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5 CROPLAND  136 

5.1 INTRODUCTION 137 

No Refinement 138 

5.2 CROPLAND REMAINING CROPLAND  139 

No Refinement 140 

5.2.1 Biomass 141 

5.2.1.1 CHOICE OF METHODS 142 

Carbon can be stored in the biomass of croplands that contain perennial woody vegetation including, but not limited 143 
to, monocultures such as tea, coffee, oil palm, coconut, rubber plantations, fruit and nut orchards, and polycultures 144 
such as agroforestry systems. The default methodology for estimating carbon stock changes in woody biomass is 145 
provided in Chapter 2, Section 2.2.1. This section elaborates this methodology with respect to estimating changes in 146 
carbon stocks in biomass in Cropland Remaining Cropland.  147 

The change in biomass is only estimated for perennial woody crops. For annual crops, increase in biomass stocks in a 148 
single year is assumed equal to biomass losses from harvest and mortality in that same year - thus there is no net 149 
accumulation of biomass carbon stocks.  150 

Changes in carbon in cropland biomass (∆CCCB) may be estimated from either: (a) annual rates of biomass gain and 151 
loss (Chapter 2, Equation 2.7) or (b) carbon stocks at two points in time (Chapter 2, Equation 2.8). The first approach 152 
(gain-loss method) provides the default Tier 1 method and can also be used at Tier 2 or 3 with refinements described 153 
below. The second approach (the stock-difference method) applies either at Tier 2 or Tier 3, but not Tier 1. It is good 154 
practice to improve inventories by using the highest feasible tier given national circumstances. It is good practice for 155 
countries to use a Tier 2 or Tier 3 method if carbon emissions and removals in Cropland Remaining Cropland is a key 156 
category and if the sub-category of biomass is considered significant. It is good practice for countries to use the 157 
decision tree in Figure 2.2 in Chapter 2 to identify the appropriate tier to estimate changes in carbon stocks in biomass. 158 

Tier 1  159 
The default method is to multiply the area of perennial woody cropland by a net estimate of biomass accumulation 160 
from growth and subtract losses associated with harvest or gathering or disturbance (according to Equation 2.7 in 161 
Chapter 2). Losses are estimated by multiplying a carbon stock value by the area of cropland on which perennial woody 162 
crops are harvested.   163 

Default Tier 1 assumptions are: all carbon in perennial woody biomass removed (e.g., biomass cleared and replanted 164 
with a different crop) is emitted in the year of removal; and perennial woody crops accumulate carbon for an amount 165 
of time equal to a nominal harvest/maturity cycle. The latter assumption implies that perennial woody crops accumulate 166 
biomass for a finite period until they are removed through harvest or reach a steady state where there is no net 167 
accumulation of carbon in biomass because growth rates have slowed and incremental gains from growth are offset by 168 
losses from natural mortality, pruning or other losses. 169 

Under Tier 1, updated default factors shown in updated Table 5.1, Table 5.2 and Table 5.3, are applied to nationally 170 
derived estimates of land areas.   For perennial cropland C uptake, multiply unharvested area that is still younger than 171 
the age of maturity by the above-ground growth rate.  If harvest and immature areas are unknown, it is assumed that 172 
in cropland remaining cropland, the annual harvest area is equal to total area divided by rotation length in years.  For 173 
perennial cropland C losses, the updated tables provide two types of carbon stocks of perennial woody biomass per 174 
area. One is maximum carbon stock at harvest/maturity state (Lmax). This is appropriate for estimating harvest loss due 175 
to crop renewal. The other is the mean carbon stock over the whole lifetime of the crop (Lmean). This is used for loss 176 
due to conversion to another land use where the age of converted cropland is unknown. These values should be used 177 
appropriately to calculate carbon losses following the guidance in 5.2.1.2.  178 
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Tier 2  179 
Two methods can be used for Tier 2 estimation of changes in biomass. Method 1 (also called the Gain-Loss Method) 180 
requires the biomass carbon loss to be subtracted from the biomass carbon increment for the reporting year (Chapter 181 
2, Equation 2.7).  Method 2 (also called the Stock-Difference Method) requires biomass carbon stock inventories for 182 
a given land-use area at two points in time (Chapter 2, Equation 2.8). 183 

A Tier 2 estimate, in contrast, will generally develop estimates for the major woody crop types by climate zones, using 184 
country-specific carbon accumulation rates and stock losses where possible or country-specific estimates of carbon 185 
stocks at two points in time. Under Tier 2, carbon stock changes are estimated for above-ground and below-ground 186 
biomass in perennial woody vegetation. Tier 2 methods involve country-specific or region-specific estimates of 187 
biomass stocks by major cropland types and management system, and estimates of stock change as a function of major 188 
management system (e.g., dominant crop, productivity management).  To the extent possible, it is good practice for 189 
countries to incorporate changes in perennial crop or tree biomass using country-specific or region-specific data.  190 
Where data are missing, default data may be used.   191 

Tier 3  192 
A Tier 3 estimate will use a highly disaggregated Tier 2 approach or a country-specific method involving process 193 
modelling and/or detailed measurement. Tier 3 involves inventory systems using statistically-based sampling of carbon 194 
stocks over time and/or process models, stratified by climate, cropland type and management regime. For example, 195 
validated species-specific growth models that incorporate management effects such as harvesting and fertilization, 196 
with corresponding data on management activities, can be used to estimate net changes in cropland biomass carbon 197 
stocks over time. Models, perhaps accompanied by measurements like those in forest inventories, can be used to 198 
estimate stock changes and extrapolate to entire cropland areas, as in Tier 2. 199 

Key criteria in selecting appropriate models are that they are capable of representing all of the management practices 200 
that are represented in the activity data. It is critical that the model be validated with independent observations from 201 
country-specific or region-specific field locations that are representative of climate, soil and cropland management 202 
systems in the country. 203 

5.2.1.2 CHOICE OF EMISSION FACTORS 204 

Emission and removal factors required to estimate the changes in carbon stocks include (a) annual biomass 205 
accumulation or growth rate, and (b) biomass loss factors which are influenced by such activities as removal 206 
(harvesting), fuelwood gathering and disturbance.      207 

Above-ground woody biomass growth rate 208 

Tier 1  209 
Updated Tables 5.1 to 5.3 provide estimates of biomass stocks and/or biomass growth rates and losses for major 210 
climatic regions and agricultural systems. Updated Table 5.1 provides default values of biomass growth and losses 211 
applicable to agroforestry cropping systems in broad climate regions.  Agroforestry systems are defined in Table 5.5. 212 
Updated Table 5.2 provides default sequestration rates in above- and below-ground biomass for agro-forestry systems 213 
by region and climate zone. Updated Table 5.3 provides default values of biomass growth and losses for perennial 214 
cropping monoculture systems.  Countries should use appropriate default values of above-ground biomass growth rate 215 
relative to each climate region and cropping system from updated Table 5.1, Table 5.2 or Table 5.3.  However, given 216 
the large variation in cropping systems, incorporating trees or tree crops, it is good practice to seek national data on 217 
above-ground woody biomass growth rate. 218 

Tier 2  219 
Annual woody biomass growth rate data can be, at a finer or disaggregated scale, based on national data sources for 220 
different cropping and agroforestry systems. Rates of change in annual woody biomass growth rate should be estimated 221 
in response to changes in specific management/land-use activities (e.g., fertilization, harvesting, thinning). Results 222 
from field research should be compared to estimates of biomass growth from other sources to verify that they are 223 
within documented ranges. It is important, in deriving estimates of biomass accumulation rates, to recognize that 224 
biomass growth rates will occur primarily during the first 20 years following changes in management, after which time 225 
the rates will tend towards a new steady-state level with little or no change occurring unless further changes in 226 
management conditions occur.  227 

 228 
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TABLE 5.1 (UPDATED1) 
DEFAULT COEFFICIENTS FOR ABOVE-GROUND BIOMASS AND HARVEST/MATURITY CYCLES IN AGROFORESTRY SYSTEMS 

CONTAINING PERENNIAL SPECIES2 

Climate 
Region 

Agroforestry 
system3 N 

Tree 
density 
 
(Stems 
ha-1) 

Maximum 
above-ground 
biomass carbon 
stock at harvest 
***Lmax 

Harvest 
/Maturity 
cycle** 

Biomass 
accumulatio
n rate (G)* 

Mean 
biomass 
carbon 
loss *** 
(Lmean) 
(tonnes C 
ha-1 yr-1)  (tonnes C ha-1) (yr) (tonnes C 

ha-1 yr-1) 

 
 
 
 
Tropical 

Fallow 69 6074 22.1 ± 52% 5 ± 50% 4.42 ± 15% 11.1 ± 26% 

Hedgerow 3 1481 9.4 ± 59% 20 ± 50% 0.47 ± 31% 4.7 ± 29% 

Alley cropping 90 8568 47.4 ± 52% 20 ± 50% 2.37 ± 13% 23.7 ± 26% 

Multistrata 51 929 65.0 ± 54% 20 ± 50% 3.25 ± 21% 32.5 ± 27% 

Parkland 7 152 11.8 ± 76% 20 ± 50% 0.59 ± 58% 5.9 ± 38% 

Shaded 
Perennial 

28 4236 
48.0 ± 55% 

20 ± 50% 2.4 ± 24% 
24.0 ± 28% 

Silvoarable 22 880 72.2 ± 60% 20 ± 50% 1.61 ± 33% 36.1 ± 30% 

Silvopasture 18 1609 58.2 ± 80% 20 ± 50% 2.91 ± 63% 29.1 ± 40% 

 
 
Temperate 

Hedgerow 12 816 26.1 ± 59% 30 ± 33% 0.87 ± 49% 13.1 ± 29% 

Silvoarable 14 202 27.3 ± 62% 30 ± 33% 0.91 ± 52% 13.7 ± 31% 

Silvopasture 10 854 69.9 ± 61% 30 ± 33% 2.33 ± 52% 35.0 ± 31% 

*Source: biomass carbon accumulation rate, G, from Cardinael et al (2018).  Uncertainty = 95% CI.   
** Harvest/Maturity cycle and uncertainty are nominal estimates. 
*** calculated 
1 Replaces Table 5.1 from the 2006 IPCC Guidelines 
2 See Table 5.3 for monocultures 
3 See Table 5.4 for agroforestry system definitions 

 229 

 230 

 231 

Tier 3  232 
For Tier 3, highly disaggregated factors for biomass accumulation are needed. These may include categorisation 233 
of species, specific for growth models that incorporate management effects such as harvesting and fertilization. 234 
Measurement of above-ground biomass, similar to forest inventory with periodic measurement of above-ground 235 
biomass accumulation, is necessary.   236 
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TABLE 5.2 (UPDATED1) 
DEFAULT COEFFICIENTS FOR ABOVE- AND BELOW-GROUND BIOMASS IN AGROFORESTRY SYSTEMS CONTAINING 

PERENNIAL SPECIES2 

Climate 
Region 

Region 

Agroforestry 
system 

N
* 

Tree 
density 
 
(stems 
ha-1) 

Above-ground 
biomass accumulation 
rate (G) 

Below-ground 
biomass accumulation 
rate  

  (tonnes C ha-1 yr-1) (tonnes C ha-1 yr-1) 

Cool 
Temperate 

Asia Silvoarable 2 833 2.97 ± 75% 0.77 

Europe Silvopasture 4 225 2.17 ± 47% 0.56 

 
North 
America 

Hedgerow 12 816 0.87 ± 49% 0.23 

Silvoarable 7 111 0.59 ± 29% 0.14 

Silvopasture 1 571 0.97 ± 75% 0.11 

South 
America Silvopasture 1 400 1.18 ± 75% 0.52 

 
All regions 

Hedgerow 12 816 0.87 ± 49% 0.23 

Silvoarable 9 271 1.12 ± 62% 0.28 

Silvopasture 6 312 1.81 ± 44% 0.48 

Warm 
Temperate 

Europe Silvoarable 5 76 0.52 ± 102% 0.14 

Silvopasture 4 1667 3.11 ± 91% 1.03 

 
Temperate 
(ALL) 

 
ALL 
Regions 

Hedgerow 12 816 0.87 ± 49% 0.23 

Silvoarable 14 202 0.91 ± 54% 0.23 

Silvopasture 10 854 2.33 ± 52% 0.70 

 
 
 
 
 
 
 
Tropical 
Dry 

 
 
Africa 

Fallow 22 - 5.61 ± 21% 2.54 

Hedgerow 2 1667 0.48 ± 75% 0.12 

Alley cropping 20 1000 1.88 ± 28% 0.45 

Multistrata 3 2771 1.63 ± 26 
% 0.46 

Parkland 7 152 0.59 ± 58% 0.21 

 
 
Asia 

Fallow 9 1250 5.61 ± 59% 0.53 

Alley cropping 15 10430 2.79 ± 24% 0.67 

Silvoarable 6 540 6.24 ± 36 
% 1.62 

Silvopasture 17 1609 3.07 ± 62%% 0.84 

 
 
 
ALL 
Regions 

Fallow 31 1250 5.61 ± 22% 1.95 

Hedgerow 2 1667 0.48 ± 75% 0.12 

Alley cropping 35 5041 2.27 ± 19% 0.54 

Multistrata 3 2771 1.63 ± 26% 0.46 

Parkland 7 152 0.59 ± 58% 0.21 

Silvoarable 6 540 6.24 ± 36% 1.62 

Silvopasture 17 1609 3.07 ± 62% 0.84 
  237 
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TABLE 5.2 (CONTINUED) 
DEFAULT COEFFICIENTS FOR ABOVE- AND BELOW-GROUND BIOMASS IN AGROFORESTRY SYSTEMS CONTAINING 

PERENNIAL SPECIES2 

Climate 
Region 

Region 

Agroforestry 
system N 

Tree 
density 

Above-ground 
biomass accumulation 
rate (G) 

Below-ground 
biomass accumulation 
rate  

 (stems 
ha-1) (tonnes C ha-1 yr-1) (tonnes C ha-1 yr-1) 

 
 
 
 
 
 
 
 
 
 
 
Tropical 
Moist 

 
 
Africa 

Alley 
cropping 28 7233 2.75 ± 22% 0.59 

Multistrata 3 1902 2.98 ± 28% 0.72 

Shaded 
Perennial 5 - 1.82 ± 34% 0.44 

Silvoarable 5 - 5.09 ± 39% 1.22 

 
 
Asia 

Fallow 1 - 5.30 ± 75% 1.27 

Multistrata 21 628 3.03 ± 30% 0.73 

Shaded 
Perennial 2 1481 2.07 ± 36%  0.50 

Silvoarable 11 1065 1.5 ± 44% 0.35 

Central 
America 

Alley 
cropping 15 25000 2.28 ± 23% 0.55 

South America Shaded 
Perennial 6 4131 3.06 ± 66%  0.71 

 
 
ALL 
Regions 

Fallow 1 - 5.30 ± 75% 1.27 

Alley 
cropping 43 13733 2.59 ± 17% 0.58 

Multistrata 24 802 3.02 ± 26% 0.73 

Shaded 
Perennial 13 3071 2.43 ± 40% 0.57 

Silvoarable 16 1065 2.63 ± 42% 0.62 

Tropical 
montane 

Africa Fallow 30 7521 3.12 ± 15% 1.12 

 

 

 

 

 

Tropical 
Wet 

 
 
Africa 

Fallow 3 - 6.21 ± 53% 1.49 

Multistrata 2 - 2.89 ± 75% 0.69 

Shaded 
Perennial 1 1477 3.16 ± 75% 0.71 

 
 
 
Asia 

Fallow 2 - 2.00 ± 75% 0.48 

Multistrata 11 - 4.83 ± 50%% 1.16 

Shaded 
Perennial 2 1608 1.79 ± 75% 0.42 

Silvopasture 1 - 0.06 ± 75% 0.01 

 
 
Central 
America 

Hedgerow 1 1110 0.43 ± 75% 0.10 

 
Alley 
cropping 

12 1203 1.88 ± 51% 0.45 
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Multistrata 1 - 3.25 ± 75% 0.78 

Shaded 
Perennial 10 5967 2.28 ± 42% 0.51 
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TABLE 5.2 (CONTINUED) 
DEFAULT COEFFICIENTS FOR ABOVE- AND BELOW-GROUND BIOMASS IN AGROFORESTRY SYSTEMS CONTAINING 

PERENNIAL SPECIES2 

Climate 
Region 

Region 

Agroforestry 
system N 

Tree 
density 
 
(stems 
ha-1) 

Above-ground 
biomass accumulation 
rate (G) 

Below-ground 
biomass accumulation 
rate  

  (tonnes C ha-1 yr-1) (tonnes C ha-1 yr-1) 

Tropical 
Wet 

South America 

Fallow 2 - 4.76 ± 75% 1.14 

Multistrata 10 475 2.6 ± 42% 0.70 

Shaded 
Perennial 2 - 2.96 ± 75% 0.71 

ALL 
Regions 

Fallow 7 - 4.59 ± 45% 1.10 

Hedgerow 1 1110 0.43 ± 75% 0.10 

Alley cropping 12 1203 1.88 ± 51% 0.45 

Multistrata 24 475 3.25 ± 31% 0.91 

Shaded 
Perennial 15 4766 2.36 ± 29% 0.54 

Silvopasture 1 - 0.06 ± 75%  0.01 

Tropical 
ALL 

ALL 
 Regions 

Fallow 69 6074 4.42 ± 15% 1.49 

Hedgerow 3 1481 0.47 ± 31% 0.11 

Alley 
cropping 90 8568 2.37 ± 13% 0.55 

Multistrata 51 929 3.25 ± 21% 0.80 

Parkland 7 152 0.59 ± 58% 0.21 

Shaded 
Perennial 28 4236 2.40 ± 24% 0.55 

Silvoarable 22 880 3.61 ± 33% 0.89 

Silvopasture 18 1609 2.91 ± 63% 0.79 

Source: Cardinael et al (2018). 
1 Replaces Tables 5.2 and 5.3 from the 2006 IPCC Guidelines 
2 See Table 5.3 for monocultures. 
* Where N < 3 a nominal uncertainty estimate of ± 75% is given. 
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TABLE 5. 3 (UPDATED1) 
DEFAULT MAXIMUM AND TIME-AVERAGED MEAN ABOVE-GROUND BIOMASS AND ABOVE GROUND BIOMASS ACCUMULATION 

RATE FOR PERENNIAL CROPLAND MONOCULTURES (TONNES HA-1)   

Domain Cropping 
system 

Maximum 
above-ground 

biomass carbon 
stock at harvest 

(Lmax) 
(tonnes C ha-1) 

Harvest 
/Maturity 

cycle 
(yr) 

Above-ground 
biomass 

accumulation 
rate (G) 

(tonnes C ha-1 
yr-1) 

Mean 
biomass 

carbon stock 
(Lmean) 

(tonnes C 
ha-1) 

References 

Temperate 

Olive 9.1 ± 15% 20 ± 23% 0.46 ± 27% 6.9 ± 25% [1] 

Orchard  
e.g. apple 

8.5 ± 19% 20 ± 42% 0.43 ± 46% 6.4 ± 25% [1] 

Vine  
e.g. grape 

5.5 ± 18% 20 ± 18% 0.28 ± 26% 2.8 ± 25% [1] 

Short Rotation 
Coppice 12.69 ± 40% 4 3.2 ± 40% 6.35 ± 40% 

[2] + adjust-
ment from 

[3] 

Tropical 
 

Oil palm 
Elaeis 
guineensis 

60.0 ± 41% 25 2.4 ± 41% 30.0 ± 41% [4] 

Rubber Hevea 
brasiliensis 80.2 ± 15% 27 3.0 ± 13% 40.1 ± 15% [5] 

All Tea Camelia 
sinensis 20.7 ± 50% 30 0.7 ± 25% 18.3 ± 25% [6] 

[1] Canaveira,  P. et al  2018.  
[2] Hauk S, Knoke T, Wittkopf S 2013  
[3] Krasuska E, Rosenqvist H. 2012  
[4] Chave, J. 2015  
[5] Blagodatsky, S., Xu, J., Cadisch, G.  2016  
[6] Zhang M, et al. 2017 
 
1 Updated Table 5.3 from 2006 IPCC Guidelines 
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Below-ground biomass accumulation 242 

Tier 1  243 
The default assumption is that there is no change in below-ground biomass of perennial trees in agricultural 244 
systems. There are limited below-ground biomass data for agricultural systems. 245 

