUATION 3.2 
COMBINING UNCERTAINTIES – APPROACH 1 – ADDITION AND SUBTRACTION  
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Where: 

Utotal  =  the percentage uncertainty in the sum of the quantities (half the 95 percent confidence 
interval divided by the total (i.e., mean) and expressed as a percentage). This term 
‘uncertainty’ is thus based upon the 95 percent confidence interval; 

xi and Ui =   the uncertain quantities and the percentage uncertainties associated with them, 
respectively. 

The greenhouse gas inventory is principally the sum of products of emission factors, activity data and other 
estimation parameters. Therefore, Equations 3.1 and 3.2 can be used repeatedly to estimate the uncertainty of the 
                                                           
10 As discussed more extensively in Annex 1 of the Good Practice Guidance and Uncertainty Management (GPG2000, IPCC, 

2000), and in Annex I of the Revised 1996 IPCC Guidelines (Reporting Instructions) (1996 IPCC Guidelines, IPCC, 1997). 
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total inventory. In practice, uncertainties found in inventory categories vary from a few percent to orders of 
magnitude, and may be correlated. This is not consistent with the assumptions of Equations 3.1 and 3.2 that the 
variables are uncorrelated, and with the assumption of Equation 3.2 that the coefficient of variation is less than 
about 30 percent, but under these circumstances, Equations 3.1 and 3.2 may still be used to obtain an 
approximate result.  

Uncertainty in the Trend 
Trend uncertainties are estimated using two sensitivities: 

• Type A sensitivity: the change in the difference in overall emissions between the base year and the current 
year, expressed as a percentage, resulting from a 1 percent increase in emissions or removals of a given 
category and gas in both the base year and the current year.  

• Type B sensitivity: the change in the difference in overall emissions between the base year and the current 
year, expressed as a percentage, resulting from a 1 percent increase in emissions or removals of a given 
category and gas in the current year only. 

The Type A and Type B sensitivities are merely intermediate variables that simplify the calculation procedure. 
The results of the analysis are not constrained to a change of only one percent, but instead depend upon the range 
of uncertainty for each category. 

Conceptually, Type A sensitivity arises from uncertainties that affect emissions or removals in the base year and 
the current year equally, and Type B sensitivity arises from uncertainties that affect emissions or removals in the 
current year only. Uncertainties that are fully correlated between years will be associated with Type A 
sensitivities, and uncertainties that are not correlated between years will be associated with Type B sensitivities. 
Emission factor (and other estimation parameters) uncertainties will tend to have Type A sensitivities, and 
activity data uncertainties will tend to have Type B. However, this association will not always hold and it is 
possible to apply Type A sensitivities to activity data, and Type B sensitivities to emission factors to reflect 
particular national circumstances. Type A and Type B sensitivities are simplifications introduced for the 
approximate analysis of correlation. 

Once the uncertainties introduced into the national inventory by Type A and Type B sensitivities have been 
calculated, they can be summed using the error propagation equation (Equation 3.1) to give the overall 
uncertainty in the trend. 

Worksheet for Approach 1 Uncertainty Calculation 
The columns of Table 3.2, Approach 1 Uncertainty Calculation, are labelled A to M and contain the following 
information, of which the derivation of key equations is given in Section 3.7.1 in Section 3.7, Technical 
Background Information. 

• A and B show the IPCC category and greenhouse gas. 

• C and D are the inventory estimates in the base year and the current year11 respectively, for the category and 
gas specified in Columns A and B, expressed in CO2 equivalents. 

• E and F contain the uncertainties for the activity data and emission factors respectively, derived from a 
mixture of empirical data and expert judgement as previously described in this chapter, entered as half the 
95 percent confidence interval divided by the mean and expressed as a percentage. The reason for halving 
the 95 percent confidence interval is that the value entered in Columns E and F corresponds to the familiar 
plus or minus value when uncertainties are loosely quoted as ‘plus or minus x percent’, so expert judgements 
of this type can be directly entered in the spreadsheet. If uncertainty is known to be highly asymmetrical, 
enter the larger percentage difference between the mean and the confidence limit. 

• G is the combined uncertainty by category derived from the data in Columns E and F using the error 
propagation equation (Equation 3.2). The entry in Column G is therefore the square root of the sum of the 
squares of the entries in Columns E and F.  

• H shows the uncertainty in Column G as a percentage of total national emissions in the current year. The 
entry in each row of Column H is the square of the entry in Column G multiplied by the square of the entry 
in Column D, divided by the square of total at the foot of Column D. The value at the foot of Column H is 
an estimate of the percentage uncertainty in total national net emissions in the current year, calculated from 
the entries above using Equation 3.1. This total is obtained by summing the entries in Column H and taking 
the square root. 

                                                           
11 The current year is the most recent year for which inventory data are available. 
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• I shows how the percentage difference in emissions between the base year and the current year changes in 
response to a one percent increase in category emissions/removals for both the base year and the current 
year. This shows the sensitivity of the trend in emissions to a systematic uncertainty in the estimate (i.e., one 
that is correlated between the base year and the current year). This is the Type A sensitivity as defined above.  

• J shows how the percentage difference in emissions between the base year and the current year changes in 
response to a one percent increase in category emissions/removals in the current year only. This shows the 
sensitivity of the trend in emissions to random error in the estimate (i.e., one, that is not correlated, between 
the base year and the current year). This is the Type B sensitivity as described above.  

• K uses the information in Columns I and F to show the uncertainty introduced into the trend in emissions by 
emission factor uncertainty, under the assumption that uncertainty in emission factors is correlated between 
years. If the user decides that the emission factor uncertainties are not correlated between years then the 
entry in Column J should be used in place of that in Column I and the result multiplied by √2.  

• L uses the information in Columns J and E to show the uncertainty introduced into the trend in emissions by 
activity data uncertainty, under the assumption that uncertainty in activity data is not correlated between 
years. If the user decides that the activity data uncertainties are correlated between years then the entry in 
Column I should be used in place of that in Column J and the √2 factor does not then apply.  

• M is an estimate of the uncertainty introduced into the trend in national emissions by the category in 
question. Under Approach 1, this is derived from the data in Columns K and L using Equation 3.2. The entry 
in Column M is therefore the sum of the squares of the entries in Columns K and L. The total at the foot of 
this column is an estimate of the total uncertainty in the trend, calculated from the entries above using the 
error propagation equation. This total is obtained by summing the entries in Column M and taking the 
square root. The uncertainty in the trend is a percentage point range relative to the inventory trend. For 
example, if the current year emissions are 10 percent greater than the base year emissions, and if the trend 
uncertainty at the foot of Column M is reported as 5 percent, then the trend uncertainty is 10%±5% (or from 
5% to 15% increase) for the current year emissions relative to the base year emissions. 

• Explanatory footnotes go at the bottom of the table and give documentary references of uncertainty data 
(including measured data) or other relevant comments. 

An example of the spreadsheet with all the numerical data completed is provided in Section 3.6, Approach 1 
uncertainty calculation example. Details of this approach are given in Section 3.7.1 and derivation of the 
uncertainty in the trend is in Section 3.7.2. 
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Note A: If only total uncertainty is known for a category (not for emission factor and activity data 
separately), then: 

 • If uncertainty is correlated across years, enter the uncertainty into Column F, and enter 0 in 
Column E; 

 • If uncertainty is not correlated across years, enter the uncertainty into Column E, and enter 0 
in Column F 

Note B: 

 
Absolute value of: 

( )
( ) 100

C
CD100

CC01.0
CC01.0DD01.0

•
∑

∑ ∑−−•
∑+•

∑ ∑+•−+•

i

ii

ix

ixix  

 Where:  

Cx, Dx = entry from row x of the table from the corresponding column, representing a specific 
category 

∑ iC , ∑ iD = Sum over all categories (rows) of the inventory of the corresponding column 

Note C: 

 

In the case where no correlation between emission factors is assumed, sensitivity B should be 
used and the result multiplied by √2:  

 2FJK ••= xxx  

Note D: 

 

In the case where correlation between activity data is assumed, sensitivity A should be used and 
the √2 is not required:   

 xxx EIL •=  

 

 

DEALING WITH LARGE AND ASSYMMETRIC UNCERTAINTIES 
Section 3.7.3 provides details on how the results from Approach 1 can be interpreted if the relative range of 
uncertainty is large for a quantity that must be non-negative. The error propagation method that is the basis for 
Approach 1 works well if the uncertainties are relatively small, meaning that the standard deviation divided by 
the mean is less than 0.3. If the uncertainties are larger, Approach 1 may continue to be used, providing 
informative results. However without any corrections, this approach will tend to underestimate uncertainty of the 
multiplicative (or quotient) terms. Furthermore, if the relative uncertainties are large for non-negative quantities, 
then the uncertainty ranges are typically asymmetric, and Approach 1 does not quantify such asymmetry. A 
second option is to use Approach 2, however this may not be always feasible. A third option is to use Approach 
1 with corrections. For example, as discussed in more detail later in Section 3.7.3, an uncertainty of -65% to 
+126% relative to the mean might be estimated to be simply plus or minus 100 percent. This example can be 
properly addressed with some corrections to the results of Approach 1. The advantage of using the correction 
applied to Approach 1 (where applicable), rather than Approach 2, is that relatively simple spreadsheet-based 
calculation methods can be used and it is not necessary to use specialised Monte Carlo simulation software.  

3.2.3.2 APPROACH 2: MONTE CARLO SIMULATION 
The Monte Carlo analysis is suitable for detailed category-by-category assessment of uncertainty, particularly 
where uncertainties are large, distribution is non-normal, the algorithms are complex functions and/or there are 
correlations between some of the activity sets, emissions factors, or both.  

In Monte Carlo simulation, pseudo-random samples of model inputs are generated according to the PDFs 
specified for each input. The samples are referred to as ‘pseudo-random’ because they are generated by an 
algorithm, referred to as a pseudo-random number generator (PRNG), that can provide a reproducible series of 
numbers (according to the random seeds assigned as input to the PRNG) but for which any series has properties 
of randomness. Details are available elsewhere (e.g., Barry, 1996). If the model has two or more inputs, then 
random samples are generated from the PDFs for each of the inputs, and one random value for each input is 
entered into the model to arrive at one estimate of the model output. This process is repeated over a desired 
number of iterations to arrive at multiple estimates of the model output. The multiple estimates are sample values 
of the PDF of the model output. By analyzing the samples of the PDF for the model output, the mean, standard 
deviation, 95 percent confidence interval, and other properties of the output PDF can be inferred. Because Monte 
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Carlo simulation is a numerical method, the precision of the results typically improves as the number of 
iterations is increased. More details regarding the methodology of Monte Carlo simulation, as well as regarding 
similar techniques such as Latin Hypercube sampling (LHS), are given by Hahn and Shapiro (1967); Ang and 
Tang (1984); and Morgan and Henrion (1990).  

KEY ASSUMPTIONS OF APPROACH 2 
Under Approach 2, the simplifying assumptions required for Approach 1 can be relaxed. Thus, numerical 
statistical techniques, particularly the Monte Carlo technique, as they can be generally applied, are more 
appropriate than Approach 1 for estimating uncertainty in emissions/removals (from uncertainties in activity 
measures and emission factors/estimation parameters) when: 

• uncertainties are large; 

• their distribution are non-Gaussian;  

• algorithms are complex functions; 

• correlations occur between some of the activity data sets, emission factors, or both; 

• uncertainties are different for different years of the inventory. 

 

KEY REQUIREMENTS OF APPROACH 2 
Monte Carlo simulation requires the analyst to specify PDFs (see Fishman, 1996) that reasonably represent each 
model input for which the uncertainty is quantified. The PDFs may be obtained by a variety of methods, as 
described in Section 3.2.2.4 including statistical analysis of data or expert elicitation. A key consideration is to 
develop the distributions for the input variables to the emission/removal calculation model so that they are based 
upon consistent underlying assumptions regarding averaging time, location, and other conditioning factors 
relevant to the particular assessment (e.g., climatic conditions influencing agricultural greenhouse gas emissions). 

Monte Carlo analysis can deal with probability density functions of any physically possible shape and width, as well as 
handling varying degrees of correlation (both in time and between source/sink categories). Monte Carlo analysis can 
deal with simple models (e.g., emission inventories that are the sum of sources and sinks, each of which is estimated 
using multiplicative factors) as well as more complex models (e.g., the first order decay for CH4 from landfills).  

PROCEDURES OF APPROACH 2 
The principle of Monte Carlo analysis is to select random values of emission factor, activity data and other 
estimation parameters from within their individual probability density functions, and to calculate the corresponding 
emission values. This procedure is repeated many times, using a computer, and the results of each calculation run 
build up the overall emission probability density function. Monte Carlo analysis can be performed at the category 
level, for aggregations of categories or for the inventory as a whole. Statistical software packages are readily 
available – some of which include Monte Carlo algorithms that are very user-friendly12. 

Like all methods, Monte Carlo analysis only provides satisfactory results if it is properly implemented. This 
requires the analyst to have scientific and technical understanding of the inventory. Of course, the results will 
only be valid to the extent that the input data, including any expert judgements, are sound.  

The Monte Carlo approach consists of four clearly defined steps shown in Figure 3.7. Only the first of these 
requires effort from the user, the remainder being handled by the software package. The emission inventory 
calculation, the PDFs, and the correlation values should be set up in the Monte Carlo package. The software 
performs the subsequent steps. In some cases, the inventory compiler may decide to set up its own programme to 
run a Monte Carlo simulation; this can be done using statistical software. The Section, ‘Choosing a simulation 
technique and sample size’ below contains a short discussion of various software packages.  

                                                           
12 Winiwarter and Rypdal (2001), Eggleston et al. (1998) and Monni et al. (2004) provide examples of Monte Carlo analysis 

applied to national greenhouse gas inventories to estimate uncertainties both in overall emissions and emissions trends. 
Another example of the use of Monte Carlo analysis is given in McCann et al. (1994).  More detailed descriptions and 
applications of this method are presented in Bevington and Robinson (1992), Manly (1997), Morgan and Henrion (1990), 
and Cullen and Frey (1999). A brief example of the application of Monte Carlo analysis is provided in Box 3.2 based on 
Ogle et al. (2003).    
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Figure 3.6 Illustration of Monte Carlo method 
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Step 1: Specify category uncertainties. This includes estimation parameters and activity data, their associated 
means and PDFs, and any correlations. The uncertainties can be assessed following the guidance in Sections 
3.2.1 and 3.2.2. For guidance on assessment of correlations, see ‘Dependence and correlation among inputs’ in 
this section and Box 3.2. 

Step 2: Select random variables. Select input values. Input values are the estimates applied in the inventory 
calculation. This is the start of the iterations. For each input data item, a number is randomly selected from the 
PDF of that variable.  

Step 3: Estimate emissions and removals. The variables selected in Step 2 are used to estimate annual 
emissions and removals based on input values. Correlations of 100 percent are easy to incorporate, and good 
Monte Carlo packages allow other correlations to be included. Since the emission calculations should be the 
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same as those used to estimate the national inventory, the Monte Carlo process could be fully integrated into the 
annual emission estimates.  

Step 4: Iterate and monitor results.  Iterate and monitor results. The calculated total from Step 3 is stored, and the 
process then repeats from Step 2. The results from the repetitions are used to calculate the mean and the PDF.  

APPROACH 2 UNCERTAINTIES IN TRENDS 
The Approach 2 Monte Carlo method can be used to estimate uncertainties in the trend as well as in the absolute 
emission value in a given year. The procedure is a simple extension of that described in the previous section.  

The trend is defined here as the percentage difference13 between the base year and the year of interest (year t). 
Therefore, the Monte Carlo analysis needs to be set up to estimate both years simultaneously. The following 
steps show the procedure. 

Step 1: Specify source/sink category uncertainties. Determine the probability density functions for emission 
factors, activity data and other estimation parameters. This is the same process as described above except that it 
needs to be done for both the base year and the current year, and relationships between the data need to be 
considered. For many categories, the same emission factor will be used for each year (i.e., the emission factors 
for both years are 100 percent correlated). In these cases, one distribution is described and the value selected 
from it is used for each year in step 3. Changes in the technologies or practices will alter the emission factor over 
time. In this case, two emission factors should be used, that have a lower or zero correlation. If the emission 
factors contain a random element or vary unpredictably from year to year, then separate emission factors should 
also be used (e.g., with fossil fuel carbon content that can change according to the market supply of the fuel and 
also contains its own uncertainty). Generally, uncertainty in activity data are assumed to be uncorrelated between 
years, and so two distributions should be input, even if their parameters are the same, so that two different 
random selections from these distributions will be generated in step 3. The computer package used may well 
enable other correlations to be set up and these capabilities could be used if sufficient information is available. 
However, this will probably be necessary in only a few cases.  

Step 2: Select random variables. The computer program will proceed as previously described, taking into 
account of any correlation between probability density functions (PDF). Figure 3.7, below, shows the calculation 
scheme for trend analysis. 

Step 3: Estimate Emissions. As in the previous description, the variables selected in Step 2 will be used to 
estimate the total emissions.  

Step 4: Results. The emissions total calculated in Step 3 is stored in a data file. The process then repeats from 
Step 2 until there is adequate convergence of the results. Considerations for this are the same as described above. 
A range of results is estimated at the same time including total and sectoral emissions/removals for the base year, 
total and sectoral emissions/removals for year t, and the percentage differences (trends) between these for the 
total and any sectors of interest.  