Tier 2  246 
This includes the use of actually measured below-ground biomass data from perennial woody vegetation. 247 
Estimating below-ground biomass accumulation is recommended for Tier 2 calculation. Estimates are provided in 248 
Table 5.2. Root-to-shoot ratios show wide ranges in values at both individual species (e.g., Anderson et al., 1972) 249 
and community scales (e.g., Jackson et al., 1996; Cairns et al., 1997). Limited data is available for below ground 250 
biomass thus, as far as possible, empirically-derived root-to-shoot ratios specific to a region or vegetation type 251 
should be used.  252 

Tier 3  253 
This includes the use of data from field studies identical to forest inventories and modelling studies, if stock 254 
difference method is adopted.  255 

Biomass losses from removal,  fuelwood and disturbance 256 

Tier 1  257 
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The default assumption is that all biomass lost is assumed to be emitted in the same year. Limited biomass removal, 258 
fuelwood gathering and disturbance loss data from cropland source are available. FAO provides total roundwood 259 
and fuelwood consumption data, but not separated by source (e.g., Cropland, Forest Land, etc.). It is recognized 260 
that statistics on fuelwood are extremely poor and uncertain worldwide. Default removal and fuelwood gathering 261 
statistics (discussed in Chapter 4, Section 4.2) may include biomass coming from cropland such as when firewood 262 
is harvested from home gardens. Thus, it is necessary to ensure no double counting of losses occurs. If no data are 263 
available for roundwood or fuelwood sources from Cropland, the default approach will include losses in Forest 264 
Land (Section 4.2) and will exclude losses from Cropland. Updated Tables 5.1 and 5.3 provide default values of 265 
maximum carbon stock per area (Lmax) and mean carbon stock per area (Lmean). Countries should use Lmax in 266 
updated Table 5.1 and 5.3 in the case that perennial woody biomass is replaced at or over the year of 267 
harvest/maturity under a nominal harvest/maturity cycle assuming that perennial cropland is harvested and 268 
regenerated back into perennial cropland. Carbon losses are estimated by multiplying annual area of 269 
harvested/replaced cropland by Lmax.  Countries should use Lmean in updated Table 5.1 and 5.3 in the case that 270 
carbon removal has occurred by land use change where the age of the perennial crop removed is unknown. Carbon 271 
losses are estimated by multiplying the annual area of land conversion by Lmean. When perennial cropland is 272 
converted to another type of cropland, losses are reported in cropland remaining cropland. When perennial 273 
cropland is converted to non-cropland land uses, losses are reported in relevant land converted categories 274 

Tiers 2  and 3  275 
National level data at a finer scale, based on inventory studies or production and consumption studies according 276 
to different sources, including agricultural systems, can be used to estimate biomass loss. These can be obtained 277 
through a variety of methods, including estimating density (crown coverage) of woody vegetation from air photos 278 
(or high resolution satellite imagery) and ground-based measurement plots. Species composition, density and 279 
above-ground vs. below-ground biomass can vary widely for different cropland types and conditions and thus it 280 
may be most efficient to stratify sampling and survey plots by cropland types. General guidance on survey and 281 
sampling techniques for biomass inventories is given in Chapter 3, Annex 3A.3.   282 

5.2.1.3 CHOICE OF ACTIVITY DATA 283 

Activity data in this section refer to estimates of land areas of growing stock and harvested land with perennial 284 
woody crops. The area data are estimated using the approaches described in Chapter 3. They should be regarded 285 
as strata within the total cropland area (to keep land-use data consistent) and should be disaggregated depending 286 
on the tier used and availability of growth and loss factors. Examples of Cropland subcategories are given in 287 
updated Table 5.4. 288 

Tier 1  289 
Under Tier 1, annual or periodic surveys are used in conjunction with the approaches outlined in Chapter 3 to 290 
estimate the average annual area of established perennial woody crops and the average annual area of perennial 291 
woody crops that are harvested or removed. The area estimates are further sub-divided into general climate regions 292 
or soil types to match the default biomass gain and loss values. Under Tier 1 calculations, international statistics 293 
such as FAO databases, and other sources can be used to estimate the area of land under perennial woody crops. 294 

Tier 2  295 
Under Tier 2, more detailed annual or periodic surveys are used to estimate the areas of land in different classes 296 
of perennial woody biomass crops. Areas are further classified into relevant sub categories such that all major 297 
combinations of perennial woody crop types and climatic regions are represented with each area estimate. These 298 
area estimates must match any country-specific biomass carbon increment and loss values developed for the Tier 299 
2 method. If country-specific finer resolution data are only partially available, countries are encouraged to 300 
extrapolate to the entire land base of perennial woody crops using sound assumptions from best available 301 
knowledge.  302 

Tier 3  303 
Tier 3 requires high-resolution activity data disaggregated at sub-national to fine grid scales. Similar to Tier 2, 304 
land area is classified into specific types of perennial woody crops by major climate and soil categories and other 305 
potentially important regional variables (e.g., regional patterns of management practices). Furthermore, it is good 306 
practice to relate spatially explicit area estimates with local estimates of biomass increment, loss rates, and 307 
management practices to improve the accuracy of estimates. 308 

  309 
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TABLE 5. 4 (UPDATED1)  
EXAMPLES OF CLASSIFICATION OF PERENNIAL CROP SYSTEMS 

  Crop system Description 

Agroforestry 

Fallows 

Land rested from cultivation, but comprises planted and managed trees, often 
leguminous, shrubs and herbaceous cover crops before it is cultivated again. 
Includes improved and natural fallows, and can be implemented before any of the 
following systems.   

Hedgerows Linear plantation around fields, including shelterbelts, windbreaks, boundary 
plantings and live fences. 

Alley cropping  

Fast-growing, usually leguminous, woody species (mainly shrubs) grown in crop 
fields, usually at high densities. The woody species are regularly pruned and the 
prunings are applied as mulch into the alleys as a source of organic matter and 
nutrients. Also known as intercropping. 

Multistrata 
systems 

Multistorey combinations of a large number of various trees and perennial and 
annual crops. They include home gardens and agroforests. 

Parklands Intercropping of agricultural crops or grazing land under low density mature 
scattered trees. Typical of dry areas like Sahel (e.g. Faidherbia albida). 

Shaded 
perennial-crop 
systems 

Growing shade-tolerant species such as cacao and coffee under, or in between, 
overstorey shade trees that can be used for timber or other commercial tree products 

Silvoarable 
systems 

Woody species planted in parallel tree rows to allow mechanization and 
intercropped with an annual crop; usually used for timber (e.p. Juglans spp), but 
also for fuel (e.p. Populus spp). Usually low tree density per hectare. 

Silvopastoral 
systems Woody species planted on permanent grasslands, often grazed. 

  Plantations Monoculture plantation crops such as tea, coffee and cacao grown without shade 
trees, as well as oil palms, rubber and coconuts. 

Monoculture Vine systems A plantation of vines, typically producing grapes used for winemaking, but also 
kiwifruit or passionfruit. 

  
Orchards 
systems 

Land planted with woody vegetation, often fruit trees (eg. apple, pear, plum, nut 
trees). Understory vegetation is usually mowed or grazed. 

Source: Cardinael et al (2018), adapted from Nair et al (2009) 
Within the FAOSTAT land use classification system most perennial crop systems will be classified under 6650 (Land under permanent 
crops). Fallows may be reported under 6655 (Land with temporary fallow), and parklands and silvopastoral systems under 6655 (Land 
under permanent meadows and pastures), Land that meets the forest definition will be reported as Forest land. 
1Updated Table 5.4 in the 2006 IPCC Guidelines 

 310 

5.2.1.4 CALCULATION STEPS FOR TIER 1 AND TIER 2 311 

No Refinement 312 

5.2.1.5 UNCERTAINTY ASSESSMENT 313 

No Refinement 314 

5.2.2  Dead organic matter 315 

No refinement 316 
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5.2.3 Soil carbon 318 

Cropland management modifies soil C stocks to varying degrees depending on how specific practices influence C 319 
input and output from the soil system (Paustian et al., 1997a; Bruce et al., 1999; Ogle et al., 2005).  The main 320 
management practices that affect soil C stocks in croplands are the type of residue management, tillage 321 
management, fertilizer management (both mineral fertilizers and organic amendments), choice of crop and 322 
intensity of cropping management (e.g., continuous cropping versus cropping rotations with periods of bare fallow), 323 
irrigation management, and mixed systems with cropping and pasture or hay in rotating sequences.  In addition, 324 
drainage and cultivation of organic soils reduces soil C stocks (Armentano and Menges, 1986).  325 

General information and guidance for estimating changes in soil C stocks are found in Section 2.3.3 of Chapter 2 326 
(including equations).  That section should be read before proceeding with specific guidelines dealing with 327 
Cropland soil C stocks. The total change in soil C stocks for Cropland is estimated using Equation 2.24 (Chapter 328 
2), which combines the change in soil organic C stocks for mineral soils and organic soils; and stock changes 329 
associated with soil inorganic C pools (Tier 3 only).  This section provides specific guidance for estimating soil 330 
organic C stock changes. Soil inorganic C is fully covered by Section 2.3.3.1. 331 

To account for changes in soil C stocks associated with Cropland Remaining Cropland, countries need at a 332 
minimum, estimates of the Cropland area at the beginning and end of the inventory time period. If land-use and 333 
management data are limited, aggregate data, such as FAO statistics on Cropland, can be used as a starting point, 334 
along with expert knowledge about the approximate distribution of land management systems (e.g., medium, low 335 
and high input cropping systems, etc.). Cropland management classes must be stratified according to climate 336 
regions and major soil types, which can either be based on default or country-specific classifications.  This can be 337 
accomplished with overlays of land use on suitable climate and soil maps.   338 

5.2.3.1 CHOICE OF METHOD 339 

Inventories can be developed using a Tier 1, 2, or 3 method, with each successive Tier requiring more detail and 340 
resources than the previous one.  It is also possible that countries will use different tiers to prepare estimates for 341 
the separate subcategories of soil C (i.e., soil organic C stocks changes in mineral soils and organic soils, and stock 342 
changes associated with soil inorganic C pools).  Decision trees are provided for mineral soils (Figure 2.5) and 343 
organic soils (Figure 2.6) in Section 2.3.3.1 (Chapter 2) to assist inventory compilers with selection of the 344 
appropriate tier for their soil C inventory.  345 

Mineral soils 346 

Tier 1  347 
For mineral soils, the estimation method is based on changes in soil organic C stocks over a finite period following 348 
changes in management that impact soil organic C.  Equation 2.25 (Chapter 2) is used to estimate change in soil 349 
organic C stocks in mineral soils by subtracting the C stock in the last year of an inventory time  period (SOC0) 350 
from the C stock at the beginning of the inventory time period (SOC(0 –T)) and dividing by the time dependence of 351 
the stock change factors (D).  In practice, country-specific data on land use and management must be obtained and 352 
classified into appropriate land management systems (e.g., high, medium and low input cropping), including tillage 353 
management, and then stratified by IPCC climate regions and soil types.  Soil organic C stocks (SOC) are estimated 354 
for the beginning and end of the inventory time period using default reference carbon stocks (SOCref) and default 355 
stock change factors (FLU, FMG, FI ).   356 

Tier 2  357 
Developing Country-Specific Factors for the Default Equations 358 

For Tier 2, the same basic equations are used as in Tier 1 (Equation 2.25), but country-specific information is 359 
incorporated to specify better the stock change factors and reference C stocks with more disaggregation of climate 360 
regions, soil types, and/or the land management classification.   361 

Steady-State Method 362 

The Tier 2 steady-state method is a three sub-pool steady-state C model that provides an optional alternative 363 
method for estimating soil C stock changes in the 0-30 cm layer of mineral soils in Cropland Remaining Cropland.2  364 
                                                           
2 The Tier2 Steady state method may be applicable to other land uses, but this will require further development 
and parameterisation than provided in this section. 
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This is an approach with intermediate complexity between Tier 1 and Tier 3 methods, and is based on a steady-365 
state solution to the three soil organic C sub-pools in the Century ecosystem model (Ogle et al. 2012; Parton et al. 366 
1987; Paustian et al. 1997b). 367 

The Tier 2 steady-state method addresses more complexity in soil C dynamics than Tier 1 or Tier 2 using default 368 
equations, by subdividing soil organic C into three separate sub-pools with fast (Active sub-pool), intermediate 369 
(Slow sub-pool), and long turnover times (Passive sub-pool).  The turnover time of C within each sub-pool 370 
determines the length of time that C remains in the soil. The Tier 2 steady-state method incorporates spatial and 371 
temporal variation in climate, organic carbon inputs to soils, soil properties and management practices. However, 372 
compilers can further develop and/or parameterise this model given appropriate datasets, which would be a Tier 3 373 
method (See Section 2.5.2 for more information about developing a Tier 3 model-based approach).  See Boxes 374 
5.1A and 5.1B for more information about the method. 375 
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BOX 5.1A (NEW GUIDANCE)  376 
UNDERSTANDING THE BASIS FOR THE TIER 2 STEADY STATE METHOD 377 

 378 

The Tier 2 steady-state method, based on a soil C model, features intermediate complexity between 379 
Tier 1 and Tier 3 methods.  It allows a compiler to estimate C stock changes in a more disaggregated 380 
way compared to Tier 1, but lacks the full complexity of Tier 3 methods. The model parameters 381 
were determined using a Bayesian Calibration method (See Annex 5A.3), and application of this 382 
method will generate SOC stock change factor that are specific to climate, soil and management 383 
conditions in a country.  Consequently, the resulting stock change factors are more disaggregated 384 
than the default Tier 1 methods that are derived at a global scale with limited disaggregation to 385 
broadly-defined climate regions.  386 

It is noteworthy that Tier 2 methods are often based directly on the Tier 1 equations with country-387 
specific factors, but this is not a requirement for a Tier 2 method (See Volume 4, Chapter 1, Box 388 
1.1). This method is analogous to the Tier 2 methods for estimating CH4 emissions from enteric 389 
fermentation (Volume 4, Chapter 10), with a set of equations for calculating gross energy intake in 390 
order to derive a country-specific emission factor. These equations can be used together with 391 
country-specific data to derive emission/stock change factors that are more specific to the conditions 392 
in the country.  In addition, The Tier 2 steady-state method uses management activity data that is 393 
typically more available in a country than that required to apply the methods for the default 394 
equations.  The Tier 1 equations require detailed information on the combination of crops types, 395 
tillage practices, manure amendments, mineral fertilisation, irrigation management, grazing 396 
management, green manures, and fallows for individual parcels of land in the inventory. Although 397 
several of these activity data are needed for the Tier 2 steady-state method (tillage practices, manure 398 
amendments, and irrigation management), much of the data requirements with the default equations 399 
are represented by the C inputs to the soil term derived from crop yields, thereby eliminating several 400 
data requirements. 401 

This method differs from Tier 3 methods that utilize process-based models in that the modelled 402 
results represent steady-state conditions with the Tier 2 method, and thus does not yield a fully 403 
dynamic time series by simulating changes in management and environmental conditions through 404 
time. In addition, the steady-state method has about 30 parameters compared to the 100s to 1000s 405 
parameters that are often found in process-based models. Consequently, the data and resource 406 
requirements are considerably less intensive than typical process-based model applications (See 407 
examples in Box 2.2D, Chapter 2, Volume IV).  408 

The Tier 2 steady state method introduces additional interannual variation into the final results 409 
compared to Tier 1, by representing the impact of drivers such as weather on C inputs to soils and 410 
losses associated with decomposition of soil organic matter. Using this method may require 411 
additional quality assurance, quality control and verification (see Volume 1, Chapter 6, Section 412 
6.11). 413 

 414 
 415 
 416 

 417 

 418 
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BOX 5.1B (NEW GUIDANCE) 419 
DESCRIPTION OF THE TIER 2 STEADY STATE METHOD FOR ESTIMATING MINERAL SOIL ORGANIC 420 

CARBON STOCK CHANGES 421 

The Tier 2 steady-state method is adapted from the Century Ecosystem Model (Parton et al. 1987) 422 
and estimates changes in soil organic C for the top 30cm of the soil profile. In this model, the stock 423 
of the soil carbon sub-pools is initialised by running the model with climate and carbon input data 424 
associated for a period of 5-20 years prior to the start of the inventory (or longer if data are available). 425 
A proportion of biomass C (C input to the soil) is transferred to soil litter, and divided into structural 426 
and metabolic components1. The structural component is composed of more recalcitrant, ligno-427 
cellulose plant materials. The metabolic component is composed of more readily decomposed 428 
organic matter. Decomposition products are transferred to soil organic matter that is composed of 429 
three sub-pools, active, slow and passive. The active sub-pool is microbial (bacteria and fungi) 430 
biomass and associated metabolites with a rapid turnover (months to years), the slow sub-pool has 431 
intermediate stability and turnover (decades), and the passive sub-pool is mineral-protected C and 432 
microbial decomposition products with long turnover times (centuries).  Irrespective of the turnover 433 
time the approach is used to estimate the stock of each sub-pool and how they change over time.  434 
The total soil organic carbon stock and stock change is calculated as the sum of the values derived 435 
for each sub-pool. 436 

 437 
Decomposition rates for sub-pools depend on the decay rate constants, temperature effects, and 438 
moisture effects. Decomposition of the active and slow sub-pools is also influenced by the soil 439 
texture (sand content) and tillage practice. Sub-pools with longer turnover times imply that the C 440 
remains in the soil for more years before the organic matter is decomposed and carbon is respired as 441 
CO2 by the soil decomposer community. As decomposition occurs in each sub-pool, some of the 442 
decomposing C is transferred to other sub-pools and components (arrows in the diagram) and some 443 
of the C is converted into CO2 and lost from the soil (not identified with arrows). The transfer of C 444 
to the next sub-pool or component at steady state is determined by the transfer coefficients (f).  445 
Higher transfer coefficients imply that more of the C is transferred to the next sub-pool or component 446 
rather than converted into CO2. The steady-state solution for this model is discussed further in 447 
Paustian et al. (1997b) and Ogle et al. (2012).  448 
1 This approach is not intended to be used for estimation of dead organic matter. Compilers should apply the dead organic 449 
matter methods in section 5.2.2. 450 
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The land base is stratified as fine as possible to include the spatial variation in climate, soil properties, irrigation, 451 
and tillage practices.  However, there will be practical limits to the level of stratification given the resolution of 452 
data and national circumstances for inventory compilation. The method can be applied by subdividing the country 453 
into grid cells or regions, such as counties, districts or municipalities. Each grid cell or region would contain a 454 
single combination of climate, soil properties and tillage practices and have an area of land assigned to the unit. 455 
Within each grid cell or region, the compiler will determine the C input using country-specific equations, or 456 
alternatively a generic equation can be used (Equation 5.0H). Compilers will also need values for the parameters 457 
defining the quality of the C input (lignin and nitrogen content) or use generic values available in Tables 5.5B and 458 
5.5C. The type of tillage applied within each grid cell or region will need to be compiled to determine the correct 459 
value for tillage parameter. Monthly average temperature, precipitation and potential evapotranspiration is needed 460 
for each grid cell or region.  This information is available from global datasets, such as the CRU climate dataset3, 461 
if country-specific data are not available. The average sand content is needed for each grid cell or region, which is 462 
available from Harmonized World Soil Database4  or from Soil Grids5, if country-specific data are not available. 463 
If global data sources are used, it is important to understand and acknowledge the uncertainty associated with these 464 
data products to estimate confidence intervals for the resulting changes in soil C stocks.   465 

The following sections provide the equations and steps involved with application of the method within a grid cell 466 
or region (e.g., counties, districts or municipalities).  The equations estimate water and temperature effects on 467 
decomposition; the size of the active, slow and passive soil carbon sub-pools; and the change in total SOC.  The 468 
values of default parameters are given in Table 5.5A. All constants in the equations are considered globally 469 
applicable and should not be altered when applying this Tier 2 steady-state method. The change in soil C stock is 470 
calculated annually, multiplied by the area of the grid cell or region and the product summed across all grid cells 471 
or regions to determine the annual inventory soil C stock change.   472 

   473 

Equat ions for the Tier  2-  Steady State  Method for Mineral  Soi l s  474 

Calculate  SOC Stock Changes  475 
 476 

The change in SOC stock is calculated using Equation 5.0A. 477 

EQUATION 5.0A. (NEW GUIDANCE) 478 
ANNUAL CHANGE IN SOIL C STOCK FOR MINERAL SOILS USING THE STEADY STATE METHOD 479 

 480 

iMineral SOC i
i

C F A∆ = •∑  481 

 482 

( )1−= −
iSOC yi y iF SOC SOC

 483 
 484 

i i i iy y y ySOC ACTIVE SLOW PASSIVE= + +
 485 

 486 

Where: 487 

MineralC∆  = annual SOC stock change factor for mineral soil, summed across all i grid cells or regions, 488 
tonnes C 489 

iSOCF  = annual stock change factor for mineral soils in grid cell or region i, tonnes C ha-1 490 

iA  = Area of grid cell or region i , ha 491 

                                                           
3 https://crudata.uea.ac.uk/cru/data/hrg/  (23/10/2018) 
4 http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/  (23/10/2018) 
5 https://soilgrids.org/#!/?layer=TAXNWRB_250m&vector=1  (23/10/2018) 
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iySOC = SOC stock at the end of the current year y for grid cell or region i  , tonnes C ha-1 492 

( )1y iSOC −  = SOC stock at the end of the previous year for grid cell or region i , tonnes C ha-1 493 

yiACTIVE  = active sub-pool SOC stock in year y for grid cell or region i , tonnes C ha-1 (see Equation 494 
5.0B) 495 

yiSLOW = slow sub-pool SOC stock in year y for grid cell or region i , tonnes C ha-1 (see Equation 5.0C) 496 

yiPASSIVE = passive sub-pool SOC stock in year y for grid cell or region i , tonnes C ha-1 (see Equation 497 
5.0D)   498 

All subsequent equations associated with the steady state method (Equations 5.0B – 5.0G) are to be completed 499 
separately using data derived for each grid cell or region to yield values specific to the grid cell or region.  The 500 
subscripts i  have been left off the equations to simplify the presentation of the equations.  All calculations 501 
denoted in Equations 5.0B – 5.0G will need to be completed for each individual grid cell or region included in 502 
the inventory process. 503 

Calculate  the  s i ze  of  the Act ive  SOC Sub-pool  504 
The size of the active SOC sub-pool is calculated using Equation 5.0B.  The calculations for each sub-pool 505 

 506 

EQUATION 5.0B (NEW GUIDANCE) 507 
ACTIVE SUB-POOL SOIL C STOCK FOR MINERAL SOILS USING THE STEADY-STATE METHOD 508 

 509 

( )*1 1  y y y ay
ACTIVE ACTIVE ACTIVE ACTIVE D k− −= + − • •   510 

*  α=
y

a

ACTIVE
k

 511 

 ( )( )    0.25 0.75   = • • • + • •
aa fac fac fac fack k t w sand till  512 

 513 

Where: 514 

yACTIVE  = active sub-pool SOC stock in year y, tonnes C ha-1 515 

1−yACTIVE  = active sub-pool SOC stock in previous year, tonnes C ha-1 516 

*y
ACTIVE  = steady state active sub-pool SOC stock given conditions in year y, tonnes C ha-1 517 

D  = duration of the time step and is set to a value of 1 year for this method, year 518 

ak  = decay rate for active SOC sub-pool, year-1 519 

α  = C input to the active SOC sub-pool, tonnes C ha-1 year-1 (see Equation 5.0G) 520 

 
afack  = decay rate constant under optimal conditions for decomposition of the active SOC sub-pool, year-521 

1 (see Table 5.5A) 522 

fact  = temperature effect on decomposition, dimensionless (see Equation 5.0E) 523 

facw  = water effect on decomposition, dimensionless (see Equation 5.0F) 524 



 DO NOT CITE OR QUOTE                                                                                Chapter 5_Volume 4 (AFOLU)  
 
Final Draft 
 

5.22 DRAFT 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 
 

 

 

factill  = tillage disturbance modifier on decay rate for active and slow sub-pools, dimensionless (see Table 525 
5.5A) 526 

sand  = fraction of 0-30 cm soil mass that is sand (0.050 – 2mm particles), dimensionless 527 

NOTE: If the estimated ak value is above 1, then set the value of ak to 1 in the equation for calculating 528 

yACTIVE in the first equation. 529 

Calculate  the  s i ze  of  the Slow SOC Sub-pool  530 
The size of the slow SOC sub-pool is calculated using Equation 5.0C. 531 

 532 

EQUATION 5.0C (NEW GUIDANCE) 533 
SLOW SUB-POOL SOIL C STOCK FOR MINERAL SOILS USING THE STEADY-STATE METHOD 534 

 535 

 ( )*1 1  − −= + − • •y y y sy
SLOW SLOW SLOW SLOW D k  536 

 
( ) ( )*

*

3 4[   ]      
 

 • • + • • =
input ay

y
s

C LC f ACTIVE k f
SLOW

k
 537 

      
ss fac fac fac fack k t w till= • • •  538 

( )4 5 1  0.17 0.68   = − − + •f f sand  539 

Where: 540 

ySLOW = slow sub-pool SOC stock in y, tonnes C ha-1 541 

1−ySLOW = slow sub-pool SOC stock in previous year, tonnes C ha-1 542 

*y
SLOW = steady state slow sub-pool SOC stock given conditions in year y, tonnes C ha-1 543 

D  = duration of the time step and is set to a value of 1 year for this method, year 544 

sk = decay rate for slow SOC sub-pool, year-1 545 

inputC = total carbon input, tonnes C ha-1 year-1 546 

LC = lignin content of carbon input, proportion (see Table 5.5B and 5.5C) for default values, otherwise 547 
compile country-specific values) 548 

*y
ACTIVE = steady state active sub-pool SOC stock given conditions in year y, tonnes C ha-1 549 

ak = decay rate for active carbon sub-pool in the soil, year-1 550 

sfack = decay rate constant under optimal condition for decomposition of the slow carbon sub-pool, year-1 551 
(see Table 5.5A) 552 

fact = temperature effect on decomposition, dimensionless (see Equation 5.0E) 553 

facw = water effect on decomposition, dimensionless (see Equation 5.0F) 554 

factill = tillage disturbance modifier on decay rate for active and slow sub-pools, unitless (see Table 5.5A) 555 

3f = fraction of structural component decay products transferred to the slow sub-pool, proportion (see Table 556 
5.5A) 557 
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4f = fraction of active sub-pool decay products transferred to the slow sub-pool, proportion (see Equation 558 
5.0C) 559 

5f = fraction of active sub-pool decay products transferred to the passive sub-pool, proportion (see Table 560 
5.5A) 561 

sand = fraction of 0-30 cm soil mass that is sand (0.050 – 2mm particles), proportion 562 

NOTE: If the estimated sk value is above 1, then set the value of sk to 1 in the equation for calculating 563 

ySLOW in the first equation. 564 

Calculate the size of the Passive C Sub-pool 565 
The size of the slow SOC sub-pool is calculated using Equation 5.0D. 566 

EQUATION 5.0D (NEW GUIDANCE) 567 
PASSIVE SUB-POOL SOIL C STOCK FOR MINERAL SOILS USING THE STEADY-STATE METHOD 568 

 569 

( )*1 1 − −= + − • •y y y py
PASSIVE PASSIVE PASSIVE PASSIVE D k  570 

 
( ) )* *

*

5 6  (   ]
 
  • • + • • =

a sy y

y
p

ACTIVE k f SLOW k f
PASSIVE

k
 571 

     = • •
pP fac fac fack k t w  572 

Where: 573 

yPASSIVE = passive sub-pool SOC stock in year y, tonnes C ha-1 574 

1−yPASSIVE = passive sub-pool SOC stock in previous year, tonnes C ha-1  575 

*y
PASSIVE = steady state passive sub-pool SOC given conditions in year y, tonnes C ha-1 576 

D   = duration of the time step and is set to a value of 1 year for this method, year 577 

Pk  = decay rate for passive SOC sub-pool, year-1 578 

*y
ACTIVE = steady state active sub-pool SOC stock given conditions in year y, tonnes C ha-1 579 

ak  = decay rate for active carbon sub-pool, year-1 580 

*y
SLOW = steady state slow sub-pool SOC stock given conditions in year y, tonnes C ha-1 581 

sk  = decay rate for slow carbon sub-pool, year-1 582 

pfack = decay rate constant under optimal conditions for decomposition of the slow carbon sub-pool, 583 

  year-1 (see Table 5.5A) 584 

 fact = temperature effect on decomposition, dimensionless (see Equation 5.0E) 585 

facw = water effect on decomposition, dimensionless (see Equation 5.0F) 586 

5f  = fraction of active sub-pool decay products transferred to the slow sub-pool, proportion 587 
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  (see Table 5.5A) 588 

6 f  = fraction of slow sub-pool decay products transferred to the passive sub-pool, proportion 589 

  (see Table 5.5A) 590 

NOTE: If the estimated pk   value is above 1, then set the value of pk  to 1 in the equation for calculating 591 

yPASSIVE   in the first equation. 592 

Calculate  Temperature Effect  on Decomposit ion 593 
Calculate the temperature effect on soil organic matter decomposition using Equation 5.0E. 594 

EQUATION 5.0E (NEW GUIDANCE) 595 
TEMPERATURE EFFECT ON DECOMPOSITION FOR MINERAL SOILS USING THE STEADY-STATE 596 

METHOD 597 
 598 

12

1

1 
12 =

= ∑fac i
i

t T  599 

 

0.2 2.63
      0.076  1   

   

     − −  = • −       − −     
•

 

max i max i
i

max opt max opt

t temp t tempT exp
t t t t

 600 

 601 

Where: 602 

fact = annual average temperature effect on decomposition, unitless  603 

iT = monthly average temperature effect on decomposition, unitless (i = 1, 2, …, 12)  604 

maxt  = maximum monthly temperature for decomposition, degrees C (see Table 5.5A) 605 

itemp = monthly average temperature (i = 1, 2, …, 12), degrees C 606 

optt = optimum temperature for decomposition, degrees C (see Table 5.5A) 607 

NOTE: When the monthly average temperature is greater than 45 °C (i.e., the maximum average 608 
temperature) set iT to 0. 609 

Calculate Water Effect on Decomposition 610 
Estimate the water effect on soil organic matter decomposition using Equation 5.0F 611 

EQUATION 5.0F (NEW GUIDANCE) 612 
WATER EFFECT ON DECOMPOSITION FOR MINERAL SOILS USING THE STEADY-STATE METHOD 613 

12

1

11.5
12fac i

i

w w
=

 
= • 

 
∑  614 

 ( ) ( )20.2129  0.2413= + • − •i s i iw w mappet mappet  615 

  min 1.25, 
 

=  
 

i
i

i

precipmappet
PET

 616 

Where: 617 

facw = annual water effect on decomposition, dimensionless 618 

iw  = monthly water effect on decomposition, dimensionless 619 
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sw = modifier for imappet , dimensionless (see Table 5.5A) 620 

imappet = ratio of total precipitation to total potential evapotranspiration (dimensionless) for month i (i = 621 
1, 2, …, 12) 622 

iprecip = total precipitation for month i, mm 623 

iPET = total potential evapotranspiration for month i, mm 624 

NOTE: If the imappet is >1.25, then set the value of imappet  for the month to 1.25 for non-irrigated system 625 

(i.e., imappet  does not exceed 1.25). Set iw for months with irrigation to 0.775. 626 

Calculate C Input to the Active Sub-pool 627 
Calculate alpha value using Equation 5.0G, which is the C input to the active SOC sub-pool. 628 

EQUATION 5.0G (NEW GUIDANCE) 629 
C INPUT TO THE ACTIVE SOIL C SUB-POOL FOR MINERAL SOILS USING THE STEADY-STATE 630 

METHOD 631 
 632 

[ ] ( )( ) ( ) ( )
( ) ( ) ( )

1 2 3 7 6 8

4 7 5 8 4 6 8

   1       

1          

β β
α

• •   • + − − • + • +   • •

•
=

− • − • − •
input inputf C LC f C LC f f f f

f f f f f f f
 633 

 
 0.85 0.018β   = • − •    

input
LCC
NC  634 

 635 

Where: 636 

α = C input to the active soil carbon sub-pool, tonnes C ha-1 637 

β  = C input to the metabolic dead organic matter C component, tonnes C ha-1 year-1 638 

inputC = total carbon input, tonnes C ha-1year-1 639 

1f  = fraction of metabolic dead organic matter decay products transferred to the active sub-pool, proportion 640 
(see Table 5.5A) 641 

2f  = fraction of structural dead organic matter decay products transferred to the active sub-pool, proportion 642 
(see Table 5.5A) 643 

3f  = fraction of structural dead organic matter decay products transferred to the slow sub-pool, proportion 644 
(see Table 5.5A) 645 

4f  = fraction of active sub-pool decay products transferred to the slow sub-pool, proportion, (see Equation 646 
5.0C) 647 

5f  = fraction of active sub-pool decay products transferred to the passive sub-pool, proportion (see Table 648 
5.5A) 649 

6f  = fraction of slow sub-pool decay products transferred to the passive sub-pool, proportion (see Table 650 
5.5A) 651 

7f  = fraction of slow sub-pool decay products transferred to the active sub-pool, proportion (see Table 652 
5.5A) 653 



 DO NOT CITE OR QUOTE                                                                                Chapter 5_Volume 4 (AFOLU)  
 
Final Draft 
 

5.26 DRAFT 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 
 

 

 

8f  = fraction of passive sub-pool decay products transferred to the active sub-pool, proportion (see Table 654 
5.5A) 655 

LC  = lignin content of carbon input, proportion (see Tables 5.5B and 5.5C for default values, otherwise 656 
compile country-specific values) 657 

NC = nitrogen fraction of the carbon input, proportion (see Tables 5.5B and 5.5C) for default values, 658 
otherwise compile country-specific values) 659 

Table 5.5A provides the default parameters, minimum and maximum values for parameters, and their associated 660 
standard deviation.  The probability distribution functions for the parameters should be constructed as truncated 661 
normal distributions, in which parameter values lower than the minimum value are constrained the minimum value, 662 
and parameter values greater than the maximum values are constrained to the maximum value.  Uncorrelated draws 663 
from the probability distribution functions of the parameters can be made using the data in this table, but more 664 
robust estimates of uncertainty can be made using a truncated joint probability distribution with the parameter 665 
covariance matrix found in Annex 2A.3 666 

Step-by-Step procedure for implementing the Tier2 steady-state  method for Mineral  667 
Soi ls  668 
Steps 1 to 8 are conducted for each grid cell or region, depending on the spatial unit of the inventory.  Step 9 sums 669 
the changes across the entire spatial domain6. 670 

Step 1. Calculate the Initial Stocks of the Active, Slow and Passive SOC sub-pools 671 
The initial stocks are calculated based on the climatic, soil texture, management and carbon input data for a run-672 
in period7 of 5 to 20 years (more years may be used if data are available). 673 

Step 1.1 Calculate the average annual values of fact  (Equation 5.0E) and facw  (Equation 5.0F) for the 674 
run-in period. 675 

Step 1.2 Calculate the C input to the active sub-pool (α ) for the run-in period (Equation 5.0G) using 676 
the following data: 677 

a. the average annual carbon input ( inputC ) for the run-in period, 678 

b. the appropriate values for LC  and NC  for the crop and/or grass in place during the 679 
run-in period can be found in the Tier2 steady-state method section for cropland (see 680 
Section 5.2.3.2 for cropland default values, otherwise compile country-specific values), 681 

c. the value of 2f  from Table 5.5A, and 682 

d. the sand content of the 0-30 cm soil layer  ( sand ). 683 
Step 1.3 Calculate the values of ak  (Equation 5.0B), sk  (Equation 5.0C) and pk  (Equation 5.0D) 684 

using: 685 

a. the average values of fact   and facw  calculated in Step 1.1, 686 

b. the values of faca
k , facs

k , facp
k  and the appropriate tillage factor ( factill  ) from Table 687 

5.5A, and 688 
c. the sand content of the 0-30 cm soil layer ( sand ). 689 

Step 1.4 Calculate the values for yACTIVE  (Equation 5.0B), ySLOW  (Equation 5.0C) and 690 

yPASSIVE   (Equation 5.0D) for the run-in period, which become the initial SOC stocks for 691 
the ACTIVE, SLOW and PASSIVE SOC sub-pools at the commencement of the inventory 692 
period. 693 

 694 
                                                           
6 An example of the Tier 2 steady state method is provided in a supplementary file, V4_Ch5_Tier2_Steady_State_Method.xlsx 
7 Compilers can use longer run-in periods than 20 years to establish the initial soil organic C stocks for the inventory, but 5 
years is considered a minimum period of time for this method.  Initial values of the active, slow and passive pools can lead to 
biases in results if the run-in period is not long enough to capture the trajectory of the stocks based on legacy effects associated 
with historical land use and management. 
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Step 2. Calculate C Input to the Active Sub-pool for each year of the inventory period 695 
Calculate value ofα  (the C input to the active SOC sub-pool) for each year in the inventory period using Equation 696 
5.0G. 697 

Step 2.1 Calculate the C input to the metabolic dead organic matter component ( β  ). 698 

Step 2.2 Calculate the C input to the active soil carbon sub-pool (α ). 699 

Step 2.3 Repeat Steps 2.1 to 2.2 for all other years in the inventory period to derive annual values for 700 
β  and α . 701 

Step 3. Calculate Water Effect on Decomposition 702 
Estimate the water effect on soil organic matter decomposition using Equation 5.0F. 703 

Step 3.1 For each month in a year, calculate the ratio of total precipitation to total potential 704 
evapotranspiration.  705 

a. If the ratio is ≤1.25 then set the value of imappet   for the month to the estimated ratio. 706 

b. If the ratio is >1.25 then set the value of imappet  for the month to 1.25. 707 

c. Set iw  for months with irrigation to 0.775. 708 

Step 3.2 Calculate water effect on decomposition for each month ( iw ) in a year. For land area under 709 

irrigation management, set the water effect on decomposition for the month ( iw ) to 0.775.  710 

Step 3.3 Calculate the annual water effect on decomposition ( facw ). 711 

Step 3.4 Repeat steps 3.1 to 3.3 to calculate the water effect ( facw ) on decomposition for all years in 712 
the inventory period. 713 

Step 4. Calculate Temperature Effect on Decomposition 714 

Calculate the temperature effect on soil organic matter decomposition using Equation 5.0E. 715 

Step 4.1 For each month in a year, calculate temperature effect on decomposition ( iT ) using the values 716 

for maximum monthly temperature for decomposition ( maxt ), optimum temperature for 717 

decomposition ( optt ) and the monthly average temperature ( itemp ). 718 

a. If the monthly average temperature is ≤45 °C, use the calculated value of iT . 719 

b. If the monthly average temperature is >45 °C, set iT  equal to 0. 720 

Step 4.2 Calculate annual temperature effect on decomposition ( fact ).  721 

Step 4.3 Repeat steps 4.1 and 4.2 to calculate the annual temperature effect on decomposition for all 722 
years in the inventory. 723 

Step 5. Calculate the size of the Passive C Sub-pool 724 

Calculate the size of the passive sub-pool using Equation 5.0D. 725 

Step 5.1 Calculate decay rate for the PASSIVE SOC sub-pool in the soil ( pk ). 726 

Step 5.2 Calculate the steady state stock for the PASSIVE sub-pool SOC stock ( *yPASSIVE ). 727 

Step 5.3 Calculate the PASSIVE sub-pool SOC stock by determining the additional increase or decrease 728 
in SOC from the previous year in the inventory ( yPASSIVE ).  Note that the initial size of the 729 
PASSIVE SOC sub-pool used at the start of the inventory period is calculated as defined in 730 
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step 1. Note also that if the estimated pk  value is above 1, then set the value of pk  to 1 in the 731 

equation for calculating yPASSIVE . 732 

Step 5.4 Repeat steps 5.1 to 5.3 to calculate the PASSIVE SOC stocks for all years in the inventory. 733 

Step 6. Calculate the size of the SLOW SOC Sub-pool 734 

Calculate the size of the slow sub-pool using Equation 5.0C. 735 

Step 6.1 Calculate decay rate for SLOW SOC sub-pool in the soil ( sk ). 736 

Step 6.2 Calculate the steady state stock for the SLOW SOC sub-pool ( *ySLOW ). 737 