                                                           
13 percentage difference = (value in year t - value in base year) / value in base year 
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Figure 3.7 Calculation scheme for Monte Carlo analysis of the absolute emissions and the 
trend of a single category, estimated as emission factor times an activity rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHOOSING A SIMULATION TECHNIQUE AND SAMPLE SIZE 
Several commercially available software tools can be used to perform Monte Carlo simulation. These tools can 
be stand-alone or used as add-ins to commonly used spreadsheet programs. Many software tools offer an option 
of different sampling methods, including random Monte Carlo simulation and variations of Latin Hypercube 
Sampling (LHS), which can produce ‘smoother’ looking model output distributions for sample sizes of only a 
few hundred samples. The disadvantage of using LHS is that one must decide ahead of time how many iterations 
to use. This is because two or more LHS simulations cannot be combined since they will use overlapping strata, 
leading to difficulties in interpreting results. In some cases, LHS can yield underestimates of the higher moments 
of PDFs, since the stratification method also can preclude clustering of very high or low values as can occur in 
random data sets. The overall suggestion is to use random Monte Carlo simulation as the default method, 
because it will give flexibility to continue a random simulation to larger and larger simulation sample sizes if 
necessary until the model output distribution converges14 .  

                                                           
14 Cullen and Frey (1999) provide more information on the comparison of LHS and Monte Carlo simulation (pp. 207-213).  
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The number of iterations can be determined either by setting the number of model runs, a priori, such as 10,000 and 
allowing the simulation to continue until reaching the set number, or by allowing the mean to reach a relatively 
stable point before terminating the simulation. For example, when the estimate for the 95 percent confidence range 
is determined to within ± 1%, then an adequately stable result has been found. This can be checked by plotting a 
frequency plot of the estimates of the emission. This plot should be reasonably smooth (see Figure 3.8).  

Another alternative is to assess the precision of the current number of replicates based on the standard errors of 
the percentiles that were used to construct 95 percent confidence intervals. If the range of the confidence 
intervals for each percentile (2.5 and 97.5) is less than the reported precision, then the number of iterations 
should be adequate (e.g., emissions are reported values to a single digit after the decimal and the percentile 
confidence intervals are less than 0.1, such as 0.005). Therefore, the Monte Carlo percentile estimates are 
unlikely to change in the reported digits for other simulations with the same number of iterations. 

Figure 3.8 Example frequency plots of the results of a Monte Carlo simulation 
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3.2.3.3 HYBRID COMBINATIONS OF APPROACHES 1 AND 2 
For some inventories, it may be possible to use Approach 1 for most but not all of the source and sink categories. 
For example, many sources and sinks can be quantified using emission factors and activity data, but for some it 
is necessary to use a model or a more complex calculation procedure. Furthermore, dependencies may be 
important for some categories but not others, or the range of uncertainties may be large for some categories and 
not others. For these cases, a Monte Carlo-based method is more flexible and would typically produce better 
results.  

If an inventory compiler has completed Approach 2 for only a subset of categories, the results can be combined 
with Approach 1 to produce an estimate of the uncertainty in national total emissions and the trend. This can be 
achieved by entering information at a disaggregated level, if correlations do not prevent doing so, into Approach 
1. If there are significant correlations among a subset of categories, then the subset could be treated individually 
in Approach 2 but as an aggregation of categories in Approach 1. In the latter case, total emissions for the 
aggregation of the subset in the base year and in year t is entered in Columns C and D of the Approach 1 table. 
The results of the Approach 2 analysis for the uncertainty in total emissions in year t will be entered in Column 
G, and the results of the Approach 2 analysis for the contribution to the trend in national total emissions will be 
entered in Column M. The uncertainty contributions of the affected categories can be combined with those of 
other categories using the error propagation rules of Approach 1. 

In some cases, most of the category uncertainties in an inventory might be estimated using Approach 2, with 
relatively few estimated using Approach 1. It is possible to incorporate Approach 1 estimates of uncertainty for 
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some categories into an Approach 2 methodology for combining uncertainties for the total inventory. This is 
done by using the uncertainty half-range obtained from Approach 1 to specify an appropriate PDF model to 
represent uncertainty for each category as part of the Monte Carlo simulation. Typically, a normal distribution 
would be a reasonable choice if the uncertainty range is small enough and a lognormal distribution is often 
appropriate if the uncertainty range is large. See also the section of ‘Dealing with Large and Asymmetric 
Uncertainties in the Results of Approach 1’ in Section 3.2.3.1 for more discussion of normal versus lognormal 
distribution assumptions. 

3.2.3.4 COMPARISON BETWEEN APPROACHES 
Two Approaches for uncertainty analysis have been presented: 

• Approach 1: Estimation of uncertainties by category using Equations 3.1 and 3.2, and simple combination of 
uncertainties by category to estimate overall uncertainty for one year and the uncertainty in the trend. 

• Approach 2: Estimation of uncertainties by category using Monte Carlo analysis, followed by the use of 
Monte Carlo techniques to estimate overall uncertainty for one year and the uncertainty in the trend. 

Monte Carlo analysis can also be used in a restricted way within Approach 1 to combine activity data and 
emission factor uncertainties that have very wide or non-normal PDFs or both. This approach can also help deal 
with categories within Approach 1 that are estimated by process models, rather than by the classical ‘emission 
factor times activity data’ calculation. The choice between Approaches is discussed in Section 3.2.3.5 below.  

Use of either Approach will provide insight into how individual categories and greenhouse gases contribute to 
uncertainty in total emissions in any year and to the emissions trend over time.  

Application of Approach 2 to the UK inventory (Baggott et al., 2005) suggests that the 95 percent confidence 
interval is asymmetric and lies between about 6 percent below and 17 percent above the mean estimated value in 
2003. The result for the UK takes into account the large relative range of uncertainty for N2O flux from soils as 
well as the large contribution to total emissions from fossil fuel combustion. Application of Approach 1 to the 
same inventory suggests an uncertainty of about ±17%. On the trend, between 1990 and 2003, UK total net 
emissions in CO2 equivalent are estimated to have fallen by 13 percent. Application of the Approach 2 suggests 
that 95 percent confidence interval is roughly symmetrical and lies between -11% and -16%. The corresponding 
Approach 1 result gives a range of about ±2% (i.e., -11% to -15%). So both methods give similar magnitudes in 
the trend uncertainty. 

In the case of Finland, as shown in Section 3.6, year 2003 uncertainty (including both sources and sinks of 
greenhouse gases) was -14 to +15% according to Approach 2, and ±16% with Approach 1. For Finland, carbon 
stock changes in the AFOLU Sector are the dominant sources of uncertainty, while fossil fuels contribute the 
largest share to total emissions. Since the approximations inherent in Approach 1 mean that it cannot deal with 
asymmetry, this comparison is encouraging. Physically, the reason for the asymmetry identified under Approach 
2 is that the uncertainty range of some very uncertain categories is constrained by the knowledge that the 
emissions cannot be less than zero. The Approach 2 method can make use of this extra knowledge, but the 
Approach 1 method cannot. In case of trend from 1990 to 2003 the uncertainty in Finland was -18 to +23% 
(percentage points) with Approach 2 and ±19% (percentage points) with Approach 1.  

A separate evaluation of Approach 1 and Approach 2 for case studies based on synthetic inventory data revealed 
excellent agreement when the same set of input assumptions were used and when uncertainties were relatively 
small (Frey, 2005). For example, in a case study for which Approach 1 produced an estimate of ±6% in the 
current year inventory, and ±10% in the trend (in terms of percentage points relative to the mean percentage 
change), results from Approach 2 for the same input assumptions produced essentially the same result. When the 
uncertainty ranges were doubled for the emission factors and activity data, the uncertainty in the base estimates 
continued to agree well for Approach 1 and Approach 2, at approximately ±13% of the mean total emissions. 
The uncertainty in the trend was approximately ±20% (percentage points) in both cases. However, the 
uncertainty in the trend was slightly asymmetric in the Approach 2 result, at -19% to +22%. Thus, as the ranges 
of uncertainty increase, it is expected that Approach 2 will more appropriately characterise the range and 
skewness of uncertainties than Approach 1.  

Although Approaches 1 and 2 focus on propagation of the random component of uncertainty through a model, it 
is good practice to combine methods for dealing with model uncertainty with either of the Approaches. An 
example of how to deal with model uncertainty in the context of Tier 3 is given in Box 3.3.  

Furthermore, although Approach 1 is based upon key simplifying assumptions, it is possible to increase the 
flexibility of this approach by increasing the complexity of the error propagation equations. For example, error 
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propagation equations that contain additional terms can more accurately propagate uncertainty for multiplicative 
and quotient models and when uncertainties are skewed. 

 

BOX 3.3 
 DEALING WITH MODEL UNCERTAINTY IN A PROBABILISTIC ANALYSIS 

A Tier 3 modelling approach is designed for flexibility so that a national inventory can be 
conducted using a more highly refined model representing national circumstances than in Tier 1 or 
2. In particular, it is good practice to address uncertainties attributed to model inputs and structure. 
Input uncertainty deals with activity data and possibly other ancillary information that is needed to 
describe the environmental setting, such as climate and soil characteristics in an inventory for the 
AFOLU Sector. Uncertainty in model structure is attributed to imperfect algorithms and 
parameterisation. Empirically-based approaches are commonly used for assessing structural 
uncertainties (Monte et al. 1996). This approach involves comparing modelled emissions estimates 
with measurements from experiments or a national monitoring network, which was designed for 
validation of model-based inventories, addressing both the bias and variance in modelled values 
(Falloon and Smith 2003).  