Step 6.3 Calculate the SLOW SOC stock by determining the additional increase or decrease in SOC 738 
from the previous year in the inventory ( ySLOW ).  Note that the initial size of the SLOW 739 
SOC sub-pool used at the start of the inventory period is calculated as defined in step 1. Note 740 
also that if the estimated sk  value is above 1, then set the value of sk  to 1 in the equation for 741 

calculating ySLOW ). 742 

Step 6.4: Repeat steps 6.1 to 6.3 to calculate the SLOW SOC sub-pool stocks for all years in the inventory. 743 

Step 7. Calculate the size of the ACTIVE SOC Sub-pool 744 

Calculate the size of the active sub-pool using Equation 5.0B.   745 

Step 7.1 Calculate decay rate for the ACTIVE SOC sub-pool in the soil ( ak ). 746 

Step 7.2 Calculate the steady state stock for the ACTIVE SOC sub-pool ( *yACTIVE ). 747 

Step 7.3 Calculate the ACTIVE SOC stock by determining the additional increase or decrease in SOC 748 
from the previous year in the inventory ( yACTIVE ).  Note that the initial size of the ACTIVE 749 
SOC sub-pool used at the start of the inventory period is calculated as defined in step 1. Also 750 
note that if the estimated ak  value is above 1, then set the value of ak  to 1 in the equation for 751 

calculating ( yACTIVE ). 752 

Step 7.4: Repeat Steps 7.1 to 7.3 to calculate the ACTIVE SOC sub-pool stocks for all years in the 753 
inventory.  754 

Step 8. Calculate the total annual SOC stock change 755 

Step 8.1 Calculate the SOC stock ( ySOC ) for each grid cell or region by summing the SOC in the 756 

ACTIVE, SLOW and PASSIVE sub-pools ( yACTIVE , ySLOW  and yPASSIVE , 757 
respectively) using Equation 5.0A. 758 

Step 8.2 Calculate the stock change factor (𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖) for each grid cell or region using Equation 5.0A. 759 

Step 8.3  Calculate the total change in SOC stock (∆ MineralC ) using Equation 5.0A by multiplying the 760 

stock change factor (𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖) by the area of the grid cell or region i ( A ), and summing the 761 
changes across all land included in the Tier 2 steady-state method. 762 

Tier 3  763 
Tier 3 approaches may use dynamic models and/or detailed soil C inventory measurements as the basis for 764 
estimating annual stock changes. Estimates from models are computed using coupled equations that estimate the 765 
net change of soil C. A variety of models exist (e.g., see reviews by McGill et al., 1996; and Smith et al., 1997).  766 
Key criteria in selecting an appropriate model include its capability of representing all of the relevant management 767 
practices/systems for croplands; model inputs (i.e., driving variables) are compatible with the availability of 768 
country-wide input data; and verification against experimental data.   769 

A Tier 3 approach may also be developed using a measurement-based approach in which a monitoring network is 770 
sampled periodically to estimate soil organic C stock changes.  A much higher density of benchmark sites will 771 
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likely be needed than with models to represent adequately the combination of land-use and management systems, 772 
climate, and soil types.  Additional guidance is provided in Section 2.3.3.1 of Chapter 2. 773 

Organic soils  774 
No Refinement 775 

The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands provides 776 
additional guidance that updates the 2006 Guidelines for national Greenhouse Gas Inventories. See section 2.2 of 777 
the 2013 Wetlands Supplement covers Tier 1, 2, and 3 approaches for drained organic soils in cropland.   778 

Biochar C Amendments to Mineral Soils  779 

Tier 1  780 
This methodology utilizes a top-down approach in which the total amount of biochar generated and added to 781 
mineral soil is used to estimate the change in soil organic C stocks.  Use Equation 2.27 to estimate the change in 782 
C stock from biochar amendments in Chapter 2, Section 2.3.3.1, Volume IV.   783 

Tier 2  784 
Tier 2 methods use the same definitions and equations as Tier 1, but with country-specific factors.  See Section 785 
2.3.3.1, Chapter 2, Volume IV for more information.  786 

If the Tier 2 emission factors address degradation of added biochar over time, then it will also be necessary to 787 
estimate  the biochar C stocks over time.  This is an important difference from Tier 1 where there is no requirement 788 
to estimate the biochar C stocks because only the amount of biochar C remaining after 1000 years is included in 789 
the C stock change calculation.   790 

Tier 3  791 
Tier 3 methods can be used to account for GHG sources and sinks not captured in Tiers 1 or 2, such as priming, 792 
changes to N2O or CH4 fluxes from soils, and changes to net primary production. More information on Tier 3 793 
methods is provided in Section 2.3.3.1 of Chapter 2, Volume IV.   794 

5.2.3.2 CHOICE OF STOCK CHANGE AND EMISSION FACTORS 795 

Mineral soils 796 

Tier 1  797 
Table 5.5 provides Tier 1 approach default stock change factors for land use (FLU), input (FI) and management 798 
(FMG).  The method and studies that were used to derive the default stock change factors are provided in Annex 799 
5A.1 and References. The default time period for stock changes (D) is 20 years and management practice is 800 
assumed to influence stocks to a depth of 30 cm, which is also the depth for the reference soil C stocks in Table 801 
2.3 (Chapter 2). 802 

Tier 2  803 
Developing Country-Specific Factors for the Default Equations 804 
A Tier 2 approach entails the estimation of country-specific stock change factors. Derivation of input (FI) and 805 
management factors (FMG) are based on comparisons to medium input and intensive tillage, respectively, because 806 
they are considered the nominal practices in the IPCC default management classification (see Choice of Activity 807 
Data).  It is good practice to derive values for a higher resolution classification of management, climate and soil 808 
types if there are significant differences in the stock change factors among more disaggregated categories based 809 
on an empirical analysis and/or well tested model.    Additional guidance is provided in Chapter 2, Section 2.3.3.1 810 

 811 

 812 

. 813 
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TABLE 5.5 (UPDATED) 
RELATIVE CARBON STOCK CHANGE FACTORS (FLU, FMG, AND FI) (OVER 20 YEARS) FOR MANAGEMENT ACTIVITIES ON 

CROPLAND   

Factor 
value 
type 

Level 
Temper-

ature 
regime 

Moisture 
regime1 

IPCC 
defaults  Error2,3 Description 

Land use5 
(FLU) 

Long-
term 
culti-
vated 

Cool Tem-
perate/ 
Boreal 

Dry 0.77 ±14% 

Represents area that has been converted from native 
conditions and continuously managed for 
predominantly annual crops over 50 yrs. Land-use 
factor has been estimated under a baseline condition of 
full tillage and nominal (‘medium”) carbon input 
levels. Input and tillage factors are also applied to 
estimate carbon stock changes, which incudes changes 
from full tillage and medium input.   

Moist 0.70 ±12% 

Warm 
Temperate 

Dry 0.76 ±12% 

Moist 0.69 ±16% 

Tropical 

Dry 0.92 ±13% 

Moist/ 
Wet 0.83 ±11% 

Land use6 
(FLU) 

Paddy 
rice All Dry and 

Moist/ Wet 1.35 ±4% 
Long-term (> 20 year) annual cropping of wetlands 
(paddy rice). Can include double-cropping with non-
flooded crops. For paddy rice, tillage and input factors 
are not used. 

Land use5 
(FLU) 

Peren-
nial/ 
Tree 
Crop 

Temperate
/Boreal 

Dry and 
Moist 0.72 ±22% 

Long-term perennial tree crops such as fruit and nut 
trees, coffee and cacao. 

Tropical Dry and 
Moist/ Wet 1.01 ±25% 

Land use 
(FLU) 

Set 
aside 
(< 20 
yrs) 

Tempe-
rate/ 

Boreal and 
Tropical 

Dry 0.93 ±11% 
Represents temporary set aside of annually cropland 
(e.g., conservation reserves) or other idle cropland that 
has been revegetated with perennial grasses. 

Moist/ Wet 0.82 ±17% 

Tropical 
montane44 

n/a 0.88 ±50% 

Tillage 
(FMG) 

Full  All Dry and 
Moist/ Wet 1.00 n/a 

Substantial soil disturbance with full inversion and/or 
frequent (within year) tillage operations. At planting 
time, little (e.g., <30%) of the surface is covered by 
residues.  

Tillage7 
(FMG) 

Re-
duced 

Cool Tem-
perate/ 
Boreal 

Dry 0.98 ±5% 

Primary and/or secondary tillage but with reduced soil 
disturbance (usually shallow and without full soil 
inversion). Normally leaves surface with >30% 
coverage by residues at planting.  

Moist 1.04 ±4% 

Warm 
Temperate 

Dry 0.99 ±3% 

Moist 1.05 ±4% 

Tropical 
Dry 

 
0.99 ±7% 

Moist/Wet 1.04 ±7% 

Tillage7 
(FMG) 

No-till 

Cool Tem-
perate/ 
Boreal 

Dry 1.03 ±4% 

Direct seeding without primary tillage, with only 
minimal soil disturbance in the seeding zone. 
Herbicides are typically used for weed control.  

Moist 1.09 ±4% 

Warm 
Temperate 

Dry 1.04 ±3% 

Moist 1.10 ±4% 

Tropical 
Dry 1.04 ±7% 

Moist/Wet 1.10 ±5% 
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 TABLE 5.5 (CONTINUED)  
RELATIVE CARBON STOCK CHANGE FACTORS (FLU, FMG, AND FI) (OVER 20 YEARS) FOR MANAGEMENT ACTIVITIES ON 

CROPLAND     

Factor 
value 
type 

Level 
Temper-

ature 
regime 

Moisture 
regime1 

IPCC 
defaults  Error2,3 Description 

Input 
(FI) 

Low 

Tem-
perate/ 
Boreal 

Dry 0.95 ±13% 

Low residue return occurs when there is removal of 
residues (via collection or burning), frequent bare-
fallowing, production of crops yielding low residues 
(e.g., vegetables, tobacco, cotton), no mineral 
fertilization or N-fixing crops. 

Moist 0.92 ±14% 

Tropical 
Dry 0.95 ±13% 

Moist/ Wet 0.92 ±14% 

Tropical 
montane4 n/a 0.94 ±50% 

Input 
(FI) 

Med-
ium All Dry and 

Moist/ Wet 1.00 n/a 

Representative for annual cropping with cereals where 
all crop residues are returned to the field. If residues 
are removed then supplemental organic matter (e.g., 
manure) is added.  Also requires mineral fertilization 
or N-fixing crop in rotation. 

Input 
(FI) 

High 
with-
out 
manure 

Tem-
perate/ 

Boreal and 
Tropical 

Dry 1.04 ±13% Represents significantly greater crop residue inputs 
over medium C input cropping systems due to 
additional practices, such as production of high residue 
yielding crops, use of green manures, cover crops, 
improved vegetated fallows, irrigation, frequent use of 
perennial grasses in annual crop rotations, but without 
manure applied (see row below). 

Moist/ Wet 1.11 ±10% 

Tropical 
montane4 n/a 1.08 ±50% 

Input 
(FI) 

High – 
with 
manure 

Tem-
perate/ 

Boreal and 
Tropical 

Dry 1.37 ±12% 

Represents significantly higher C input over medium 
C input cropping systems due to an additional practice 
of regular addition of animal manure. 

Moist/ Wet 1.44 ±13% 

Tropical 
montane4 n/a 1.41 ±50% 

Notes: Long-term cultivation, perennial crops paddy rice and tillage management factors were derived using methods provided in Annex 
5A1.  
1Where data were sufficient, separate values were determined for temperate and tropical temperature regimes; and dry, moist, and wet 
moisture regimes. Temperate and tropical zones correspond to those defined in Chapter 3; wet moisture regime corresponds to the 
combined moist and wet zones in the tropics and moist zone in temperate regions.  
2+ two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to 
derive a default, uncertainty was assumed to be + 50% based on expert opinion. NA denotes ‘Not Applicable’, where factor values 
constitute defined reference values, and the uncertainties are reflected in the reference C stocks and stock change factors for land use. 
3 This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact 
for all regions of the world. 
4There were not enough studies to estimate some of the stock change factors for mineral soils in the tropical montane climate region.  As 
an approximation, the average stock change between the temperate and tropical regions was used to approximate the stock change for the 
tropical montane climate. 

Sources: 
5 The following references used for land-use factors (other than paddy rice): Aborisade and Aweto, 1990; Adachi et al., 2006; Agbenin 
and Goladi, 1997; Aina, 1979; Alcantara et al., 2004; Allen, 1985; An et al., 2003; Ashagrie et al., 2005; Assad et al., 2013; Aweto, 1981; 
Aweto and Ayuba, 1988; Aweto and Ayuba, 1993; Aweto and Ishola, 1994; Ayanaba et al., 1976; Banaticla  and Lasco, 2006; Bashkin 
and Binkley, 1998; Batlle-Bayer et al., 2010; Bautista-Cruz and del Castillo, 2005; Berhongaray et al., 2013; Bernardi et al., 2007; 
Bernhardreversat, 1988; Berthrong et al., 2012; Bertol and Santos, 1995; Beyer, 1994; Binkley et al., 2004; Binkley and Resh, 1999; 
Bonde et al., 1992; Bowman and Anderson, 2002; Brand and Pfund, 1998; Brown and Lugo, 1990; Bruun et al., 2006; Burke et al., 1995; 
Burke et al., 1995; Buschbacher et al., 1988; Buschiazzo et al., 1998; Buyanovksy et al., 1987; Cadisch et al., 1996; Cai et al., 2008; 
Cambardella and Elliott, 1994; Cambardella and Elliott, 1992; Campos et al., 2007; Cao et al., 2004; Carvalho et al., 2009; Carvalho et 
al., 2009; Cerri et al., 1991; Cerri et al., 2003; Cerri et al., 2007; Chan, 1997; Chandran et al., 2009; Chen et al., 2007; Chen, 2006; Chia 
et al., 2017; Chidumayo and Kwibisa, 2003; Chiti et al., 2014; Chone et al., 1991; Cleveland et al., 2003; Collins et al., 1999; Conant et 
al., 2001; Conti et al., 2014; Cook et al., 2014; Corazza et al., 1999; D'Annunzio et al., 2008; da Silva-Junior et al., 2009; Dai et al., 2008;  
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Dai et al., 2008; Dalal et al., 2005; Dalal and Mayer, 1986; Dawoe et al., 2014; de Blecourt et al., 2013; de Camargo et al., 1999; de 
Freitas et al., 2000; de Koning et al., 2003; de Moraes et al., 2002; de Moraes et al., 1996; de Neergaard et al., 2008; Dechert et al., 2004; 
Delelegn  et al., 2017; Denef et al., 2007; Desjardins et al., 1994; Desjardins et al., 2004; Detwiler, 1986; Eaton and Lawrence, 2009; 
Eclesia et al., 2012; Eden et al., 1990; Ekanade, 1991; Elliott et al., 1991; Elmore and Asner, 2006; England et al., 2016; Epron et al., 
2009; Erickson et al., 2001; Fabrizzi et al., 2009; Farley et al., 2004; Feldpausch et al., 2004; Feller et al., 2001; Fernandes et al., 2002; 
Fernandez et al., 2012; Fisher et al., 1994; Follett et al., 1997; Freibauer, 1996; Freixo et al., 2002; Fu et al., 2000; Fu et al., 2001; Fu et 
al., 2003; Fuhrmann et al., 1999; Fujisaka et al., 1998; Gamboa and Galicia, 2011; Garcia-Franco et al., 2014; Garcia-Oliva et al., 1994; 
Garcia-Oliva et al., 2006; Garcia-Oliva et al., 1999; Geissen et al., 2009; Ghuman et al., 1991; Girma, 1998; Gong et al., 2004; Gosling 
et al., 2017; Gregorich et al., 1996; Guggenberger and Zech, 1999; Han et al., 2004; Han et al., 2005; Harden et al., 1999; Hartemink, 
1997; He et al., 2006; Hertl et al., 2009; Hölscher et al., 1997; Hou et al., 2008; Hsieh, 1996; Hu  et al., 2007; Huang et al., 2007; Hughes 
et al., 2000; Hughes et al., 2002; Hughes et al., 2000; Ihori et al., 1995; Ishizuka et al., 2005; Islam and Weil, 2000; Jakelaitis et al., 2008; 
Janssen and Wienk, 1990; Jaramillo et al., 2003; Jia et al., 2004; Jia et al., 2007; Jimenez et al., 2007; Jun and Liqing, 2007; Juo et al., 
1995; Juo and Lal, 1977; Juo and Lal, 1979; Kainer et al., 1998; Karhu et al., 2011; Kawanabe et al., 2000; Keith et al., 2015; King and 
Campbell, 1994; Kotto-Same et al., 1997; Koutika et al., 1997; Krishnaswamy and Richter, 2002; Lal, 1998; Lemenih et al., 2005; 
Lemenih et al., 2005; Lemma et al., 2006; Lepsch et al., 1994; Li et al., 2005; Li et al., 2007; Li et al., 2007; Li et al., 2007; Lilienfein et 
al., 2003; Lima et al., 2006; Lisboa et al., 2009; Lugo and Sanchez, 1986; Luizao et al., 1992; Ma et al., 2006; Macedo et al., 2008; Maia 
et al., 2009; Makumba et al., 2007; Manlay et al., 2002; Manlay et al., 2002; Maquere et al., 2008; Marin-Spiotta et al., 2009; Markewitz 
et al., 2004; Martins et al., 2009; Masto et al., 2008; Materechera and Mkhabela, 2001; McGrath et al., 2001; Mendham et al., 2003; 
Mikhailova et al., 2000; Morris, 1984; Motavalli et al., 2000; Motavalli and McConnell, 1998; Muller et al., 2001; Mutuo et al., 2005; 
Nadal-Romero et al., 2016; Navarrete et al., 2016; Navarrete and Tsutsuki, 2008; Neill et al., 1997; Neill et al., 1997; Neufeldt et al., 
2002; Ogunkunle and Eghaghara, 1992; Ohta, 1990; Osher et al., 2003; Parfitt et al., 1997; Paul et al., 2008; Pennock and van Kessel, 
1997; Perrin et al., 2014; Piccolo et al., 2008; Potter et al., 1999; Potvin et al., 2004; Powers, 2004; Powers and Veldkamp, 2005; Rangel 
et al., 2007; Rasiah et al., 2004; Reeder et al., 1998; Reiners et al., 1994; Resh et al., 2002; Rhoades et al., 2000; Richards et al., 2007; 
Riezebos and Loerts, 1998; Rojas et al., 2016; Roscoe and Buurman, 2003; Rossi et al., 2009; Russell et al., 2007; Sa et al., 2001; Saggar 
et al., 2001; Saha et al., 2009; Saha et al., 2010; Salimon et al., 2004; Sanchez et al., 1983; Saynes  et al., 2005; Schedlbauer and Kavanagh, 
2008; Schiffman and Johnson, 1989; Schwendenmann and Pendall, 2006; Shang and Tiessen, 1997; Sheng et al., 2004; Siband, 1974; 
Silva et al., 2009; Silver et al., 2004; Sitompul et al., 2000; Six et al., 1998; Six et al., 2000; Slobodian et al., 2002; Smiley and Kroschel, 
2008; Smith et al., 2002; Sohng et al., 2017; Solomon et al., 2002; Solomon et al., 2007; Solomon et al., 2000; Sommer et al., 2000; 
Sparling et al., 2000; Srivastava and Singh, 1991; Su, 2007; Su et al., 2006; Su et al., 2004; Su et al., 2002; Su et al., 2004; Szott and 
Palm, 1996; Templer et al., 2005; Tian et al., 2001; Tian et al., 2008; Tiessen et al., 1992; Tiessen et al., 1982; Tornquist et al., 1999; 
Townsend et al., 1995; Trouve et al., 1994; Trumbore et al., 1995; Uhl and Jordan, 1984; Unger, 2001; Vagen et al., 2006; van Dam et 
al., 1997; van Noordwijk et al., 1997; van Straaten et al., 2015; Veldkamp, 1994; Veldkamp et al., 2003; Villarino et al., 2014; Voroney 
et al., 1981; Wadsworth et al., 1988; Wairu and Lal, 2003; Walker and Desanker, 2004; Wang et al., 2004; Wang and Zhang, 2009; Wang 
et al., 2011; Wang et al., 2005; Wang et al., 2006; Wang et al., 2007; Wang et al., 2006; Wang et al., 2008; Weaver  et al., 1987; Wick et 
al., 2000; Wick et al., 2005; Wu and Tiessen, 2002; Wu et al., 2006; Xu et al., 2013; Yan et al., 2008; Yang et al., 2004; Yang et al., 
2016; Yemefack et al., 2006; Yin et al., 2008; Yonekura et al., 2010; Yu et al., 2007; Yue et al., 2007; Zhan et al., 2005; Zhang et al., 
1988; Zhao et al., 2005; Zhou et al., 2007; Zingore et al., 2005; Zinn et al., 2005; Zinn et al., 2002; Zou and Bashkin, 1998 
6 The following references were used for paddy rice land-use factor: Andreetta et al., 2016; Bi et al., 2009; Gami et al., 2001; Hao et al., 
2008; Huang et al., 2015; Kölbl et al., 2014; Liu et al., 2003; Majumder et al., 2008; Mandal et al., 2007; Nayaka et al., 2012; Nayaka et 
al., 2009; Pampolino et al., 2008; Pan et al., 2009; Shen et al., 2007; Shirato et al., 2011; Shirato and Yokozawa, 2005; Wang et al., 2011; 
Wu et al., 2000; Xu et al., 2007; Zhang et al., 2006 
7 The following references were used for tillage management factors: Ahl et al., 1998; Al-Kaisi  et al., 2005; Al-Kaisi et al., 2005; Alvarez 
et al., 2014; Alvarez et al., 1998; Alvarez et al., 1995; Alvarez et al., 1998; Alvarez et al., 1995; Alvarez et al., 1995; Alvarez et al., 1995; 
Alvaro-Fuentes et al., 2009; Alvaro-Fuentes et al., 2008; Alvaro-Fuentes et al., 2014; Angers et al., 1997; Angers et al., 1995; Anken et 
al., 2004; Balesdent et al., 1990; Barber et al., 1996; Bayer et al., 2006; Bayer et al., 2000; Bayer et al., 2002; Beare et al., 1994; 
Bhattacharyya et al., 2008; Bhattacharyya et al., 2013; Bhattacharyya et al., 2009; Black and Tanaka, 1997; Blanco-Canqui et al., 2004; 
Blanco-Canqui et al., 2011; Boddey et al., 2010; Bordovsky et al., 1999; Borin et al., 1997; Borresen and Njos, 1993; Bowman and 
Anderson, 2002; Bowman and Anderson, 2002; Burch et al., 1986; Buschiazzo et al., 1998; Buyanovsky and Wagner, 1998; Calegari et 
al., 2008; Campbell et al., 1999; Campbell et al., 1996; Carter, 1991; Carter et al., 1988; Carter et al., 1994; Carter et al., 2002; Cavanagh 
et al., 1991; Chagas et al., 1995; Chan et al., 2002; Chan et al., 2003; Chan and Mead, 1988; Chaney et al., 1985; Chen et al., 2009; Chen 
et al., 2009; Chen et al., 2015; Cheng-Fang et al., 2012; Choudhary et al., 2013; Clapp et al., 2000; Corazza et al., 1999; Costantini et al., 
1996; Dalal, 1989; Dalal et al., 1991; Denef et al., 2007; Devine et al., 2014; Diaz-Zorita, 1999; Díaz-Zorita et al., 2004; Dick and 
Durkalski, 1997; Dikgwatlhe et al., 2014; Dimassi et al., 2014; Dolan et al., 2006; Dominguez et al., 2016; Doran et al., 1998; Dou et al., 
2008; Du et al., 2010; Du et al., 2015; Duiker and Lal, 1999; Edwards et al., 1992; Eghball et al., 1994; Fabrizzi et al., 2003; Fabrizzi et 
al., 2009; Fan et al., 2014; Feiziene et al., 2011; Ferreras et al., 2000; Fettell and Gill, 1985; Fleige and Baeumer, 1974; Follett and 
Peterson, 1988; Franzleubbers et al., 1995; Franzluebbers and Arshad, 1996; Franzluebbers et al., 1999; Franzluebbers and Stuedemann, 
2002; Freitas et al., 2000; Freixo et al., 2002; Gál et al., 2007; Galantini et al., 2006; Garcia-Prechac et al., 2004; Ghimire et al., 2012; 
Ghuman and Sur, 2001; Grabski et al., 1997; Green et al., 2007; Gwenzi et al., 2009; Halvorson et al., 1997; Halvorson et al., 2002; 
Hansmeyer et al., 1997; Hao et al., 2001; Havlin and Kissel, 1997; Heenan et al., 1995; Heinze et al., 2010; Hendrix, 1997; Hermle et al., 
2008; Hernanz et al., 2002; Hernanz et al., 2009; Hertnanz et al., 2009; Higashi et al., 2014; Hou et al., 2011; Huggins et al., 2007; 
Hulugalle, 2000; Hussain et al., 1999; Ismail et al., 1994; Jagadamma and Lal, 2010; Jarecki and Lal, 2010; Jarvis, 1996; Jemai et al., 
2012; Jemai et al., 2013; Karlen et al., 1998; Karlen et al., 1994; Kruger, 1996; Kumar et al., 2012; Kumar et al., 2014; Kushwaha et al., 
2000; Küstermann et al., 2013; Lal, 1998; Lal et al., 1994; Lammerding et al., 2010; Larney et al., 1997; Laudicina et al., 2014; Lavado 
et al., 1999; Liang et al., 2011; Liang et al., 2007; Lilienfein et al., 2000; Liu et al., 2014; Lopez-Bellido et al., 2009; Lopez-Bellido et 
al., 2017; Lopez-Fando et al., 2007; Lopez-Fando and Pardo, 2009; Lou et al., 2012; Martin-Lammerding et al., 2013; Martin-Rueda et 
al., 2007; Martinez et al., 2013; McCarty et al., 1998; McLeod et al., 2013; Melero et al., 2011; Mielke et al., 1986; Mikha et al., 2010; 
Mikha et al., 2013; Mrabet et al., 2001; Munoz-Romero et al., 2017; Murage et al., 2006; Nyamadzawo et al., 2008; Nyborg et al., 1995; 
Olson et al., 2005; Packer et al., 1992; Page et al., 2013; Pierce and Fortin, 1997; Plaza-Bonilla et al., 2011; Powlson and Jenkinson, 1982; 
Prasad et al., 2016; Presley et al., 2011; Puget and Lal, 2005; Quincke et al., 2006; Rasmussen and Albrecht, 1997; Rhoton et al., 1993; 
Robertson et al., 2015; Ross and Hughes, 1985; Sa et al., 2014; Saffigna et al., 1989; Sainju et al., 2009; Sainju et al., 2005; Sainju et al., 
2011; Sainju et al., 2005; Sainju et al., 2008; Sainju et al., 2002; Salinas-Garcia et al., 1997; Salinas-Garcia et al., 2002; Salvo et al., 2010; 
Schomberg and Jones, 1998; Sheehy et al., 2013; Shi et al., 2011; Shrestha et al., 2015; Shukla et al., 2006; Singh et al., 2015; Six et al., 
2000; Sombrero and de Benito, 2010; Steinbach and Alvarez, 2006; Studdert et al., 2017; Studdert et al., 1997; Sun et al., 2011; Taboada 
et al., 1998; Thomas et al., 2007; Tian et al., 2013; Tivet  et al., 2013; Ussiri and Lal, 2009; van Groenigen et al., 2011; VandenBygaart 
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et al., 2002; Varvel and Wilhelm, 2011; Venterea et al., 2006; Viaud et al., 2010; Wander et al., 1998; Wang and Dalal, 2006; 
Wanniarachchi et al., 1999; Wright and Hons, 2004; Xu et al., 2013; Yang and Kay, 2001; Yang and Wander, 1999; Zhang et al., 2007; 
Zhang et al., 2017 

 816 

Reference C stocks can be derived from country-specific data in a Tier 2 approach.  Reference values in Tier 1 817 
correspond to non-degraded, unimproved lands under native vegetation, but other reference conditions can also be 818 
chosen for Tier 2. In addition, the depth for evaluating soil C stock changes can be different with the Tier 2 method. 819 
The effect of tillage on soil carbon stocks can be markedly different for depths above the tillage depth than for 820 
profile to below the tillage depth (refs),  This may be consideration to choice of depth.  However, the depth of the 821 
reference C stocks (SOCREF) and stock change factors need to the the same for all land uses (i.e., FLU, FI, and FMG) 822 
to ensure consistent application of methods for determining the impact of land use change on soil C stocks.. 823 

The carbon stock estimates may be improved when deriving country-specific factors for FLU and FMG, by 824 
expressing carbon stocks on a soil-mass equivalent basis rather than a soil-volume equivalent (i.e. fixed depth) 825 
basis. This is because the soil mass in a certain soil depth changes with the various operations associated with land 826 
use that affect the density of the soil, such as uprooting, land leveling, tillage, and rain compaction due to the 827 
disappearance of the cover of tree canopy. However, it is important to realize that all data used to derive stock 828 
change factors across all land uses must be on an equivalent mass basis if this method is applied.  This will be 829 
challenging to do comprehensively for all land uses. See Box 2.2B in Chapter 2, Section 2.3.3.1 for more 830 
information. 831 

Steady-State Method 832 

Default parameters are provided for the three-pool steady-state C pool equations (Table 5.5A).  The average lignin 833 
and nitrogen contents of the C input is also required to estimate the size of the three C pools (See Tables 5.5B and 834 
5.5C).    835 

Tier 3  836 
Constant stock change rate factors per se are less likely to be estimated in favor of variable rates that more 837 
accurately capture land-use and management effects. See Chapter 2, Section 2.3.3.1 for further discussion.   838 

Organic soils  839 
No Refinement 840 

The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands provides 841 
additional guidance that updates the 2006 Guidelines for national Greenhouse Gas Inventories. See section 2.2 of 842 
the 2013 Wetlands Supplement covers Tier 1, 2, and 3 approaches for drained organic soils in cropland.  843 

Biochar C Amendments to Mineral Soils  844 

Tier 1  845 
Default emission factors are provided in Section 2.3.3.1, Chapter 2, Volume IV.    846 

Tier 2  847 
Tier 2 emission factors may be further disaggregated relative to the default factors based on variation in 848 
environmental conditions, such as the climate and soil types, in addition to variation associated with the biochar 849 
production methods. See Section 2.3.3.1, Chapter 2, Volume IV for more information.  850 

Tier 3  851 
Tier 3 methods are country-specific and may involve empirical or process-based models to account for a broader 852 
set of impacts of biochar amendments. More information on Tier 3 methods is provided in Section 2.3.3.1, Chapter 853 
2, Volume IV.    854 
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TABLE 5.5A (NEW GUIDANCE) 
GLOBALLY CALIBRATED MODEL PARAMETERS TO BE USED TO ESTIMATE SOIL C STOCK CHANGES FOR 

MINERAL SOILS WITH THE TIER 2 STEADY-STATE METHOD 

Parameter Practice Value (min, max) Standard 
Deviation Description 

 factill  

Full-till 3.036 (1.4, 4.0) 0.579 

Tillage disturbance modifier for decay rates Reduced-till 2.075 (1.0, 3.0) 0.569 

No-till 1  

 sw  All 1.331 (0.8, 2.0) 

0.386 
slope parameter for imappet  term to 

estimate facw  

 
afack  All 7.4 

n/a Decay rate constant under optimal conditions 
for decomposition of the active sub-pool  

 
sfack  All 0.209 (0.058, 0.3) 

0.566 Decay rate constant under optimal conditions 
for decomposition of the slow sub-pool  

 
pfack  All 0.00689 (0.005, 0.01) 

0.00125 Decay rate constant under optimal conditions 
for decomposition of the passive sub-pool  

 1f  All 0.378 (0.01, 0.8) 
0.0719 Fraction of metabolic dead organic matter 

decay products transferred to the active sub-
pool 

 2f  Full-till 0.368 (0.007, 0.5) 0.0998 
Fraction of structural dead organic matter 
decay products transferred the active sub-
pool 

 3f  All 0.455 (0.1, 0.8) 
0.201 Fraction of structural dead organic matter 

decay products transferred to the slow sub-
pool 

 5f  All 0.0855 (0.037, 0.1) 
0.0122 Fraction of active sub-pool decay products 

transferred to the passive sub-pool 

 6f  All 0.0504 (0.02, 0.19) 
0.0280 Fraction of slow sub-pool decay products 

transferred to the passive sub-pool 

 7f  All 0.42 
n/a Fraction of slow sub-pool decay products 

transferred to the active sub-pool 

 8f  All 0.45 
n/a Fraction of passive sub-pool decay products 

transferred to the active sub-pool 

 optt  All 33.69 (30.7, 35.34) 
0.66 Optimum temperature to estimate 

temperature modifier on decomposition 

 maxt  All 45 
n/a Maximum monthly average temperature for 

decomposition. 
Methods used in the Bayesian calibration process are described in Annex 5A.3. 
Source: Campbell et al. 1997; Collins et al. 2000; Dick et al. 1997; Diaz-Zorita et al. 1999; Dimassi et al. 2014; e-RA 2013; Gregorich et 
al. 1996; Halvorson et al. 1997; Huggins and Fuchs 1997; Janzen et al. 1997; Jenkinson 1990; Jenkinson and Johnston 1977; KBS LTER 
2017; Küstermann and Hülsbergen 2013; Maillard et al. 2018; Marchado 2013; Marchado et al. 2008, 2011; Pierce and Fortin 1997; 
Rasmussen and Smiley 1997; Schultz 1995; Skjemstad et al. 2004; Vanotti et al. 1997; See Annex 5A.3 for more information. 
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TABLE 5. 5B (NEW GUIDANCE)  
DEFAULT VALUES FOR NITROGEN AND LIGNIN CONTENTS IN CROPS FOR THE STEADY-STATE METHOD  

Crops N content of residues1 Lignin content of residues2 

Generic value for crops not indicated 
below 

0.0083 0.073 

Generic Grains 0.0068 0.074 

Winter Wheat 0.0069 0.053 

Spring Wheat 0.0070 0.053 

Barley 0.0090 0.046 

Oats 0.0073 0.047 

Maize 0.0063 0.11 

Rye3 0.008 0.05 

Rice4 0.007 0.125 

Millet4 0.007 0.062 

Sorghum3 0.0065 0.06 

Beans and Pulses 0.008 0.075 

Soybeans 0.008 0.085 

Potatoes and Tubers 0.0169 0.073 

Peanuts4 0.016 0.086 

N-fixing forages 0.0250 0.072 

Alfalfa 0.0238 0.072 

Non-N-fixing forages 0.0134 0.049 

Perennial Grasses 0.0126 0.049 

Grass-Clover Mixtures4 0.0178 0.061 

Non-legume hay 0.0134 0.057 

1 Biomass-weighted average of aboveground and belowground for each crop based on data in Table 11.1A in Volume IV, Chapter 11 
of this report. 
2 Winter wheat, spring wheat, barley, oats, millet, beans and pulses, soybeans, peanuts, values from Equi-Analytical Laboratories 
(2018); maize, rice, and sorghum from Cornell University (2017); and potatoes and tubers from Zereu et al. (2014).  
3 Simple  average of nitrogent content of aboveground and belowground. 4 Nitrogen content of aboveground assumed to represent all 
residue. 
4 value is an average of N fixing and non-N fixing grasses. 
Notes: Uncertainty is assumed to be ±75% for the N content estimates and ±50% for the lignin content estimates, expressed as a 95% 
confidence intervals. 

 864 
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TABLE 5. 5C (NEW GUIDANCE)  
DEFAULT VALUES FOR CARBON TO NITROGEN RATIOS, NITROGEN, AND LIGNIN CONTENTS IN LIVESTOCK MANURE FOR 

THE STEADY-STATE METHOD  
 

Livestock Manure Type C to N ratio of 
manure 

N content of 
manure (% 
dry basis) 

Lignin content 
of manure (% 
dry basis) 

Dairy Cattle 16 2.9 13 
Beef Cattle 191 2.31 91 

Poultry 102 5.12 52 
Swine 113 4.13 53 

Horses/Mules/Asses 20 1.3 134 
Sheep 11 3.9 134 

Sources: Chen et al. 2003 for Dairy Cattle, Beef Cattle, Poultry and Swine.  
ASAE 2005 for Horses/Mules/Asses. 
MWPS 2004 for Sheep 
1Average of Beef and Cattle- Feedlot categories. 
2Average across four development categories. 
3Average of Nursery, Grower and Finisher categories.  
4Average of Beef and Dairy from Chen et al. 2003.  
Notes: Uncertainty is assumed to be ± 50% for all of these estimates, expressed as a 95% confidence interval. 

 868 

5.2.3.3 CHOICE OF ACTIVITY DATA 869 

Mineral soils 870 

Tier 1  871 
Cropland systems are classified by practices that influence soil C storage. The default management classification 872 
system is provided in Figure 5.1. Inventory compilers should use this classification to categorize management 873 
systems in a manner consistent with the default Tier 1 stock change factors.  This classification may be further 874 
developed for Tiers 2 and 3 approaches. In general, practices that are known to increase C storage, such as irrigation, 875 
mineral fertilization, organic amendments, cover crops and high residue yielding crops, have higher inputs, while 876 
practices that decrease C storage, such as residue burning/removal, bare fallow, and low residue crop varieties, 877 
have lower inputs.  These practices are used to categorize management systems and then estimate the change in 878 
soil organic C stocks. Practices should not be considered that are used in less than 1/3 of a given cropping sequence 879 
(i.e., crop rotation), which is consistent with the classification of experimental data used to estimate the default 880 
stock change factors.  Rice production, perennial croplands, and set-aside lands (i.e., lands removed from 881 
production) are considered unique management systems (see below). 882 

Each of the annual cropping systems (low input, medium input, high input, and high input w/organic amendment) 883 
are further subdivided based on tillage management.  Tillage practices are divided into no-till (direct seeding 884 
without primary tillage and only minimal soil disturbance in the seeding zone; herbicides are typically used for 885 
weed control), reduced tillage (primary and/or secondary tillage but with reduced soil disturbance that is usually 886 
shallow and without full soil inversion; normally leaves surface with >30% coverage by residues at planting) and 887 
full tillage (substantial soil disturbance with full inversion and/or frequent, within year tillage operations, while 888 
leaving <30% of the surface covered by residues at the time of planting).  It is good practice only to consider 889 
reduced and no-till if they are used continuously (every year) because even an occasional pass with a full tillage 890 
implement will significantly reduce the soil organic C storage expected under the reduced or no-till regimes (Pierce 891 
et al., 1994; Smith et al., 1998).  Assessing the impact of rotational tillage systems (i.e., mixing reduced, no-till 892 
and/or full tillage practices) on soil C stocks will require a Tier 2 method.  893 

The main types of land-use activity data are: i) aggregate statistics (Approach 1), ii) data with explicit information 894 
on land-use conversions but without specific geo-referencing (Approach 2), or iii) data with explicit information 895 
on land-use conversions and geo-referencing (Approach 3), such as land-use and management inventories making 896 
up a statistically-based sample of a country’s land area (see Chapter 3 for discussion of approaches). At a minimum, 897 
globally available land-use and crop production statistics, such as FAO databases (http://www.fao.org/faostat),  898 
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Figure 5. 1 Classification scheme for cropping systems. In order to classify cropland 899 
management systems, the inventory compiler should start at the top and 900 
proceed through the diagram answering questions (move across branches if 901 
answer is yes) until reaching a terminal point on the diagram.  The 902 
classification Diagram is consistent with default stock change factors in 903 
Table 5.5. C input classes (i.e., low, medium, high and high with organic 904 
amendment) are further subdivided by tillage practice. 905 

. 906 
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Note:
1: Does not typically include grazing of residues in the field.
2: e.g. cotton, vegetables and tobacco.
3: Practices that increase C input above the amount typically generated by the low residues yielding varieties such as using organic 
amendments, cover crops/green manures, and mixed crop/grass systems.
4: Practices that increase C input by enhancing residue production, such as using irrigation, cover crops/green manures, vegetated fallows, 
high residue yielding crops, and mixed crop/grass systems.
5 Perennial cover without frequent harvest.
Note: Only consider practices, such as irrigation, residue burning/removal, mineral fertilizers, N-fixing crops, organic amendment, cover 
crops/green manures, low residue crop, or fallow, if used in at least 1/3 of cropping rotation sequence.