A statistically-derived relationship may be used to quantify uncertainties in model structural error 
for a Tier 3 inventory, addressing imprecision based on the estimated variance, or a similar 
measure such as the Root Mean Squared Error, while also dealing with biases based on statistically 
significant differences between modelled and measured values (Falloon and Smith 2003). In 
practice, modelled emissions would be adjusted for biases to more accurately represent emissions 
for reporting purposes. Further, a statistically-derived relationship would yield a measure of 
variance for each condition that would be associated with the modelled values, similar to 
uncertainties attributed to emission factors in Tier 1 and 2 approaches. To complete the 
assessment, uncertainties in model inputs, such as activity data, would be combined with model 
structural uncertainty using error propagation equations or a Monte Carlo approach. 

 

3.2.3.5 GUIDANCE ON CHOICE OF APPROACH 
Where the conditions for applicability are met (relatively low uncertainty, no correlation between sources except 
those dealt with explicitly by Approach 1), Approach 1 and Approach 2 will give identical results. However, and 
perhaps paradoxically, these conditions are most likely to be satisfied where Tier 2 and Tier 3 methods are 
widely used and properly applied in the inventory, because these methods should give the most accurate and 
perhaps also the most precise results. There is therefore no direct theoretical connection between choice of 
Approach and choice of Tier. In practice, when Tier 1 methods are applied, Approach 1 will usually be used 
while the ability to apply Approach 2 is more likely where Tier 2 and 3 methods are being used, moreover for 
quantifying the uncertainty of emissions/removal estimates of complex systems such as in the AFOLU Sector.  

When Approach 2 is selected, as part of QA/QC activities inventory agencies also are encouraged to apply 
Approach 1 because of the insights it provides and because it will not require a significant amount of additional 
work. Where Approach 2 is used, its estimates of overall uncertainty are to be preferred when reporting 
uncertainties (see Section 3.2.3.3).  

3.3 UNCERTAINTY AND TEMPORAL 
AUTOCORRELATION 

Where emission factors, sources of activity data or estimation methods vary within a time series the associated 
sources of uncertainty may also change. Approach 2 can take explicit account of this when setting up the 
component PDFs. In Approach 1 the current percentage uncertainties should be entered in the table, and in cases 
where changes throughout the time series mean that the assumption of good correlation of uncertainty in 
emission factors between years is no longer valid, Type A sensitivity should be used in place of Type B. If 
annual data are autocorrelated, then there will typically be less difference when comparing two years than if they 
are not autocorrelated, assuming that the autocorrelation is positive. 

The issue of ‘time series’ can refer to inter-annual comparison of emissions in a Year t versus a base year, as has 
been set forth in Table 3.2 and the general reporting table given in Table 3.3, or it can refer to a broader set of 
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statistical methodologies for taking into account temporal autocorrelation. With regard to the latter interpretation, 
statistical time series techniques can be used to more accurately take into account temporal autocorrelations in 
order to reduce the estimate of uncertainty. For example, if emissions vary on a short term basis, such as for 
power plant emissions, the emissions at a given time period often depend on what the emissions were in the 
immediately preceding time periods as well as on the emissions at previous points in a cycle. For example, a 
power plant may require some amount of time in order to achieve a significant change in load. Thus, the 
emissions in a current hour are constrained somewhat depending on what emissions were in the previous hour. 
Furthermore, a power plant may respond to daily fluctuations in load, which are similar from one day to the next. 
Thus, the emissions at a given hour of the day may be correlated to those at a given hour of a preceding day. 
Likewise, there can be longer-term seasonal cycles, such as from one year to the next, that might induce a 
temporal correlation. Statistical time series methods can be fit to an adequate sample of empirical data in order to 
explain these temporal correlations. The unexplained portion of the model response is referred to as a random or 
white noise term. The white noise term is an indication of uncertainty in the ability to predict the emissions 
output. A detailed example of the application of time series models to emissions estimation is given by Abdel-
Aziz and Frey (2003). 

3.4 USE OF OTHER APPROPRIATE TECHNIQUES 
The guidance offered here is not meant to preclude the use of other improved methods. For example, in applying 
Approach 1, an inventory compiler may wish to derive a similar approach from the generalised error propagation 
equations in order to account for more complex correlations or for differences in ranges of uncertainty in year t 
versus the base year. Such improvements are consistent with good practice as long as they are appropriately 
documented and justified. Furthermore, this document does not cover all situations that may be faced by an 
analyst. Therefore, the inventory compiler is encouraged to refer to the references cited in the end of the chapter 
for additional suggestions on how to perform uncertainty analyses.  

3.5 REPORTING AND DOCUMENTATION 
A great deal of effort can be expended in collecting information and data for a quantified uncertainty assessment 
and implementing a model to combine uncertainties across parameters, categories, and the entire inventory. 
However, all that effort can result in little benefit to a country’s inventory if steps are not also taken to report and 
document the findings of an uncertainty assessment so that they can lead to real improvements in the quality of 
data collected and the inventory as a whole. The integration of a country’s uncertainty assessment efforts with 
the implementation of data quality investigations within its QA/QC system can help solve this problem. 

Given the large number of inputs and assumptions needed to document an uncertainty analysis, it is not feasible 
to report all information. The information reported should be sufficient to provide the key assumptions, choice of 
methods and detailed results. Overall, documentation should be sufficient to support the estimates and enable 
duplication of the uncertainty estimates. In particular, the documentation should touch upon the following issues 
(as they pertain to a particular variable): 

• Which causes of uncertainty are addressed (see Table 3.1). 

• Which methods for addressing uncertainty were used (see Table 3.1). 

• What is the source of any data or models that were used as the basis for estimating uncertainty. 

• For an estimate of bias, explain what is the magnitude of the error expressed on a relative or absolute basis 
as appropriate (specify which and give proper units). 

• If uncertainty was estimated based upon data, explain how uncertainty was distinguished from variability 
and how the appropriate geographic extent, averaging time (e.g., annual), and other representativeness 
considerations were addressed in selecting and analyzing data. Provide a brief summary of the data itself, 
including the mean, sample standard deviation, and sample size. Provide additional detail as appropriate if 
data were stratified or contain other components of uncertainty (e.g., precision and accuracy of measurement 
methods used to obtain the data). 

• For an estimate of random error in the form of a range or a distribution, provide sufficient information to 
uniquely specify the range (e.g., plus or minus percentage variation relative to the mean, or parameters of a 
PDF). 
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• For estimates of uncertainty based upon expert judgement, the following information should be documented 
and archived: 

(i) reference number for judgement; 

(ii) date; 

(iii) name of expert(s) involved; 

(iv) experts’ background (references, roles, etc.); 

(v) the variable being judged; 

(vi) the logical basis for judgement, including any data taken into consideration. This should include the 
rationale for the high end, low end, and central tendency of the distribution; 

(vii) the resultant PDF, or the range and most likely value and the PDF subsequently inferred; 

(viii) identification of any external reviewers; 

(ix) results of any external review; 

(x) approval by inventory compiler, specifying date and person. 

• Explanation of any correlation or dependencies that were accounted for between two or more inputs or with 
respect to autocorrelation. 

• Explanation of any special considerations that might be unique to a particular country or situation, such as 
the use of various statistical techniques for dealing with non-detects, mixture distributions, extrapolation, 
and so on. 

• Explanation of differences in results between Approach 1 and 2.  

In addition to documentation of the uncertainty estimates for inputs to an inventory, documentation should be 
provided regarding the general approach used and whether it is based primarily on Approach 1 or Approach 2. 
Any modifications to these Approaches should be explained and appropriately justified. 

The reporting of uncertainties also requires a discussion of limitations and caveats for any quantitative 
uncertainty estimates produced that are suspected to present an incomplete representation of all causes of 
uncertainty. During the process of collecting information on inputs for an uncertainty assessment (e.g., empirical 
or expert judgement as a basis for PDFs, characterisations of conceptualisation and model uncertainty), the likely 
causes of the various uncertainties identified—including potential biases—should be documented. These likely 
causes should be documented whether or not they were quantified and include any specific recommendations 
available regarding how they can be reduced. 

Similarly, when reporting and interpreting the results from a quantitative uncertainty assessment, it is important 
to keep in mind the limitations of the approach used to combine uncertainties. For example, although Approach 1 
can address some causes of correlation, any possible biases associated with other causes of correlations that 
might exist (e.g., between categories) that are identified in the course of an uncertainty assessment should be 
documented. 

Table 3.3 is a generalised table for reporting uncertainty of an inventory, regardless of the Approach followed. If 
the point estimate and the mean estimate of emissions/removals are not the same value, it is good practice for the 
uncertainty ranges shown in Columns E, F, G, and J to be estimated relative to point estimates used when 
reporting the national inventory. If the point estimate and the mean estimates differ, then it is advisable to 
consider why they differ and possibly revisit the point estimate in order to identify and account for bias.  



V
ol

um
e 

1:
 G

en
er

al
 G

ui
da

nc
e 

an
d 

R
ep

or
tin

g 

20
06

 IP
C

C
 G

ui
de

lin
es

 fo
r N

at
io

na
l G

re
en

ho
us

e 
G

as
 In

ve
nt

or
ie

s 
3.

42
 

 
     

T
A

B
L

E
 3

.3
  

G
E

N
E

R
A

L
 R

E
PO

R
T

IN
G

 T
A

B
L

E
 F

O
R

 U
N

C
E

R
T

A
IN

T
Y

 

A
 

B
 

C
 

D
 

E 
F 

G
 

H
 

I 
J 

K
 

IP
C

C
 

ca
te

go
ry

 
G

as
 

B
as

e 
ye

ar
 

em
is

si
on

s 
/re

m
ov

al
s 

Y
ea

r t
 

em
is

si
on

s 
/re

m
ov

al
s 

A
ct

iv
ity

 d
at

a 
un

ce
rta

in
ty

 
Em

is
si

on
 

fa
ct

or
/e

st
im

at
io

n 
pa

ra
m

et
er

 u
nc

er
ta

in
ty

 
(c

om
bi

ne
d 

if 
m

or
e 

th
an

 
on

e 
es

tim
at

io
n 

pa
ra

m
et

er
 

is
 u

se
d)

 

C
om

bi
ne

d 
un

ce
rta

in
ty

 
C

on
tri

bu
tio

n 
to

 v
ar

ia
nc

e 
in

 Y
ea

r t
 

In
ve

nt
or

y 
tre

nd
 in

 
na

tio
na

l e
m

is
si

on
s 

fo
r y

ea
r t

 in
cr

ea
se

 
w

ith
 re

sp
ec

t t
o 

ba
se

 
ye

ar
 

U
nc

er
ta

in
ty

 
in

tro
du

ce
d 

in
to

 th
e 

tre
nd

 in
 to

ta
l n

at
io

na
l 

em
is

si
on

s w
ith

 
re

sp
ec

t t
o 

ba
se

 y
ea

r 

A
pp

ro
ac

h 
an

d 
C

om
m

en
ts

 

 
 

G
g 

C
O

2 
eq

ui
va

le
nt

 
G

g 
C

O
2 

eq
ui

va
le

nt
 

( -
 ) 

%
 

( +
 ) 

%
 

( -
 ) 

%
 

( +
 ) 

%
 

( -
 ) 

%
 

( +
 ) 

%
 

(f
ra

ct
io

n)
 

(%
 o

f b
as

e 
ye

ar
) 

( -
 ) 

%
 

( +
 ) 

%
 

 

E.
g.

,  
1.

A
.1

.  
En

er
gy

 
In

du
st

rie
s 

Fu
el

 1
  

C
O

2 
 

 
 

 
 

 
 

 
 

 
 

 
 

E.
g.

,  
1.

A
.1

. 
En

er
gy

 
In

du
st

rie
s 

Fu
el

 2
 

C
O

2 
 

 
 

 
 

 
 

 
 

 
 

 
 

Et
c.

.. 
…

 
 

 
 

 
 

 
 

 
 

 
 

 
 

To
ta

l 
 

 
 

 
 

 
 

 
 

1.
00

0 
 

 
 

 



 Chapter 3: Uncertainties
  

2006 IPCC Guidelines for National Greenhouse Gas Inventories 3.43 

Notes: 

Column C: Base year emissions in Gg CO2 equivalent by category and gas. 

Column D: Year t emissions in Gg CO2 equivalent by category and gas. Year t is the year of interest or the current 
year. 

Columns E and F: Uncertainties in activity and emission factor estimates (Columns E and F) should be reported 
where possible, but it is understood that some calculation methods for some categories may not be 
amenable to this type of reporting. Thus, where this information is not available, the table entry can 
be left blank.  

Column G: An uncertainty estimate for each category should be reported, relative to the mean estimate, even if 
uncertainties cannot be further disaggregated by activity and emission factor in a particular case. For 
the foot of the table, report the uncertainty in the total inventory. This must be obtained through the 
Approach 1 or 2 calculations, and cannot be determined simply by summing quantities in the columns. 

Column H: Report the ‘contribution to uncertainty’. It is estimated dividing the variance of each category by 
the total variance of the inventory ( ∑ 22

xx σσ  ). If Approach 1 has been used, it is calculated 
dividing each entry in Column H of Table 3.2 by the value, in the same column, in the line ‘Total’ 
of Table 3.2. General methodology to be applied when Approach 2 is used and when uncertainty is 
asymmetric is provided in Section 3.2.3. 

Column I: Report the inventory trend, estimated as:  

100(%) •⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

emissionsyearBase
emissionsyearBaseemissionstYearTrendMean  . 

 Report separately for each category by row and report for the total inventory at the foot of the column. 

Column J: This is the uncertainty in the trend by category. For the ‘total’ at the foot of the table, the overall 
uncertainty in the trend for the entire inventory should be given. The uncertainty in the trend is 
based on percentage points with respect to the inventory trend. For example, if the inventory trend 
is -5%, and if the 95% probability range of the trend is -8% to -3%, then the uncertainty in trend is 
reported as -3% to +2%. 

Column K: Indicate whether Approach 1 or Approach 2 was used, and include any other comments that might 
help clarify the methodology or information sources. 

General Comments on Columns E, F, G, and J: For each of these columns, two subcolumns are provided to 
facilitate reporting of uncertainty ranges that are asymmetric. For example, if the uncertainty range is -50% to 
+100%, then ‘50’ should be reported the subcolumn headed as ‘(-)%’ and ‘100’ should be reported in the column 
headed as ‘(+)%’. 

3.6 EXAMPLES 
This section presents two examples of uncertainty estimates for inventories, both based upon the Finnish 2003 
greenhouse gas emission inventory. These examples are country-specific and are shown here only for the purpose of 
illustrating procedures and general insights. The specific uncertainty estimates and results will differ among countries. 

The example of Table 3.4 is based upon Approach 1, and is shown in the general format of the Approach 1 worksheet 
(Table 3.2). The results indicate that the net emissions in year t, which is 2003 in this example, is 67,730 Gg CO2 
equivalent with an uncertainty of ±15.9%, which corresponds to a 95 percent probability range of 56,970 to 78,490 Gg 
CO2 equivalent. Based upon the total base year and year t inventories reported in the table, the average trend is a 42 
percent increase in emissions from 1990 to 2003. The uncertainty in the trend is ±19% (percentage points), which 
corresponds to a 95 percent probability range for the trend of 24% to 61% with respect to the base year emissions. 

The example of Table 3.5 is based upon Approach 2, and is shown in the format of the General Reporting Table for 
Uncertainty shown in Table 3.3. The results indicate that the net emissions in year t are 67,730 Gg CO2 equivalent 
with an uncertainty range of -14 to +15 percent, which corresponds to a 95 percent probability range of 58,490 to 
78,130 Gg CO2 equivalent. Based upon the total base year and year t inventories reported in the table, the average 
trend is a 42 % increase in emissions from 1990 to 2003. The uncertainty in the trend is -18 to +23% (percentage 
points) which corresponds to a 95 percent probability range for the trend of 25% to 65% with respect to the base 
year emissions.  

These examples illustrate that the results from Approaches 1 and 2 can be very similar when the overall 
uncertainty is relatively small. However, Approach 2 is a more flexible approach that enables quantification of 
asymmetry in probability ranges, such as for the year t inventory.  
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3.7 TECHNICAL BACKGROUND INFORMATION 

3.7.1 Approach 1 variables and equations 
This section covers the basis for the statistical calculation methods used in Approach 1 as complementary 
information to Section 3.2.3.1, Approach 1: Propagation of Error, and Table 3.2, Approach 1 Uncertainty 
Calculation. Key variables and equations used for the calculation are defined in this section.  

Explanation of  the variables  
Cx,  = Value of an entry in Column C and row x, emissions or removals of each category of base year inventory 

∑ iC  = Sum of emissions and removals over all categories (rows) of the base year inventory  

Dx,  = Value of an entry in Column D and row x, emissions or removals of each category of the year of inventory t 

∑ iD  = Sum of emissions and removals over all categories (rows) of the year of inventory t  

Column A-F 
Input data of emissions and removals, activity data and emission factor uncertainties of each category 

Column G 
Combined uncertainty using error propagation equation. See Equation 3.1 in Section 3.2.3.1. 

22 FEG xxx +=  

Column H 
Contribution to uncertainty. See also Equation 3.2 in Section 3.2.3.1. 

( )
( )2

2

D
DG

H
∑
•

=
i

xx
x  

The total emission uncertainty is obtained using the error propagation equation: 

( )
∑

∑
∑

=
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i
i

ii H
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G
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Column I  
Entries in Column I show how the difference in emissions between the base year and the year t changes in 
response to a 1 percent increase in emissions of category x emissions in the base year and year t. This shows the 
sensitivity of the trend in emissions to a systematic uncertainty in the emission estimate – i.e., one that is 
correlated between the base year and year t. This sensitivity is described as Type A sensitivity. 