No
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 910 

provide annual compilations of total land area by major land-uses, select management data (e.g., irrigated vs. non-911 
irrigated cropland), land area in ‘perennial’ crops (i.e., vineyards, perennial herbaceous crops, and tree-based crops 912 
such as orchards) and annual crops (e.g., wheat, rice, maize, sorghum, etc.). FAO databases would be an example 913 
of aggregate data (Approach 1). 914 

Management activity data supplement the land-use data, providing information to classify management systems, 915 
such as crop types and rotations, tillage practices, irrigation, manure application, residue management, etc.  These 916 
data can also be aggregate statistics (Approach 1) or information on explicit management changes (Approach 2 or 917 
3).  Where possible, it is good practice to determine the specific management practices for land areas associated 918 
with cropping systems (e.g., rotations and tillage practice), rather than only area by crop.  Remote sensing data are 919 
a valuable resource for land-use and management activity data, and potentially, expert knowledge is another source 920 
of information for cropping practices.  It is good practice to elicit expert knowledge using methods provided in 921 
Volume 1, Chapter 2 (eliciting expert knowledge). 922 

National land-use and resource inventories, based on repeated surveys of the same locations, constitute activity 923 
data gathered using Approach 2 or 3, and have some advantages over aggregated land-use and cropland 924 
management data (Approach 1).  Time series data can be more readily associated with a particular cropping system 925 
(i.e., combination of crop type and management over a series of years), and the soil type can be determined by 926 
sampling or by referencing the location to a suitable soil map. Inventory points that are selected based on an 927 
appropriate statistical design also enable estimates of the variability associated with activity data, which can be 928 
used as part of a formal uncertainty analysis. An example of a survey using Approach 3 is the National Resource 929 
Inventory in the U.S. (Nusser and Goebel, 1997). 930 

Activity data require additional in-country information to stratify areas by climate and soil types. If such 931 
information has not already been compiled, an initial approach would be to overlay available land cover/land-use 932 
maps (of national origin or from global datasets such as IGBP_DIS) with soil and climate maps of national origin 933 
or global sources, such as the FAO Soils Map of the World and climate data from the United Nations 934 
Environmental Program. A detailed description of the default climate and soil classification schemes is provided 935 
in Chapter 3, Annex 3A.5.  The soil classification is based on soil taxonomic description and textural data, while 936 
climate regions are based on mean annual temperatures and precipitation, elevation, occurrence of frost, and 937 
potential evapotranspiration. 938 

Tier 2  939 
Developing Country-Specific Factors for the Default Equations 940 
Tier 2 approaches are likely to involve a more detailed stratification of management systems than in Tier 1 (see 941 
Figure 5.1) if sufficient data are available. This can include further within country subdivisions of annual cropping 942 
input categories (i.e., low, medium, high, and high with amendment), rice cultivation, perennial cropping systems, 943 
and set-asides.  It is good practice to further subdivide default classes based on empirical data that demonstrates 944 
significant differences in soil organic C storage among the proposed categories.  In addition, Tier 2 approaches 945 
can involve a finer stratification of climate regions and soil types. 946 

For Tier 2, the specific definitions of management and input factors are typically made to match available activity 947 
data on how an activity affects C stocks.  For example, if a country has management factors related to specific 948 
tillage practices that involve a mix of intensities over time, then the country will also need activity data on those 949 
specific tillage practices to apply the country-specific factors. 950 

Steady-State Method 951 
This method requires soil C input data based on the amount of biomass that is converted to dead organic matter 952 
annually. This rate will vary depending on the crop production, management activity, and other environmental 953 
variables.  Removals or reductions in dead organic matter are subtracted from the C input amount, which could 954 
occur with livestock grazing, grassland burning, or harvesting of grass for feed or bioenergy. Additions of C, 955 
particularly organic amendments such as manure, are included in the estimate of C input.  956 

It is good practice to estimate C input using country-specific factors in order to produce more accurate estimates.  957 
If country-specific factors are not available, Equation 5.0H can be used to estimate C inputs with factors provided 958 
in Table 11.1A, Chapter 11, Volume 4  or alternatively, the amount can be calculated using the method and data 959 
in Table 11.2, Chapter 11.  960 

 961 
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EQUATION 5.0H  962 
CROPLAND C- INPUT TO SOIL FOR STEADY-STATE METHOD 963 

 964 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )input T AG T T BG T AM T AM T
T

C AGR C BGR C F CN= • + • + •∑  965 

 966 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )1 fT T AG T T Renew T Removal T Burnt TAGR Crop R Area Frac Frac Frac C= • • • • − − •  967 

 968 

( ) ( ) ( )( ) ( ) ( ) ( )1T T AG T T T Renew TBGR Crop R RS Area Frac••= + • •  969 

 970 

 971 

Where: 972 

inputC  = annual amount of C in crop residues (above and below ground), kg C yr-1 973 

( )TAGR  = annual total amount of above-ground crop residue for crop T, kg d.m. yr-1. (Use factors in Table 974 

11.2, Chapter 11, or alternatively, the amount can be calculated using the method and data in Table 975 
11.3, Chapter 11) 976 

( )AG TC  = C content of above-ground residues for crop T, kg C (kg d.m.) -1 (Default: 0.42 kg C (kg d.m.) -977 
1) 978 

( )Remove TFrac  = fraction of above-ground residues of crop T removed annually for purposes such as feed, 979 

bedding and construction, dimensionless. Survey of experts in country is required to obtain data. If 980 
data for FracRemove are not available, assume no removal 981 

( )Burnt TFrac  = fraction of annual harvested area of crop T burnt, dimensionless 982 

Cf = combustion factor (dimensionless) (refer to Chapter 2, Table 2.6) 983 

( )TBGR  = annual total amount of belowground crop residue for crop T, kg d.m. yr-1 984 

( )BG TC  = C content of below-ground residues for crop T, kg C (kg d.m.)-1, (Default: 0.42 kg C (kg d.m.) -1) 985 

FAM(T) = N in animal manures applied to crop T (kg N yr-1  (Equation 10.34 in Section 10.5.4, Chapter 10) 986 

CNAM(T) = C to N ratio of animal manures applied to crop T, kg C (kg N)-1 (Table 5.5C) 987 

Crop(T) = harvested annual dry matter yield for crop T, kg d.m. ha-1 yr-1 988 

RAG(T) = ratio of above-ground residues dry matter (AGDM(T)) to harvested yield for crop T (Crop(T)), kg d.m. 989 
(kg d.m.)-1, (Table 11.1A) 990 

Area(T) = total annual area harvested of crop T, ha yr-1 991 

FracRenew (T) = fraction of total area under crop T that is renewed annually 8, dimensionless. For countries 992 
where forages are renewed on average every X years, FracRenew = 1/X. For annual crops FracRenew = 1 993 

                                                           
8 This term is included in the equation to account for N release and the subsequent increases in N2O emissions (e.g., van der 

Weerden et al., 1999; Davies et al., 2001), from renewal/cultivation of grazed grass or grass/clover pasture and other forage 
crops. 



 DO NOT CITE OR QUOTE                                                                                Chapter 5_Volume 4 (AFOLU)  
 
Final Draft 
 

5.40 DRAFT 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 
 

 

 

RS(T) = ratio of below-ground root biomass to above-ground shoot biomass for crop T, kg d.m. (kg d.m.)-1, 994 
(Table 11.1A) 995 

T = crop or forage type 996 

 997 

Data on crop yield statistics (yields and area harvested, by crop) may be obtained from national sources. If such 998 
data are not available, FAO publishes data on crop production: (http://faostat.fao.org/). Tillage management data 999 
are also required (proportion of full tillage, reduced tillage and no-till), and irrigation data for any lands that are 1000 
provided supplement water (proportion of land). Monthly average temperature, precipitation and potential 1001 
evapotranspiration is needed for each grid cell or region.  This information is available from global datasets, such 1002 
as the CRU climate dataset (https://crudata.uea.ac.uk/cru/data/hrg/), if country-specific data are not available. The 1003 
average sand content is needed for each grid cell or region, which is available from Harmonized World Soil 1004 
Database (http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/).  1005 

Tier 3  1006 
For application of dynamic models and/or a direct measurement-based inventory in Tier 3, similar or more detailed 1007 
data on the combinations of climate, soil, topographic and management data are needed, relative to the Tiers 1 and 1008 
2 methods, but the exact requirements will depend on the model or measurement design. 1009 

Organic soils  1010 
No Refinement 1011 

The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands provides 1012 
additional guidance that updates the 2006 Guidelines for national Greenhouse Gas Inventories. See section 2.2 of 1013 
the 2013 Wetlands Supplement covers Tier 1, 2, and 3 approaches for drained organic soils in cropland.   1014 

Biochar C Amendments to Mineral Soils  1015 

Tier 1  1016 
The activity data required for the Tier 1 method includes the total quantities of biochar distributed as amendment 1017 
to mineral soils. These data must be disaggregated by production type, where production type is defined as a 1018 
process utilizing a specific feedstock type, and a specific conversion process (gasification, or high-, medium-, or 1019 
low-temperature pyrolysis; Tables 2.4 and 2.5). Changes in soil C associated with biochar amendments are 1020 
considered to occur where it is incorporated into soil. However, due to the distributed nature of the land sector in 1021 
which this can take place, inventory compilers may not have access to data on when or where biochar C 1022 
amendments occur. Therefore, for the purposes of Tier 1 method, inventory compilers may be able to gather 1023 
estimates on total biochar applied to cropland from the biochar industry and/or from those applying biochar to 1024 
cropland, regarding the quantity of biochar that has been applied to cropland as a soil amendment in the country.  1025 

Tier 2  1026 
Tier 2 methods have the same activity data requirements as Tier 1 (quantities of biochar distributed for 1027 
incorporation into mineral soils, disaggregated by production type). Additionally, activity data on the amount of 1028 
biochar amendments may be disaggregated by climate zones and/or soil types if country-specific factors are 1029 
disaggregated by these environmental variables. The additional climate and soil activity data may be obtained with 1030 
a survey of biochar distributors and land managers.  1031 

Country-specific factors may incorporate a change in degradation over time following biochar additions or where 1032 
there is a difference in degradation associated with land use. In these cases, biochar C stocks will be tracked for 1033 
Land Converted to Cropland in order to estimate the change in rate of degradation over time or with the change in 1034 
land use. 1035 

Tier 3  1036 
The additional activity data required to support a Tier 3 method will depend on which processes are represented 1037 
and which environmental variables that are required as input to the model.  Priming, soil GHG emissions, and 1038 
plant production responses to biochar all vary with biochar type, climate, and soil type. Furthermore, soil GHG 1039 
emissions and plant production responses also vary with crop type and management. Therefore, Tier 3 methods 1040 
may require environmental data on climate zones, soil types, crop types and crop management systems (such as 1041 
nitrogen fertilizer application rates, and whether soils are flooded for paddy rice production), in addition to the 1042 
amount of biochar amendments in each of the individual combinations of strata for the environmental variables. 1043 
More detailed activity data specifying the process conditions for biochar production or the physical and chemical 1044 
characteristics of the biochar may also be required (such as surface area, cation exchange capacity, pH, and ash 1045 
content). 1046 
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5.2.3.4 CALCULATION STEPS FOR TIER 1 1047 

Mineral soils 1048 
The steps for estimating SOC0 and SOC(0-T) and net soil C stock change per ha for Cropland Remaining Cropland 1049 
on mineral soils are as follows: 1050 

Step 1: Organize data into inventory time periods based on the years in which activity data were collected (e.g., 1051 
1990 to 1995, 1995 to 2000, etc.) 1052 

Step 2: Determine the amount Cropland Remaining Cropland by mineral soil types and climate regions in the 1053 
country at the beginning of the first inventory time period.  The first year of the inventory time period will depend 1054 
on the time step of the activity data (0-T; e.g., 5, 10 or 20 years ago). 1055 

Step 3: Classify each Cropland into the appropriate management system using Figure 5.1.   1056 

Step 4: Assign a native reference C stock values (SOCREF) from Table 2.3 based on climate and soil type.   1057 

Step 5: Assign a land-use factor (FLU), management factor (FMG) and C input levels (FI) to each Cropland based 1058 
on the management classification (Step 2).  Values for FLU, FMG and FI are given in Table 5.6.  1059 

Step 6: Multiply the factors (FLU, FMG, FI) by the reference soil C stock (SOCREF) to estimate an ‘initial’ soil 1060 
organic C stock (SOC(0-T)) for the inventory time period.    1061 

Step 7: Estimate the final soil organic C stock (SOC0) by repeating Steps 1 to 5 using the same native reference 1062 
C stock (SOCREF), but with land-use, management and input factors that represent conditions for each cropland in 1063 
the last (year 0) inventory year.  1064 

Step 8: Estimate the average annual change in soil organic C stocks for Cropland Remaining Cropland (∆CMineral) 1065 
by subtracting the ‘initial’ soil organic C stock (SOC(0-T)) from the final soil organic C stock (SOC0), and then 1066 
dividing by the time dependence of the stock change factors (i.e., 20 years using the default factors).  If an inventory 1067 
time period is greater than 20 years, then divide by the difference in the initial and final year of the time period.  1068 

Step 9: Repeat steps 2 to 8 if there are additional inventory time periods (e.g., 1990 to 2000, 2001 to 2010, 1069 
etc.). 1070 

A numerical example is given below for Cropland Remaining Cropland on mineral soils, using Equation 2.25 and 1071 
default reference C stocks (Table 2.3) and stock change factors (Table 5.6). 1072 

Example: The following example shows calculations for aggregate areas of cropland soil carbon 1073 
stock change. In a warm temperate wet climate on  high activity clay soils there are 1Mha of 1074 
permanent annual cropland. The native reference carbon stock (SOCREF) for the region is 64 tonnes 1075 
C ha-1. At the beginning of the inventory calculation period (in this example, 10 yrs earlier in 1990), 1076 
the distribution of cropland systems were 400,000 ha of annual cropland with low carbon input levels 1077 
and full tillage and 600,000 ha of annual cropland with medium input levels and full tillage. Thus, 1078 
initial soil carbon stocks for the area were:  1079 

400,000 ha ● (64  tonnes C ha-1 ● 0.75 ● 1 ● 0.92) + 600,000 ha ● (64 tonnes C ha-1 ● 0.75 ● 1 ● 1080 
1) = 46.46 million tonnes C.  1081 

In the last year of the inventory time period (in this example, the last year is 2000), there are: 200,000 1082 
ha of annual cropping with full tillage and low C input, 700,000 ha of annual cropping with reduced 1083 
tillage and medium C input, and 100,000 ha of annual cropping with no-till and medium C input. 1084 
Thus, total soil carbon stocks based on the inventory year are:  1085 

200,000 ha ● (64 tonnes C ha-1 ● 0.75 ● 1 ● 0.92) + 700,000 ha ● (64 tonnes C ha-1 ● 0.75 ● 1.01 1086 
● 1) + 100,000 ha ● (64 tonnes C ha-1 ● 0.75 ● 1.11 ● 1) = 49.06 million tonnes C.  1087 

Thus, the average annual stock change over the period for the entire area is: 49;06 – 46.46 = 2.60 1088 
million tonnes/20 yr = 130000 tonnes C per year soil C stock increase (Note: 20 years is the time 1089 
dependence of the stock change factor, i.e., factor represents annual rate of change over 20 years).  1090 

Organic soils  1091 
No Refinement 1092 
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The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands provides 1093 
additional guidance that updates the 2006 Guidelines for national Greenhouse Gas Inventories. See section 2.2 of 1094 
the 2013 Wetlands Supplement covers Tier 1, 2, and 3 approaches for drained organic soils in cropland.   1095 

Biochar C Amendments to Mineral Soils  1096 

Step 1: Organize data of the annual amount of biochar applied to cropland by feedstock type and,pyrolysis 1097 
production method according to divisions described for biochar in Vol. 4, Chapter 2, Section 2.3.3.1.   1098 

Step 2: Calcuate the annual change in biochar C stocks.      1099 

A numerical example is given below for Cropland Remaining Cropland on mineral soils, using Vol. 4 Chapter 2, 1100 
Equation 2.25A and default values for carbon content (Table 2.3A) and for fraction of biochar remaining after 1101 
1000 years (Table 2.3B)  1102 

Example: The following example shows calculations for biochar additions to cropland.  The 1103 
following amounts and types of biochar are applied:  2,000 tonnes of biochar produced from medium 1104 
temperature pyrolysis of animal manure, 50,000 tonnes per year of biochar from high-temperature 1105 
gasification of wood chips, and 15,000 tonnes of per year of biochar from low temperature pyrolysis 1106 
of rice husks.   The annual change in biochar C stocks is: 1107 

2000 ● 0.38 ● 0.24  +  50000 ● 0.52 ● 0.38 + 15000 ● 0.49 ● 0.09 = 10,723.9 tonnes  C   1108 

5.2.3.5 UNCERTAINTY ASSESSMENT 1109 

No Refinement 1110 

5.2.4 Non-CO2 greenhouse gas emissions from biomass 1111 

burning 1112 

No Refinement  1113 
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5.3 LAND CONVERTED TO CROPLAND 1114 

No Refinement in the Introduction 1115 

5.3.1 Biomass 1116 

5.3.1.1 CHOICE OF METHOD 1117 

This section provides guidance on methods for calculating carbon stock change in biomass due to the conversion 1118 
of land from natural conditions and other uses to Cropland, including deforestation and conversion of pasture and 1119 
grazing lands to Cropland. The methods require estimates of carbon in biomass stocks prior to and following 1120 
conversion, based on estimates of the areas of lands converted during the period between land-use surveys. As a 1121 
result of conversion to Cropland, it is assumed (in Tier 1) that the dominant vegetation is removed entirely leading 1122 
to emissions, resulting in near zero amounts of carbon remaining in biomass. Some type of cropping system is 1123 
planted soon thereafter increasing the amount of carbon stored in biomass. The difference between initial and final 1124 
biomass carbon pools is used to calculate carbon stock change from land-use conversion;  and in subsequent years 1125 
accumulations and losses in perennial woody biomass in Cropland are counted using methods in Section 5.2.1 1126 
(Cropland Remaining Cropland).  1127 

It is good practice to consider all carbon pools (i.e., above ground and below ground biomass, dead organic matter, 1128 
and soils) in estimating changes in carbon stocks in Land Converted to Cropland. Currently, there is insufficient 1129 
information to provide a default approach with default parameters to estimate carbon stock change in dead organic 1130 
matter (DOM) pools9. DOM is unlikely to be important except in the year of conversion. It is assumed that there 1131 
will be no DOM in Cropland. In addition, the methodology below considers only carbon stock change in above-1132 
ground biomass since limited data are available on below-ground carbon stocks in perennial Cropland. 1133 

The IPCC Guidelines describe increasingly sophisticated alternatives that incorporate greater detail on the areas 1134 
of land converted, carbon stocks on lands, and loss of carbon resulting from land conversions. It is good practice 1135 
to adopt the appropriate tier depending on key source analysis, data availability and national circumstances. All 1136 
countries should strive for improving inventory and reporting approaches by advancing to the highest tier possible 1137 
given national circumstances. It is good practice for countries to use a Tier 2 or Tier 3 approach if carbon emissions 1138 
and removals in Land Converted to Cropland is a key category and if the sub-category of biomass is considered 1139 
significant based on principles outlined in Volume 1, Chapter 4. Countries should use the decision tree in Figure 1140 
1.3 to help with the choice of method. Land Converted to Cropland is likely to be a key category for many countries 1141 
and further biomass is likely to be a key source.  1142 

Tier 1  1143 
The Tier 1 method follows the approach in Chapter 4 (Forest Land) where the amount of biomass that is cleared 1144 
for cropland is estimated by multiplying the area converted in one year by the average carbon stock in biomass in 1145 
the Forest Land or Grassland prior to conversion. It is good practice to account completely for all land conversions 1146 
to Cropland. Thus, this section elaborates on the method such that it includes different initial uses, including but 1147 
not limited to forests.  1148 