Ix = percentage trend if category x is increased by 1 percent in both years – percentage trend without increase 
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Column J 
Entries in Column J show how the difference in emissions between the base year and year t changes in response 
to a 1 percent increase in the emissions of category x in year t only. This shows the sensitivity of the trend in 
emissions to random uncertainty error in the emissions estimate – i.e., one that is not correlated between the base 
year and year Y. This sensitivity is described as Type B sensitivity. 

Jx = percentage trend if category x is increased by 1 percent in year t – percentage trend without increase 
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Column K 
Under the assumption that the same emission factor is used in both years and the actual emission factors are fully 
correlated, the percent error introduced by it is equal in both years. Therefore the formula for the uncertainty 
introduced on the trend by the emission factor is: 

xx

x

FI
factoremission  ofy uncertaint A y sensitivitK

•=
•=

 

In case no correlation between emission factors is assumed, sensitivity B should be used and the result needs to 
be increased by √2 for the reason given below in the main derivation for Column L:  

2FJ

2factoremission  ofy uncertaint  By sensitivitK

••=

••=

xx

x  

Column L 
The trend is the difference between the emissions in the base year and in the year t. Therefore the uncertainty of 
the activity data of the base year and year t has to be taken into account. The two uncertainties combined using 
the error propagation equation and the assumption that the uncertainty is the same in the base year and year t is: 

( ) ( )

( )
2E

2)year  data,(activity y uncertaint

)year data,(activity y uncertaintyear) base data,(activity y uncertaint
2

22

•=

•≈

+=

x

t

 t

 

Since activity data in both years are assumed to be independent, Column L equals: 

Lx = sensitivity B • combined uncertainty of activity data of both years 

2EJ ••= xx  

In case correlation between activity data is assumed, sensitivity A should be used and the √2 factor does not apply. 

xxx EIL •=  

Column M 
Uncertainty introduced on the trend by the uncertainty in the activity data and the emissions factor. 

22 LKM xxx +=   

The entries Mi in Column M are combined to obtain the total uncertainty of the trend using the error propagation 
equation as follows: 

∑= iM trend theofy uncertaint Total  

3.7.2 Approach 1 – details of the equations for trend 
uncertainty 

The following steps show how to calculate trend uncertainty using Types A and B sensitivities (see also Section 
3.2.3.1).  

1) The method for assessing level uncertainty in year Y assumes that categories and gases are uncorrelated, or 
are aggregated until the aggregated categories can be treated as uncorrelated. 

2) The uncertainty in the trend in total emissions from the country (the quantity at the foot of Column M) is 
estimated as: 

2

1
i

N

i
T UU ∑

=
=  

where UT is the uncertainty in the trend in total emissions from the country and Ui is the uncertainty introduced 
into UT by the category i and gas. 
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3) We take 

 )( 2
,

2
, iAiEi UUU +=  

where UE,i is the uncertainty introduced into Ui by the uncertainty associated with the emission factor of the 
category i and gas, and UA,i is the uncertainty introduced into Ui by the uncertainty associated with the activity 
data of the category i and gas. 

4) We know from Columns E and F what the uncertainties related to activity data and emission factors for the 
category i and gas are in percentage terms, but we do not yet know how these uncertainties affect the trend in the 
total emissions, which is what we need for UE,i and UA,i. For this we write  

ieiiE uAU ,, =           and       iaiiA uBU ,, =  

Where Ai is the Type A sensitivity associated with the category i and gas, and ue,i the percentage uncertainty 
associated with the emission factor in Column F, and Bi is the Type B sensitivity associated with the category i 
and gas, and ua,i the percentage uncertainty associated with the activity data in Column E. Essentially Type A 
and Type B sensitivities are elasticities relating respectively a percentage difference that is self-correlated 
between the base year and year Y, and one which is uncorrelated, to the percentage change in total emissions. 
The method allows for this assumption to be inverted, or for both emission factor and activity data to be self-
correlated between years, or for neither to be self-correlated. 
5) The Type A and Type B sensitivities are calculable from formulae for the trend in terms of sums over 
categories and gases in the base year and in year Y. The additional factor of √2 is introduced because an 
uncorrelated uncertainly might affect either the base year or the year Y. The current formulation assumes for 
Type B sensitivity that the emissions in year Y are not too different from those in the base year; if this were not 
the case we would have to introduce separate consideration of the base year and year Y for the uncorrelated 
uncertainties, rather than using the √2 factor. 

DERIVATION OF TYPE A SENSITIVITY 
The trend can be written as (assuming that 1990 is a base year):  
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If the category i and gas is increased by 1 percent throughout (consistent with the assumption that Type A 
sensitivity captures the effect of uncertainties which are correlated between years) the trend becomes:  
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and the sensitivity Ai becomes: 
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This is the same as the expression given for the Type A sensitivity in Note B on page 6.18 of the GPG2000. 

TYPE B SENSITIVITY   
The Type B sensitivity we assume that the category i and gas is increased by 1 percent in year y only. In this 
case the trend becomes: 
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So the sensitivity Bi becomes: 
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All the terms on the numerator cancel out between the brackets except for 0.01 yie ,  which becomes ei,y when 

multiplied by 100. So the expression for Bi simplifies to 
∑
=

N

i
i,1990

yi

e

e

1

, which is the expression at the top of 

Column J on page 6.16 of the GPG2000. 
 

3.7.3 Dealing with large and asymmetric uncertainties in 
the results of Approach 1 

This section provides guidance on how to correct for biases in large estimates of uncertainty from Approach 1 
and how to convert the uncertainty ranges into asymmetric 95 percent probability ranges based upon a lognormal 
distribution.  

Correction of uncertainty estimate for large uncertainties: The approximate error propagation method of 
Approach 1 produces an estimate of the uncertainty half range (U), expressed as a percentage relative to the 
mean, of the inventory results. As the uncertainty in the total inventory uncertainty becomes larger, the error 
propagation approach systematically underestimates the uncertainty unless the model is purely additive. 
However, most inventories are estimated based upon the sum of terms, each of which is a product (e.g., of 
emission factors and activity data). The error propagation approach is not exact for such multiplicative terms. 
Results from empirical studies show that in some cases uncertainty estimated using Approach 1 could be 
underestimated; the analyst could use a correction factor, for example that proposed in Frey (2003). Frey (2003) 
evaluated the performance of an analytical approach for combining uncertainty in comparison to a Monte Carlo 
simulation with large sample sizes for many cases involving different ranges of uncertainty for additive, 
multiplicative, and quotient models. Error propagation and Monte Carlo simulated estimates of the uncertainty 
half-range of the model output agreed well for values of less than 100 percent. As the uncertainty in the total 
inventory increased to higher levels, there was a systematic under-estimation of uncertainty in the total inventory 
by the error propagation approach. The relationship between the simulated and error propagation estimates was 
found to well-behaved. Thus, a correction factor was developed from the comparison that is applicable if U for 
the total inventory uncertainty is large (e.g., greater than 100 percent) and is given by: 

EQUATION 3.3  
CORRECTION FACTOR FOR UNCERTAINTY HALF-RANGE 

( ) 23523 1011.11063.10921.1720.0
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ •+•−+−
=

−−

U
UUUFC  

Note: Use if U > 100% and if the model contains multiplicative or quotient terms 
Not necessarily reliable for U > 230% 

Not necessary for models that are purely additive.  

Where: 

U =  ½-range for uncertainty estimated from error propagation, in units of percent 
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Fc =  Correction factor for analytical estimate of the variance, dimensionless ratio of corrected to 
uncorrected uncertainty 

The empirically-based correction factor produces values from 1.06 to 1.69 as U varies from 100% to 230%. The 
correction factor is used to develop a new, corrected, estimate of the total inventory uncertainty half-range, 
Ucorrected, which in turn is used to develop confidence intervals. 

EQUATION 3.4 
CORRECTED UNCERTAINTY HALF-RANGE   

Ccorrected FUU •=  

Where: 

Ucorrected =  Corrected ½-range for uncertainty estimated from error propagation, in units of % 

The errors in the analytical estimate of the variance are generally small for uncertainty half-ranges (U) of less than 
approximately 100 percent. If the correction factor is applied for U > 100% for values of U up to 230%, the typical 
error in the estimate of U is expected to be within plus or minus 10 percent in most cases. The correction factor will 
not necessarily be reliable for larger uncertainties because it was calibrated over the range of 10% to 230%. 

Calculation of asymmetric confidence intervals for large uncertainties: In order to calculate confidence 
intervals for the model output based upon only the mean and half-range for uncertainty, a distribution must be 
assumed. For models that are purely additive, and for which the half range of uncertainty is less than 
approximately 50 percent, a normal distribution is often an accurate assumption for the form of the model output. 
In this case, a symmetric uncertainty range with respect to the mean can be assumed. For multiplicative models, 
or when the uncertainty is large for a variable that must be non-negative, a lognormal distribution is typically an 
accurate assumption for the form of the model output. In such cases, the uncertainty range is not symmetric with 
respect to the mean, even though the variance for the total inventory may be correctly estimated from Approach 
1. Here, we provide a practical methodology for calculating approximate asymmetric uncertainty ranges based 
upon the results of error propagation, based upon a methodology developed by Frey (2003). A key characteristic 
of the 95 percent confidence intervals is that they are approximately symmetric for small ranges of uncertainty 
and they are positively skewed for large ranges of uncertainty. The latter result is necessary for a non-negative 
variable. 

The parameters of the lognormal distribution can be defined in several ways, such as in terms of the geometric 
mean and geometric standard deviation. The geometric mean can be estimated based upon the arithmetic mean 
and the arithmetic standard deviation: 

EQUATION 3.5 
ASYMMETRIC CONFIDENCE INTERVALS – GEOMETRIC MEAN 
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Where: 

μg =  geometric mean 

μ =  arithmetic mean 

The geometric standard deviation is given by: 

EQUATION 3.6 
ASYMMETRIC CONFIDENCE INTERVALS – GEOMETRIC STANDARD DEVIATION 
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Where: 

σg =  geometric standard deviation 
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A confidence interval can be estimated based upon the geometric mean, geometric standard deviation, and the 
inverse cumulative probability distribution of a standard normal distribution (with a logarithmic transformation): 

EQUATION 3.7 
LOWER/UPPER UNCERTAINTY HALF-RANGE FROM ERROR PROPAGATION  
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Where: 

Ulow  =  Lower ½-range for uncertainty estimated from error propagation, in units of %. 

Uhigh =  Upper ½-range for uncertainty estimated from error propagation, in units of %. 

To illustrate the use of these equations, consider an example. Suppose the mean is 1.0 and the ½-range of 
uncertainty estimated from error propagation is 100 percent. In this case, the geometric mean is 0.89 and the 
geometric standard deviation is 1.60. The 95 percent probability range as a percentage relative to the mean is 
given by the interval from Ulow to Uhigh of Equations 3.7. In the example, the result is -65% to +126%. In contrast, 
if a normal distribution had been used as the basis for uncertainty estimation, the range would have been 
estimated as approximately ±100% and there would be a probability of approximately two percent of obtaining 
negative values. Figure 3.9 illustrates the sensitivity of the lower and upper bounds of the 95 percent probability 
range, which are the 2.5th and 97.5th percentiles, respectively, calculated assuming a lognormal distribution based 
upon an estimated uncertainty half-range from an error propagation approach. The uncertainty range is 
approximately symmetric relative to the mean up to an uncertainty half-range of approximately 10 to 20 percent. 
As the uncertainty half-range, U, becomes large, the 95 percent uncertainty range shown in Figure 3.9 becomes 
large and asymmetric. For example, if U is 73 percent, then the estimated probability range is approximately -
50% to +100%, or a factor of two. 

Figure 3.9  Estimates of asymmetric ranges of uncertainty with respect to the arithmetic 
mean assuming a lognormal distribution based upon uncertainty half-range 
calculated from a propagation of error approach 
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3.7.4 Methodology for calculation of the contribution to 
uncertainty 

The methodology for calculation of contribution to uncertainty is based upon apportioning the variance of the 
inventory to the variance of each category. 

If the uncertainty is symmetric, then the variance is estimated, on a category basis, as: 
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EQUATION 3.8 
CONTRIBUTION OF CATEGORY X – VARIANCE FOR SYMMETRIC UNCERTAINTY 

2
2

200 ⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛
= x

xx
U

Dσ  

Where: 

Ux  = uncertainty half-range for category x, in units of percent; 

Dx  = the total emissions or removals for category x, corresponding to the entries in Column D of 
Table 3.5. 

σx
2  =  the variance of emissions or removals for category x. 

Even if the uncertainty is asymmetric, the variance can be estimated based on the arithmetic standard deviation 
or the coefficient of variation. The variance is simply the square of the arithmetic deviation. The variance for the 
category can be estimated from the coefficient of variation, νx, as: 

EQUATION 3.9 
CONTRIBUTION OF CATEGORY X – VARIANCE FOR ASYMMETRIC UNCERTAINTY  

( )22
xxx D υσ =  

 

Once the variance is known for a category, the variances should be summed over all categories. The result is the 
approximate total variance in the inventory. However, this result is not likely to agree exactly with a Monte 
Carlo simulation result for the inventory for at least one and possibly more reasons: (1) because of sample 
fluctuations in the Monte Carlo simulation, the Monte Carlo estimate of the variance may differ somewhat from 
the true value; (2) the analytical calculation is based upon assumptions of normality or lognormality of the 
distributions for combined uncertainty for individual categories, whereas Monte Carlo simulation can 
accommodate a wide variety of distribution assumptions; and (3) the Monte Carlo simulation may account for 
nonlinearities and dependencies that are not accounted for in the analytical calculation for contribution to 
variance. If the emission inventory calculations are linear or approximately linear, without any substantial 
correlations, then the results should agree fairly well. Furthermore, methods for estimating ‘contribution to 
variance’ for Monte Carlo methods are approximate. For those methods that potentially can account for all 
contributions to variance (e.g., Sobol’s method, Fourier Amplitude Sensitivity Test), the measures of sensitivity 
are more complex (e.g., Mokhtari et al., 2006). Thus, the methodology described here is a practical compromise. 

 

 



Volume 1: General Guidance and Reporting  

3.64 2006 IPCC Guidelines for National Greenhouse Gas Inventories 

References 
Abdel-Aziz, A., and Frey, H.C. (2003). ‘Development of Hourly Probabilistic Utility NOx Emission Inventories 

Using Time Series Techniques:  Part I-Univariate Approach’, Atmospheric Environment, 37:5379-5389 
(2003). 

Ang, A. H-S., and Tang, W.H., (1984).  Probability Concepts in Engineering Planning and Design, Volume 2:  
Decision, Risk, and Reliability.  John Wiley and Sons, New York . 

Ang, A. H-S., and Tang, W.H., (1975). Probability Concepts in Engineering Planning and Design, Volume 1. 
John Wiley and Sons, New York.  

Baggott, S.L., Brown, L., Milne, R., Murrells, TP., Passant, N., Thistlethwaite, G., Watterson, J.D. (2005) “UK 
Greenhouse Gas Inventory, 1990 to 2003: Annual Report for submission under the Framework 
Convention on Climate Change”, April 2005. pub AEA Technology, UK ref AEAT/ENV/R/1971, ISBN 
0-9547136-5-6. 

Barry, T.M. (1996), Recommendations on the testing and use of pseudo-random number generators used in 
Monte Carlo analysis for risk assessment, Risk Assessment, 16(1):93-105. 

Bevington, P.R. and Robinson, D.K. (1992). Data Reduction and Error Analysis for the Physical Sciences.  
McGraw-Hill:  New York. 

Cohen A.C. and Whitten B. (1998). Parameter Estimation in Reliability and Life Span Models, M. Dekker: New 
York. 

Cullen, A.C. and Frey, H.C. (1999), Probabilistic Techniques in Exposure Assessment:  A Handbook for Dealing 
with Variability and Uncertainty in Models and Inputs, Plenum:  New York. 

D’Agostino, R.B. and Stephens, M.A. (eds.) (1986). Goodness-of-Fit Techniques, Marcel Dekker, New York. 

Efron, B. and Tibshirani, R.J. (1993). An Introduction to the Bootstrap, Chapman and Hall, New York. 

Eggleston, S., et al. (1998). Treatment of Uncertainties for National Greenhouse Gas Emissions, Report AEAT 
2688-1 for DETR Global Atmosphere Division, AEA Technology,  Culham, UK.  

Evans, J.S., Graham J.D., Gray, G.M., and Sielken Jr, R.L. (1994). ”A Distributional Approach to Characterizing 
Low-Dose Cancer Risk,” Risk Analysis, 14(1):25-34 (February 1994). 

Falloon, P. and Smith, P. (2003). Accounting for changes in soil carbon under the Kyoto Protocol: need for 
improved long-term data sets to reduce uncertainty in model projections. Soil Use and Management, 19, 
265-269. 

Frey, H.C. and Rubin, E.S. (1991). Development and Application of a Probabilistic Evaluation Method for 
Advanced Process Technologies, Final Report, DOE/MC/24248-3015, NTIS DE91002095, Prepared by 
Carnegie-Mellon University for the U.S. Department of Energy, Morgantown, West Virginia, April 1991, 
364p. 

Frey, H.C. and Rhodes, D.S. (1996). “Characterizing, Simulating, and Analyzing Variability and Uncertainty:  
An Illustration of Methods Using an Air Toxics Emissions Example,” Human and Ecological Risk 
Assessment: an International Journal, 2(4):762-797 (December 1996). 

Frey, H.C. and Bammi, S. (2002). Quantification of Variability and Uncertainty in Lawn and Garden Equipment 
NOx and Total Hydrocarbon Emission Factors, J. Air & Waste Manage. Assoc., 52(4), 435-448. 

Frey, H.C., Zheng, J., Zhao, Y., Li, S., and Zhu, Y. (2002). Technical Documentation of the AuvTool Software for 
Analysis of Variability and Uncertainty, Prepared by North Carolina State University for the Office of 
Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC. February 
2002. 