Equation 2.15 in Chapter 2 summarises the major elements of a first-order estimation of carbon stock change from 1149 
land-use conversion to Cropland. Average carbon stock change on a per hectare basis is estimated for each type 1150 
of conversion. The average carbon stock change is equal to the carbon stock change due to the removal of biomass 1151 
from the initial land use (i.e., carbon in biomass immediately after conversion minus the carbon in biomass prior 1152 
to conversion), plus carbon stocks from one year of growth in Cropland following conversion. It is necessary to 1153 
account only for any woody vegetation that replaces the vegetation that was cleared during land-use conversion. 1154 
The GPG-LULUCF combines carbon in biomass after conversion and carbon in biomass that grows on the land 1155 
following conversion into a single term. In this method, they are separated into two terms, BAFTER and ∆CG to 1156 
increase transparency.  1157 

As described in section 5.3.1.1., at Tier 1, carbon stocks in biomass immediately after conversion (BAFTER) are 1158 
assumed to be zero, since the land is cleared of all vegetation before planting crops. Average carbon stock change 1159 
                                                           
9 Any litter and dead wood pools (estimated using the methods described in Chapter 2, Section 2.3.2) should be assumed 

oxidized following land conversion. 
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per hectare for a given land-use conversion is multiplied by the estimated area of lands undergoing such a 1160 
conversion in a given year. In subsequent years, change in biomass of annual crops is considered zero because 1161 
carbon gains in biomass from annual growth are offset by losses from harvesting. Changes in biomass of perennial 1162 
woody crops are counted following the methodology in Section 2.3.1.1 (Change in carbon stocks in biomass in 1163 
land remaining in a land-use category) and Section 5.2.1 (Change in carbon stocks in biomass in cropland 1164 
remaining cropland).  Thus, carbon gain of an annual crop is estimated only for the first year following a conversion, 1165 
whereas, carbon gains and losses of perennial woody crop may also occur in subsequent years up to 20 years (at 1166 
maximum).  1167 

The default assumption for Tier 1 is that all carbon in biomass removed is lost to the atmosphere through burning 1168 
or decay processes either on-site or off-site. Tier 1 calculations do not differentiate immediate emissions from 1169 
burning and other conversion related losses.   1170 

Tier 2  1171 
The Tier 2 calculations are structurally similar to Tier 1, with the following distinctions. First, Tier 2 relies largely 1172 
on country-specific estimates of the carbon stocks in initial and final land uses rather than the default data. Area 1173 
estimates for Land Converted to Cropland are disaggregated according to original vegetation (e.g., from Forest 1174 
Land or Grassland) at finer spatial scales to capture regional and crop systems variations in country-specific carbon 1175 
stocks values. 1176 

Second, Tier 2 may modify the assumption that carbon stocks immediately following conversion are zero. This 1177 
enables countries to take into account land-use transitions where some, but not all, vegetation from the original 1178 
land use is removed. 1179 

Third, under Tier 2, it is good practice to apportion carbon losses to burning and decay processes if applicable. 1180 
Emissions of carbon dioxide occur as a result of burning and decay in land-use conversions. Further, non-CO2 1181 
trace gas emissions occur as a result of burning. By partitioning losses to burning and decay, countries can also 1182 
calculate non-CO2 trace gas emissions from burning (Section 5.3.4).  1183 

The immediate impacts of land conversion activities on the five carbon stocks can be summarized in a disturbance 1184 
matrix, which describes the retention, transfers and releases of carbon in the pools in the original ecosystem 1185 
following conversion to Cropland. A disturbance matrix defines for each pool the proportion that remains in that 1186 
pool and the proportion that is transferred to other pools.  A small number of transfers are possible, and are outlined 1187 
in a disturbance matrix in Table 5.7.  The disturbance matrix ensures consistency of the accounting of all carbon 1188 
pools. 1189 

Biomass transfers to dead wood and litter can be estimated using Equation 2.20. 1190 

Tier 3  1191 
The Tier 3 method is similar to Tier 2, with the following distinctions: i) rather than relying on average annual 1192 
rates of conversion, countries can use direct estimates of spatially disaggregated areas converted annually for each 1193 
initial and final land use; ii) carbon densities and soil carbon stock change are based on locally specific information, 1194 
which makes possible a dynamic link between biomass and soil; and iii) biomass volumes are based on actual 1195 
inventories. The transfer of biomass, to dead wood and litter following land-use conversion can be estimated using 1196 
Equation 2.20. 1197 

5.3.1.2 CHOICE OF EMISSION FACTORS 1198 

The emission/removal factors needed for the default method are: carbon stocks before conversion in the initial 1199 
land use and after conversion to Cropland; and growth in biomass carbon stock from one year of cropland growth. 1200 

Tier 1  1201 
Default biomass carbon stock in initial land-use categories (BBEFORE) mainly Forest Land and Grassland are 1202 
provided in Updated Table 5.8. Initial land-use based carbon stocks should be obtained for different Forest Land 1203 
or Grassland categories based on biome type, climate, soil management systems, etc. It is assumed that all biomass 1204 
is cleared when preparing a site for cropland use, thus, the default for BAFTER is 0 tonne C ha-1.  1205 

 1206 

 1207 
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TABLE 5. 7  
EXAMPLE OF A SIMPLE DISTURBANCE MATRIX (TIER 2) FOR THE IMPACTS OF LAND CONVERSION ACTIVITIES ON CARBON 

POOLS  

To 
 
From 

Above-
ground 
biomass 

 

Below-
ground 
biomass 

 

Dead 
wood 

Litter Soil 
organ-

ic 
matter 

Harvest-
ed wood 
products 

Atmo-
sphere 

Sum of 
row 

(must 
equal 1) 

Above-ground 
biomass 

        

Below-ground 
biomass 

        

Dead wood 
        

Litter 
        

Soil organic 
matter 

        

Enter the proportion of each pool on the left side of the matrix that is transferred to the pool at the top of each column.  All of the pools 
on the left side of the matrix must be fully accounted, so the values in each row must sum to 1. 
Impossible transitions are blacked out. 

 1208 

In addition, a value is needed for carbon stocks after one year of growth in crops planted after conversion (∆CG). 1209 
Updated Table 5.9 provides general defaults for annual and perennial crop for ∆CG while updated Table 5.3 1210 
provides defaults for specific perennial crops. Separate defaults are provided for annual non-woody crops and 1211 
perennial woody crops. For lands planted in annual crops, the default value of ∆CG is 4.7 tonnes of C per hectare, 1212 
based on the original IPCC Guidelines recommendation of 10 tonnes of dry biomass per hectare (dry biomass has 1213 
been converted to tonnes carbon in Table 5.9). The total accumulation of carbon in perennial woody biomass will, 1214 
over time, exceed that of the default carbon stock for annual cropland. However, default values provided in this 1215 
section are for one year of growth immediately following conversion, which usually give lower carbon stocks for 1216 
perennial woody crops compared to annual crops.  1217 

TABLE 5. 8 (UPDATED1). 
DEFAULT BIOMASS CARBON STOCKS REMOVED DUE TO LAND CONVERSION TO CROPLAND  

Land-use category 
Carbon stock in biomass* before conversion (BBefore) 

(tonnes C ha-1)  
Error range # 

Forest Land 

See Chapter 4 Tables 4.7 to 4.12 for carbon stocks in a range of forest types 
by climate regions. Stocks are in terms of dry matter. Multiply values by a 
carbon fraction (CF) in Table 4.3 consistent with what used in forest land 
estimation to convert dry matter to carbon. 

See Section 4.3 
(Land Converted to 

Forest Land) 

Grassland 

See Chapter 6 Table 6.4 for carbon stocks in a range of grassland types by 
climate regions. Multiply default carbon fraction (CF) 0.47 (for herbaceous 
biomass for Grassland, see page 6.29, Chapter 6 of the 2006 guidelines to 
convert dry matter to carbon. 

+ 75%  

1 Updates Table 5.8 from the IPCC 2006 Guidelines. 
* Note that the condition of forests that are converted to grassland or cropland is not likely to be typical of the forest type in general, i.e. the 
carbon stocks are probably lower than average (Carter et al. 2017; Puhlick et al 2017). Specific values for disturbed forest may be 
appropriate. 
# Represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean. 

 1218 

 1219 

 1220 

 1221 



 DO NOT CITE OR QUOTE                                                                                Chapter 5_Volume 4 (AFOLU)  
 
Final Draft 
 

5.46 DRAFT 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 
 

 

 

 1222 

 TABLE 5. 9 (UPDATED1) 
 DEFAULT BIOMASS CARBON STOCKS PRESENT ON LAND CONVERTED TO CROPLAND IN THE YEAR FOLLOWING 

CONVERSION   

Crop type by 
climate region 

Ecological 
zone Continent Cropping system 

Carbon stock in 
biomass after one 

year (∆CG) 
(tonnes C ha-1) 

Error 
range# 

Annual cropland All All Annual cropland 4.7 + 75% 

Perennial 
cropland 

All All Agroforestry See G in Tables 5.1 
and 5.2  

All All Monocultures See G in Table 5.3  
1 Update to Table 5.9 in the 2006 IPCC Guidelines   
# Represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean. 

 1223 

Tier 2  1224 
Tier 2 methods should include some country-specific estimates for biomass stocks and removals due to land 1225 
conversion, and also include estimates of on-site and off-site losses due to burning and decay following land 1226 
conversion to Cropland. These improvements can take the form of systematic studies of carbon content and 1227 
emissions and removals associated with land uses and land-use conversions within the country and a re-1228 
examination of default assumptions in light of country-specific conditions. In general, the condition of forests that 1229 
are converted to grassland or cropland is not likely to be typical of the forest type, i.e. the carbon stocks are 1230 
probably lower than average. It is good practice for countries to evaluate country specific values for disturbed 1231 
forest under Tier 2. 1232 

Default parameters for emissions from burning and decay are provided. However, countries are encouraged to 1233 
develop country-specific coefficients to improve the accuracy of estimates. The IPCC Guidelines use a general 1234 
default of 0.5 for the proportion of biomass burnt on-site for both Forest Land and Grassland conversions. Research 1235 
studies suggest that the fraction is highly variable and could be as low as 0.2 (Fearnside, 2000; Barbosa and 1236 
Fearnside, 1996; and Fearnside, 1990). Updated default proportions of biomass burnt on-site are provided in 1237 
Chapter 4 (Forest Land) for a range of forest vegetation classes. These defaults should be used for transitions from 1238 
Forest Land to Cropland. For non-forest initial land uses, the default proportion of biomass left on-site and burnt 1239 
is 0.35. This default takes into consideration research, which suggests the fraction should fall within the range 0.2 1240 
to 0.5 (e.g., Fearnside, 2000; Barbosa and Fearnside, 1996; and Fearnside, 1990). It is good practice for countries 1241 
to use 0.35 or another value within this range, provided that the rationale for the choice is documented. There is 1242 
no default value for the amount of biomass taken off-site and burnt; countries will need to develop a proportion 1243 
based on national data sources. In Chapter 4 (Forest Land), the default proportion of biomass oxidized as a result 1244 
of burning is 0.9, as originally stated in the GPG-LULUCF. 1245 

The method for estimating emissions from decay assumes that all biomass decays over a period of 10 years. For 1246 
reporting purposes countries have two options: 1) report all emissions from decay in one year, recognizing that in 1247 
reality they occur over a 10 year period, and 2) report all emission from decay on an annual basis, estimating the 1248 
rate as one tenth of the totals. If countries choose the latter option, they should add a multiplication factor of 0.10 1249 
to the equation. 1250 

Tier 3  1251 
Under Tier 3, all parameters should be country-defined using measurements and monitoring for more accurate 1252 
values rather than the defaults. Process based models and decay functions can also be used. 1253 

5.3.1.3 CHOICE OF ACTIVITY DATA 1254 

All tiers require estimates of land areas converted to Cropland. The same area estimates should be used for both 1255 
biomass and soil C calculations on Land Converted to Cropland. Higher tiers require greater specificity of areas. 1256 
At a minimum, the area of Forest Land and natural Grassland converted to Cropland should be identified separately 1257 
for all tiers. This implies at least some knowledge of the land uses prior to conversion. This may also require expert 1258 
judgment if Approach 1 in Chapter 3 of these guidelines is used for land area identification.  1259 

Tier 1  1260 
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Separate estimates are required of areas converted to Cropland from initial land uses (i.e., Forest Land, Grassland, 1261 
Settlements, etc.) to final crop land type (i.e., annual or perennial) (ATO_OTHERS). For example, countries should 1262 
estimate separately the area of tropical moist forest converted to annual cropland, tropical moist forest converted 1263 
to perennial cropland, tropical moist Grassland converted to perennial cropland, etc. Although, to allow other pools 1264 
to equilibrate and for consistency with land area estimation overall, land areas should remain in the conversion 1265 
category for 20 years (or other period reflecting national circumstances) following conversion. The methodology 1266 
assumes that area estimates are based on a one-year time frame, which is likely to require estimation on the basis 1267 
of average rates on land-use conversion, determined by measurements estimates made at longer intervals. If 1268 
countries do not have these data, partial samples may be extrapolated to the entire land base or historic estimates 1269 
of conversions may be extrapolated over time based on the judgement of country experts. Under Tier 1 calculations, 1270 
international statistics such as FAO databases, IPCC GPG Reports and other sources, supplemented with sound 1271 
assumptions, can be used to estimate the area of Land Converted to Cropland from each initial land use. For higher 1272 
tier calculations, country-specific data sources are used to estimate all possible transitions from initial land use to 1273 
final crop type.  For perennial woody cropland, the total area of planted perennial woody crops for the age classes 1274 
within the maturing/harvesting cycle (up to 20 years) is required to estimate all biomass carbon change (∆CG). See 1275 
section 5.2.1.3 for details. 1276 

Tier 2  1277 
It is good practice for countries to use actual area estimates for all possible transitions from initial land use to final 1278 
crop type. Full coverage of land areas can be accomplished either through analysis of periodic remotely sensed 1279 
images of land-use and land cover patterns, through periodic ground-based sampling of land-use patterns, or hybrid 1280 
inventory systems. If finer resolution country-specific data are partially available, countries are encouraged to use 1281 
sound assumptions from best available knowledge to extrapolate to the entire land base. Historic estimates of 1282 
conversions may be extrapolated over time based on the judgment of country experts.  1283 

Tier 3  1284 
Activity data used in Tier 3 calculations should be a full accounting of all land-use transitions to Cropland and be 1285 
disaggregated to account for different conditions within a country. Disaggregation can occur along political 1286 
(county, province, etc.), biome, climate, or on a combination of such parameters. In many cases, countries may 1287 
have information on multi-year trends in land conversion (from periodic sample-based or remotely sensed 1288 
inventories of land use and land cover). Periodic land-use change matrix need to be developed giving the initial 1289 
and final land-use areas at disaggregated level based on remote sensing and field surveys. 1290 
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 5.3.1.4 CALCULATION STEPS FOR TIER 1 AND TIER 2 1291 

No Refinement 1292 

5.3.1.5 UNCERTAINTY ASSESSMENT 1293 

No Refinement 1294 

5.3.2 Dead Organic Matter 1295 

No Refinement 1296 

5.3.3 Soil carbon 1297 

Land is typically converted to Cropland from native lands, managed Forest Land and Grassland, but occasionally 1298 
conversions can occur from Wetlands and seldom Settlements.  Regardless of soil type (i.e., mineral or organic), 1299 
the conversion of land to Cropland will, in most cases, result in a loss of soil C for some years following conversion 1300 
(Mann, 1986; Armentano and Menges, 1986; Davidson and Ackerman, 1993). Possible exceptions are irrigation 1301 
of formerly arid lands and conversion of degraded lands to Cropland.  1302 

General information and guidance for estimating changes in soil C stocks are provided in Section 2.3.3 of Chapter 1303 
2 (including equations), and that section needs to be read before proceeding with a consideration of specific 1304 
guidelines dealing with cropland soil C stocks. The total change in soil C stocks for Land Converted to Cropland 1305 
is estimated using Equation 2.24 (Chapter 2), which combines the change in soil organic C stocks (SOC stocks) 1306 
for mineral soils and organic soils; and stock changes associated with soil inorganic C pools (Tier 3 only).  This 1307 
section provides specific guidance for estimating soil organic C stock changes; see Section 2.3.3.1 for discussion 1308 
on soil inorganic C (no additional guidance is provided in the Cropland section below). 1309 

To account for changes in soil C stocks associated with Land Converted to Cropland, countries need to have, at a 1310 
minimum, estimates of the areas of Land Converted to Cropland during the inventory time period. If land-use and 1311 
management data are limited, aggregate data, such as FAO statistics, can be used as a starting point, along with 1312 
knowledge of country experts of the approximate distribution of land-use types being converted and their 1313 
associated management. If the previous land uses and conversions are unknown, SOC stocks changes can still be 1314 
computed using the methods provided in Cropland Remaining Cropland, but the land base area will likely be 1315 
different for croplands in the current year relative to the initial year in the inventory.  It is critical, however, that 1316 
the total land area across all land-use sectors be equal over the inventory time period (e.g., 7 million ha may be 1317 
converted from Forest Land and Grassland to Cropland during the inventory time period, meaning that croplands 1318 
will have an additional 7 Million ha in the last year of the inventory, while grasslands and forests will have a 1319 
corresponding loss of 7 Million ha in the last year).  Land Converted to Cropland is stratified according to climate 1320 
regions and major soil types, which could either be based on default or country-specific classifications. This can 1321 
be accomplished with overlays of climate and soil maps, coupled with spatially-explicit data on the location of 1322 
land conversions. 1323 

5.3.3.1 CHOICE OF METHOD 1324 

Inventories can be developed using a Tier 1, 2 or 3 approach with each successive tier requiring more detail and 1325 
resources than the previous one.  It is also possible that countries will use different tiers to prepare estimates for 1326 
the separate subcategories of soil C (i.e., soil organic C stocks changes in mineral soils and organic soils; and stock 1327 
changes associated with soil inorganic C pools).  Decision trees are provided for mineral soils (Figure 2.5) and 1328 
organic soils (Figure 2.6) in Section 2.3.3.1 (Chapter 2) to assist inventory compilers with selection of the 1329 
appropriate tier for their soil C inventory. 1330 

Mineral soils 1331 

Tier 1  1332 
Soil organic C stock changes for mineral soils can be estimated for land-use conversion to Cropland using Equation 1333 
2.25 in Chapter 2.  For Tier 1, the initial (pre-conversion) soil organic C stock (SOC(0-T)) and C stock in the last 1334 
year of the inventory time period (SOC0) are computed from the default reference soil organic C stocks (SOCREF) 1335 
and default stock change factors (FLU, FMG, FI).  Annual rates of stock changes are estimated as the difference in 1336 
stocks (over time) divided by the time dependence (D) of the Cropland stock change factors (default is 20 years).   1337 



DO NOT CITE OR QUOTE   Chapter 5_Volume 4 (AFOLU) 
 
 Final Draft 
 

 

 
DRAFT 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 5.49 
 

 

 

Tier 2  1338 
The Tier 2 method for mineral soils also uses Equation 2.25, but involves country-specific or region-specific 1339 
reference C stocks and/or stock change factors and may include disaggregated land-use activity and environmental 1340 
data.  1341 

Tier 3  1342 
Tier 3 methods will involve more detailed and country-specific models and/or measurement-based approaches 1343 
along with highly disaggregated land-use and management data. Tier 3 approaches estimate soil C change from 1344 
land-use conversions to Cropland, and may employ models, data sets and/or monitoring networks.  If possible, it 1345 
is recommended that Tier 3 methods be integrated with estimates of biomass removal and the post-clearance 1346 
treatment of plant residues (including woody debris and litter), as variation in the removal and treatment of residues 1347 
(e.g., burning, site preparation) will affect C inputs to soil organic matter formation and C losses through 1348 
decomposition and combustion. It is important that models be evaluated with independent observations from 1349 
country-specific or region-specific field locations that are representative of the interactions of climate, soil and 1350 
cropland management on post-conversion change in soil C stocks. 1351 

Organic soils  1352 
No Refinement 1353 

The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands provides 1354 
additional guidance that updates the 2006 Guidelines for national Greenhouse Gas Inventories. See section 2.2 of 1355 
the 2013 Wetlands Supplement covers Tier 1, 2, and 3 approaches for drained organic soils in cropland.   1356 

Biochar C Amendments to Mineral Soils  1357 

Tier 1  1358 
This methodology utilizes a top-down approach in which the total amount of biochar generated and added to 1359 
mineral soil is used to estimate the change in soil organic C stocks.  Use Equation 2.27 to estimate the change in 1360 
C stock from biochar amendments in Chapter 2, Section 2.3.3.1, Volume IV.   1361 