Frey, H.C. and Zheng, J. (2002). "Probabilistic Analysis of Driving Cycle-Based Highway Vehicle Emission 
Factors," Environmental Science and Technology, 36(23):5184-5191 (December 2002). 

Frey, H.C. (2003), “Evaluation of an Approximate Analytical Procedure for Calculating Uncertainty in the 
Greenhouse Gas Version of the Multi-Scale Motor Vehicle and Equipment Emissions System,” Prepared for 
Office of Transportation and Air Quality, U.S. Environmental Protection Agency, Ann Arbor, MI, May 30, 
2003. 

Frey, H.C. (2005), “Comparison of Approach 1 and Approach 2,” January 2005, unpublished analysis done for 
this Chapter. 



 Chapter 3: Uncertainties  

2006 IPCC Guidelines for National Greenhouse Gas Inventories  3.65  

Gelfand, A. E. (1996). Gibbs Sampling, The Encyclopedia of Statistical Sciences (editors: Kotz J., Reed C. and 
Banks D.), John Wiley and Sons, New York, 283-292. 

Hahn, G.J., and Shapiro, S.S. (1967) Statistical Models in Engineering, Wiley Classics Library, John Wiley and 
Sons, New York.  

Holland, D.M and Fitz-Simons, T. (1982) “Fitting statistical distributions to air quality data by the maximum 
likelihood method,” Atmospheric Environment, 16(5):1071-1076. 

Hora, S.C. and Iman, R.L. (1989). Expert opinion in risk analysis: The NUREG-1150 methodology, Nuclear 
Science and Engineering, 102:323-331. 

IPCC (1997). Houghton, J.T., Meira Filho, L.G., Lim, B., Tréanton, K., Mamaty, I., Bonduki, Y., Griggs, D.J. 
and Callander, B.A. (Eds). Revised 1996 IPCC Guidelines for National Greenhouse Inventories. 
Intergovernmental Panel on Climate Change (IPCC), IPCC/OECD/IEA, Paris, France. 

IPCC (2000). Penman, J., Kruger, D., Galbally, I., Hiraishi, T., Nyenzi, B., Emmanuel, S., Buendia, L., Hoppaus, 
R., Martinsen, T., Meijer, J., Miwa, K., and Tanabe, K. (Eds). Good Practice Guidance and Uncertainty 
Management in National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change 
(IPCC), IPCC/OECD/IEA/IGES, Hayama, Japan. 

ISO (1993). “Guide to the Expression of Uncertainty in Measurement (GUM)” prepared by ISO, IEC, BIPM, 
IFCC, OIML, IUPAC, IUPAP and published by ISO, Switzerland in 1993. 

Kirchner, T.B. (1990). Establishing modeling credibility involves more than validation, Proceedings, On the 
Validity of Environmental Transfer Models, Biospheric Model Validation Study, Stockholm, Sweden, 
October 8-10. 

Manly, B.F.J. (1997). Randomization, Bootstrap, and Monte Carlo Methods in Biology, Second Edition, 
Chapman  and Hall. 

McCann, T.J. and Associates, and Nosal, M. (1994). Report to Environmental Canada Regarding Uncertainties 
in Greenhouse Gas Emission Estimates, Calgary,  Canada. 

Merkhofer, M.W. (1987). Quantifying judgmental uncertainty: Methodology, experiences, and insights, IEEE 
Transactions on Systems, Man, and Cybernetics.  17(5):741-752. 

Mokhtari, A., Frey H.C. and Zheng J. (2006). “Evaluation and recommendation of sensitivity analysis methods 
for application to Stochastic Human Exposure and Dose Simulation (SHEDS) models,” Journal of 
Exposure Assessment and Environmental Epidemiology, Accepted December 2, 2005, In press. 

Monni, S., Syri, S. and Savolainen I. (2004). ‘Uncertainties in the Finnish greenhouse gas emission 
inventory’.Environmental Science and Policy 7, pp.87-98. 

Monte, L, Hakanson, L., Bergstrom, U., Brittain, J. and Heling, R. (1996). Uncertainty analysis and validation of 
environmental models: the empirically based uncertainty analysis. Ecological Modelling, 91, 139-152. 

Morgan, M.G., and Henrion, M. (1990). Uncertainty:  A Guide to Dealing with Uncertainty in Quantitative Risk 
and Policy Analysis, Cambridge University Press, New York. 

NARSTO (2005). Improving Emission Inventories for Effective Air Quality Management Across North America, 
NARSTO, June 2005. 

NCRP (National Council on Radiation Protection and Measurements). (1996). A Guide for Uncertainty Analysis 
in Dose and Risk Assessments Related to Environmental Contamination, NCRP Commentary No. 14, 
Bethesda, MD. 

Ogle, S.M., Breidt, F.J., Eve, M.D. and Paustian, K. (2003). Uncertainty in estimating land use and management 
impacts on soil organic carbon storage for U.S. agricultural lands between 1982 and 1997. Global Change 
Biology 9:1521-1542. 

Smith, A.E, Ryan, P.B. and Evans J.S. (1992). The effect of neglecting correlations when propagating 
uncertainty and estimating the population distribution of risk, Risk Analysis, 12:467-474. 

Spetzler, C.S., and von Holstein, S. (1975). Probability Encoding in Decision Analysis, Management Science, 
22(3). 

Statistics Finland. (2005). Greenhouse gas emissions in Finland 1990-2003. National Inventory Report to the 
UNFCCC, 27 May 2005. 

USEPA (1996). Summary Report for the Workshop on Monte Carlo Analysis, EPA/630/R-96/010, Risk 
Assessment Forum, U.S. Environmental Protection Agency, Washington, DC. 



Volume 1: General Guidance and Reporting  

3.66 2006 IPCC Guidelines for National Greenhouse Gas Inventories 

USEPA (1997). Guiding Principles for Monte Carlo Analysis, EPA/630/R-97/001, Risk Assessment Forum. U.S. 
Environmental Protection Agency, Washington, DC. 

USEPA (1999). Report of the Workshop on Selecting Input Distributions for Probabilistic Assessments, 
EPA/630/R-98/004, U.S. Environmental Protection Agency, Washington, DC, January 1999.  
http://www.epa.gov/ncea/input.htm 

Wackerly, D.D., Mendenhall III, W. and Scheaffer, R.L. (1996). Mathematical Statistics with Applications, 
Duxbury Press:  USA. 

Winiwarter, W. and Rypdal K. (2001). “Assessing the uncertainty associated with national greenhouse gas 
emission inventories:  a case study for Austria,” Atmospheric Environment, 35(22):5425-5440. 

Zhao, Y. and Frey, H.C. (2004a). “Development of Probabilistic Emission Inventory for Air Toxic Emissions for 
Jacksonville, Florida,” Journal of the Air & Waste Management Association, 54(11):1405-1421. 

Zhao, Y., and Frey, H.C. (2004b). “Quantification of Variability and Uncertainty for Censored Data Sets and 
Application to Air Toxic Emission Factors,” Risk Analysis, 24(3):1019-1034 (2004). 

Zheng, J. and Frey H.C. (2004). “Quantification of Variability and Uncertainty Using Mixture Distributions: 
Evaluation of Sample Size, Mixing Weights and Separation between Components,” Risk Analysis, 
24(3):553-571 (June 2004). 

 

 

 

 

 


	3 UNCERTAINTIES
	3.1 INTRODUCTION
	3.1.1 Overview of uncertainty analysis
	3.1.2 Overall structure of uncertainty analysis
	3.1.3 Key concepts and terminology
	3.1.4 Basis for uncertainty analysis
	3.1.5 Causes of uncertainty
	3.1.6 Reducing uncertainty
	3.1.7 Implications of methodological choice

	3.2 QUANTIFYING UNCERTAINTIES
	3.2.1 Sources of data and information
	3.2.1.1 Uncertainties associated with models
	3.2.1.2 Empirical data for sources and sinks and activity
	3.2.1.3 Expert Judgement as a source of information

	3.2.2 Techniques for quantifying uncertainties
	3.2.2.1 Uncertainty in models
	3.2.2.2 Statistical analysis of empirical data
	3.2.2.3 Methods for encoding Expert Judgements
	3.2.2.4 Good Practice Guidance for selecting  probability density functions

	3.2.3 Methods to combine uncertainties
	3.2.3.1 Approach 1: propagation of error
	3.2.3.2 Approach 2: Monte Carlo simulation
	3.2.3.3 Hybrid combinations of Approaches 1 and 2
	3.2.3.4 Comparison between Approaches
	3.2.3.5 Guidance on choice of Approach


	3.3 UNCERTAINTY AND TEMPORALAUTOCORRELATION
	3.4 USE OF OTHER APPROPRIATE TECHNIQUES
	3.5 REPORTING AND DOCUMENTATION
	3.6 EXAMPLES
	3.7 TECHNICAL BACKGROUND INFORMATION
	3.7.1 Approach 1 variables and equations
	3.7.2 Approach 1 – details of the equations for trend uncertainty
	3.7.3 Dealing with large and asymmetric uncertainties in the results of Approach 1
	3.7.4 Methodology for calculation of the contribution touncertainty

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