Tier 2  1362 
Tier 2 methods use the same definitions and equations as Tier 1, but with country-specific factors.  See Section 1363 
2.3.3.1, Chapter 2, Volume IV for more information.  1364 

Tier 3  1365 
Tier 3 methods can be used to account for GHG sources and sinks not captured in Tiers 1 or 2, such as priming, 1366 
changes to N2O or CH4 fluxes from soils, and changes to net primary production. More information on Tier 3 1367 
methods is provided in Section 2.3.3.1 of Chapter 2, Volume IV. 1368 

5.3.3.2 CHOICE OF STOCK CHANGE AND EMISSION FACTORS 1369 

Mineral soils 1370 

Tier 1  1371 
For native unmanaged land, as well as for managed forest lands, settlements and nominally managed grasslands 1372 
with low disturbance regimes, soil C stocks are assumed equal to the reference values (i.e., land-use, disturbance 1373 
(forests only), management and input factors equal 1), while it will be necessary to apply the appropriate stock 1374 
change factors to represent previous land-use systems that are not the reference condition, such as improved and 1375 
degraded grasslands.  It will also be necessary to apply the appropriate stock change factor to represent input and 1376 
management effects on soil C storage in the new cropland system.  Default reference C stocks are found in Table 1377 
2.3 (Chapter 2).  See the appropriate land-use chapter for default stock change factors. 1378 

In the case of transient land-use conversions to Cropland, the stock change factors are given in Table 5.10, and 1379 
depend on the length of the fallow (vegetation recovery) cycle in a shifting cultivation system, representing an 1380 
average soil C stock over the crop-fallow cycle. Mature fallow denotes situations where the non-cropland 1381 
vegetation (e.g., forests) recovers to a mature or near mature state prior to being cleared again for cropland use, 1382 
whereas in shortened fallow, vegetation recovery is not attained prior to re-clearing. If land already in shifting-1383 
cultivation is converted to permanent Cropland (or other land uses), the stock change factors representing shifting 1384 
cultivation would provide the ‘initial’ C stocks (SOC(0-T)) in the calculations using Equation 2.25 (Chapter 2).  1385 
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TABLE 5. 10. 
SOIL STOCK CHANGE FACTORS (FLU, FMG, FI) FOR LAND-USE CONVERSIONS TO CROPLAND   

Factor value 
type Level Climate 

regime 
IPCC 

default 
Error

# Definition 

Land use 
Native forest or 

grassland 
 (non-degraded) 

All 1 NA Represents native or long-term, non-
degraded and sustainably managed forest 

and grasslands. Tropical 1 NA 

Land use 

Shifting cultivation 
– Shortened fallow Tropical 0.64 + 50% Permanent shifting cultivation, where 

tropical forest or woodland is cleared for 
planting of annual crops for a short time 
(e.g., 3-5 yr) period and then abandoned 

to regrowth.  
Shifting cultivation 

– Mature fallow Tropical 0.8 + 50% 

Land-use, 
Management, 
& Input 

Managed forest (default value is 1) 

Land-use, 
Management, 
& Input 

Managed grassland (See default values in Table 6.2) 

Land-use, 
Management, 
& Input 

Cropland (See default values in Table 5.5) 

# Represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean. NA denotes ‘Not 
Applicable’, where factor values constitute defined reference values. 

 1386 

Tier 2  1387 
Estimation of country-specific stock change factors is probably the most important development associated with 1388 
the Tier 2 approach.  Differences in soil organic C stocks among land uses are computed relative to a reference 1389 
condition, using land-use factors (FLU).  Input factors (FI) and management factors (FMG) are then used to further 1390 
refine the C stocks of the new cropland system.  Additional guidance on how to derive these stock change factors 1391 
is given in Croplands Remaining Croplands, Section 5.2.3.2. See the appropriate chapter for specific information 1392 
regarding the derivation of stock change factors for other land-use categories (Forest Land in Section 4.2.3.2, 1393 
Grassland in 6.2.3.2, Settlements in 8.2.3.2, and Other Land in 9.3.3.2).  1394 

Reference C stocks can be derived from country-specific data in a Tier 2 approach.  Reference values in Tier 1 1395 
correspond to non-degraded, unimproved lands under native vegetation, but other reference conditions can also be 1396 
chosen for Tier 2. In addition, the depth for evaluating soil C stock changes can be different with the Tier 2 method 1397 
(see also section 6.2.3.1). However, the depth of the reference C stocks (SOCREF) and stock change factors needs 1398 
to be the same for all land uses (i.e., FLU, FI, and FMG) to ensure consistency in the application of methods for 1399 
estimating the impact of land use change on soil C stocks. 1400 

The Tier 1 method may over- or under-estimate soil C stock changes on an annual basis, particularly with land use 1401 
change (e.g., Villarino et al., 2014). Therefore, land use change, such as Cropland converted to Grassland, may 1402 
include development of factors that estimate changes over longer periods of time than the default 20 years, and 1403 
may better match the period of time over which carbon accumulates is lost from soils due to land use change.  1404 

The carbon stock estimates may be improved when deriving country-specific factors for FLU and FMG, by 1405 
expressing carbon stocks on a soil-mass equivalent basis rather than a soil-volume equivalent (i.e. fixed depth) 1406 
basis. This is because the soil mass in a certain soil depth changes with the various operations associated with land 1407 
use that affect the density of the soil, such as uprooting, land leveling, tillage, and rain compaction due to the 1408 
disappearance of the cover of tree canopy. However, it is important to realize that all data used to derive stock 1409 
change factors across all land uses must be on an equivalent mass basis if this method is applied.  This will be 1410 
challenging to do comprehensively for all land uses. See Box 2.2B in Chapter 2, Section 2.3.3.1 for more 1411 
information. 1412 

Tier 3  1413 
Constant stock change rate factors per se are less likely to be estimated in favor of variable rates that more 1414 
accurately capture land-use and management effects. See Chapter 2, Section 2.3.3.1 for further discussion.  1415 

Organic soils  1416 
No Refinement 1417 
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The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands provides 1418 
additional guidance that updates the 2006 Guidelines for national Greenhouse Gas Inventories. See section 2.2 of 1419 
the 2013 Wetlands Supplement covers Tier 1, 2, and 3 approaches for drained organic soils in cropland.   1420 

Biochar C Amendments to Mineral Soils  1421 

Tier 1  1422 
Default emission factors are provided in Chapter 2, Section 2.3.3.1, Volume IV.    1423 

Tier 2  1424 
Tier 2 emission factors may be further disaggregated relative to the default factors based on variation in 1425 
environmental conditions, such as the climate and soil types, in addition to variation associated with the biochar 1426 
production methods. See Section 2.3.3.1, Chapter 2, Volume IV for more information.  1427 

If country-specific emission factors (i.e., degradation or permenance factors) for biochar C for croplands are 1428 
different from the past land use for Land Converted to Cropland, these degradation differences need to be 1429 
addressed in the calculations.  This requires estimating the biochar carbon stocks from past biochar carbon 1430 
additions that remain in Land Converted to Cropland after conversion. The biochar C stocks are then subject to 1431 
the degradation for cropland, which may lead some additional loss of biochar C. 1432 

Tier 3  1433 
Tier 3 methods are country-specific and may involve empirical or process-based models to account for a broader 1434 
set of impacts of biochar amendments. These methods will likely estimate biochar C stocks and associated changes 1435 
over time so the biochar C stocks in Land Converted to Cropland will need to be tracked through the land use 1436 
change process. More information on Tier 3 methods is provided in Section 2.3.3.1, Chapter 2, Volume IV. 1437 

5.3.3.3 CHOICE OF ACTIVITY DATA 1438 

Mineral soils 1439 

Tier 1  and Tier 2  -  Default  Equations  1440 
For purposes of estimating soil carbon stock change, area estimates of Land Converted to Cropland should be 1441 
stratified according to major climate regions and soil types. This can be based on overlays with suitable climate 1442 
and soil maps and spatially-explicit data of the location of land conversions. Detailed descriptions of the default 1443 
climate and soil classification schemes are provided in Chapter 3, Annex 3A.5. Specific information is provided 1444 
in the each of the land-use chapters regarding treatment of land-use/management activity data (Forest Land in 1445 
Section 4.2.3.3, Cropland in 5.2.3.3, Grassland in 6.2.3.3, Settlements in 8.2.3.3, and Other Land in 9.3.3.3).   1446 

One critical issue in evaluating the impact of Land Converted to Cropland on soil organic C stocks is the type of 1447 
land-use and management activity data.  Activity data gathered using Approach 2 or 3 (see Chapter 3 for discussion 1448 
about approaches) provide the underlying basis for determining the previous land use for Land Converted to 1449 
Cropland.  In contrast, aggregate data (Approach 1, Chapter 3) only provide the total amount of area in each land 1450 
at the beginning and end of the inventory period (e.g., 1985 and 2005).  Approach 1 data are not sufficient to 1451 
determine specific transitions. In this case all Cropland will be reported in the Cropland Remaining Cropland 1452 
category and in effect transitions become step changes across the landscape. This makes it particularly important 1453 
to achieve coordination among all land sectors to ensure that the total land base is remaining constant over time, 1454 
given that some land area will be lost and gained within individual sectors during each inventory year due to land-1455 
use change. 1456 

Tier 3  1457 
For application of dynamic models and/or a direct measurement-based inventory in Tier 3, similar or more detailed 1458 
data on the combinations of climate, soil, topographic and management data are needed, relative to Tier 1 or 2 1459 
methods, but the exact requirements will be dependent on the model or measurement design.    1460 

Organic soils  1461 
No Refinement 1462 

The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands provides 1463 
additional guidance that updates the 2006 Guidelines for national Greenhouse Gas Inventories. See section 2.2 of 1464 
the 2013 Wetlands Supplement covers Tier 1, 2, and 3 approaches for drained organic soils in cropland.   1465 

Biochar C Amendments to Mineral Soils  1466 
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Tier 1  1467 
The activity data required for the Tier 1 method includes the total quantities of biochar distributed for amendment 1468 
to mineral soils. These data must be disaggregated by production type, where production type is defined as a 1469 
process utilizing a specific feedstock type, and a specific conversion process (gasification, or high-, medium-, or 1470 
low-temperature pyrolysis; Tables 2.4 and 2.5). In case data on the temperature of pyrolysis are unavailable, default 1471 
factors for uncontrolled or unspecified pyrolysis temperatures are provided in Section 2.3.3.1 of Chapter 2, Volume 1472 
IV.  Changes in soil C associated with biochar amendments is considered to occur where it is incorporated into 1473 
soil. However, due to the distributed nature of the land sector in which this can take place, inventory compilers 1474 
may not have access to data on when or where biochar C amendments occur. Therefore, for the purposes of Tier 1475 
1 method, inventory compilers can rely on centralized records from biochar producers, importers, exporters or 1476 
distributors, recording the quantity of biochar that has been provided to the land use sector for use as a soil 1477 
amendment in the country. Note that exported biochar is not included in the total amount of biochar amended to 1478 
soils in the country.  Inventory compilers may further disaggregate amendments by land use if the data are available.  1479 

Tier 2  1480 
Tier 2 methods have the same activity data requirements as Tier 1 (quantities of biochar distributed for 1481 
incorporation into mineral soils, disaggregated by production type). Additionally, activity data on the amount of 1482 
biochar amendments may be disaggregated by climate zones and/or soil types if country-specific factors are 1483 
disaggregated by these environmental variables. The additional climate and soil activity data may be obtained with 1484 
a survey of biochar distributors and land managers.   1485 

Country-specific factors may incorporate a change in degradation over time following biochar additions or there 1486 
is a difference in degradation associated with land use.  In these cases, biochar C stocks will be tracked for Land 1487 
Converted to Cropland in order to estimate the change in rate of degradation over time or with the change in land 1488 
use. 1489 

Tier 3  1490 
The additional activity data required to support a Tier 3 method will depend on which processes are represented 1491 
and environmental variables that are required as input to the model.  Priming, soil GHG emissions, and plant 1492 
production responses to biochar all vary with biochar type, climate, and soil type. Furthermore, soil GHG 1493 
emissions and plant production responses also vary with crop type and management. Therefore, Tier 3 methods 1494 
may require environmental data on climate zones, soil types, crop types and crop management systems (such as 1495 
nitrogen fertilizer application rates, and whether soils are flooded for paddy rice production), in addition to the 1496 
amount of biochar amendments in each of the individual combinations of strata for the environmental variables. 1497 
More detailed activity data specifying the process conditions for biochar production or the physical and chemical 1498 
characteristics of the biochar may also be required (such as surface area, cation exchange capacity, pH, and ash 1499 
content). 1500 

5.3.3.4 CALCULATION STEPS FOR TIER 1 1501 

Mineral soils 1502 
The steps for estimating SOC0 and SOC(0-T) and net soil C stock change per ha of Land Converted to Cropland on 1503 
mineral soils are as follows: 1504 

Step 1: Organize data into inventory time periods based on the years in which activity data were collected (e.g., 1505 
1990 to 1995, 1995 to 2000, etc.) 1506 

Step 2: Determine the amount of Land Converted to Cropland by mineral soil types and climate regions in the 1507 
country at the beginning of the first inventory time period.  The first year of the inventory time period will depend 1508 
on the time step of the activity data (0-T; e.g., 5, 10 or 20 years ago). 1509 

Step 3: For Grassland converted to Cropland, classify previous grasslands into the appropriate management 1510 
system using Figure 6.1.  No classification is needed for other land uses at the Tier 1 level. 1511 

Step 4: Assign native reference C stock values (SOCREF) from Table 2.3 based on climate and soil type.   1512 

Step 5: Assign a land-use factor (FLU), management factor (FMG) and C input levels (FI) to each grassland based 1513 
on the management classification (Step 2).  Values for FLU, FMG and FI are given in Table 6.2 for grasslands.  1514 
Values are assumed to be 1 for all other land uses.  1515 

Step 6: Multiply the factors (FLU, FMG, FI) by the reference soil C stock to estimate an ‘initial’ soil organic C 1516 
stock (SOC(0-T)) for the inventory time period.    1517 
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Step 7: Estimate the final soil organic C stock (SOC0) by repeating Steps 1 to 5 using the same native reference 1518 
C stock (SOCREF), but with land-use, management and input factors that represent conditions for the cropland in 1519 
the last (year 0) inventory year.  1520 

Step 8: Estimate the average annual change in soil organic C stocks for land converted to Cropland (∆CMineral) by 1521 
subtracting the ‘initial’ soil organic C stock (SOC(0-T)) from the final soil organic C stock (SOC0), and then dividing 1522 
by the time dependence of the stock change factors (i.e., 20 years using the default factors).  Note: if an inventory 1523 
time period is greater than 20 years, then divide by the difference in the initial and final year of the time period.  1524 

Step 9: Repeat Steps 2 to 8 if there are additional inventory time periods (e.g., 1990 to 2000, 2001 to 2010, etc.).  1525 
Note that Land Converted to Cropland will retain that designation for 20 years.  Therefore, inventory time periods 1526 
that are less than 20 years may need to refer to the previous inventory time period to evaluate if a parcel of land is 1527 
considered Land Converted to Cropland or Cropland Remaining Cropland. 1528 

A numerical example is given below for Forest Land converted to Cropland on mineral soils, using Equation 2.25 1529 
and default reference C stocks (Table 2.3) and stock change factors (Table 5.6). 1530 

Example:    For a forest on volcanic soil in a tropical moist environment: SOCRef = 70 tonnes C  ha-1531 
1. For all forest soils (and for native grasslands) default values for stock change factors (FLU , FMG , 1532 
FI) are all 1; thus SOC(0-T) is 70 tonnes C ha-1. If the land is converted into annual cropland, with 1533 
intensive tillage and low residue C inputs then: 1534 

 SOC0 = 70 tonnes C ha-1 ● 0.90 ● 1 ● 0.92 = 58.0 tonnes C ha-1.  1535 

Thus the average annual change in soil C stock for the area over the inventory time period is 1536 
calculated as: 1537 

 (58 tonnes C ha-1 – 70 tonnes C ha-1) / 20 yrs =    -0.6 tonnes C ha-1 yr-1.  1538 

Organic soils  1539 
No Refinement 1540 

The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands provides 1541 
additional guidance that updates the 2006 Guidelines for national Greenhouse Gas Inventories. See section 2.2 of 1542 
the 2013 Wetlands Supplement covers Tier 1, 2, and 3 approaches for drained organic soils in cropland. 1543 

Biochar C Amendments to Mineral Soils  1544 

Step 1: Organize data of the annual amount of biochar applied to cropland by feedstock type and,pyrolysis 1545 
production method according to divisions described for biochar in Vol. 4, Chapter 2, Section 2.3.3.1.   1546 

Step 2: Calcuate the annual change in biochar C stocks.  An example is provided in Section 5.2.3.4.    1547 

5.3.3.5 UNCERTAINTY ASSESSMENT 1548 

No Refinement 1549 

5.3.4 Non-CO2 greenhouse gas emissions from biomass 1550 

burning 1551 

No Refinement 1552 

5.4 COMPLETENESS, TIME SERIES, QA/QC, AND 1553 

REPORTING 1554 

No Refinement  1555 
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5.5 METHANE EMISSIONS FROM RICE 1556 

CULTIVATION 1557 

No Refinement in the Introduction. 1558 

5.5.1 Choice of method 1559 

The basic equation to estimate CH4 emissions from rice cultivation is shown in Equation 5.2. CH4 emissions are 1560 
estimated by multiplying daily emission factors by cultivation period10 of rice and annual harvested areas11. In its 1561 
most simple form, this equation is implemented using national activity data (i.e., national average cultivation period 1562 
of rice and area harvested) and a single emission factor. However, the natural conditions and agricultural 1563 
management of rice production may be highly variable within a country. It is good practice to account for this 1564 
variability by disaggregating national total harvested area into sub-units (e.g., harvested areas under different water 1565 
regimes). Harvested area for each sub-unit is multiplied by the respective cultivation period and emission factor 1566 
that is representative of the conditions that define the sub-unit (Sass, 2002). With this disaggregated approach, total 1567 
annual emissions are equal to the sum of emissions from each sub-unit of harvested area. 1568 

 1569 

EQUATION 5.1 1570 
CH4 EMISSIONS FROM RICE CULTIVATION 1571 

 1572 

∑ −•••=
kji

kjikjikjiRice AtEFCH
,,

6
,,,,,,4 )10(

 1573 

Where:   1574 

CH4 Rice = annual methane emissions from rice cultivation, Gg CH4 yr-1 1575 

EFijk = a daily emission factor for i, j, and k conditions, kg CH4 ha-1 day-1 1576 

tijk = cultivation period of rice for i, j, and k conditions, day  1577 

Aijk = annual harvested area of rice for i, j, and k conditions, ha yr-1  1578 

i, j, and k   = represent different ecosystems, water regimes, type and amount of organic amendments, and other 1579 
conditions under which CH4 emissions from rice may vary 1580 

The different conditions that should be considered include rice ecosystem types, flooding pattern before and during 1581 
cultivation period, and type and amount of organic amendments. Other conditions such as soil type, and rice 1582 
cultivar can be considered for the disaggregation if country-specific information about the relationship between 1583 
these conditions and CH4 emissions are available. The rice ecosystem types and water regimes during cultivation 1584 
period are listed in Table 5.12. If the national rice production can be sub-divided into agro-climatic zones with 1585 
different production systems )e.g., flooding patterns(, Equation 5.2 should be applied to each region separately. 1586 
The same applies if rice statistics or expert judgments are available to distinguish management practices or other 1587 
factors along administrative units (district or province(. In addition, if more than one crop is harvested during a 1588 
given year, emissions should be estimated for each cropping season taking into account possible differences in 1589 
cultivation practices (e.g., use of organic amendments, flooding pattern before and during the cultivation period).  1590 

The decision tree in Figure 5.2 guides inventory agencies through the process of applying the good practice IPCC 1591 
approach. Implicit in this decision tree is a hierarchy of disaggregation in implementing the IPCC method. Within 1592 
this hierarchy, the level of disaggregation utilised by an inventory agency will depend upon the availability of 1593 
activity and emission factor data, as well as the importance of rice as a contributor to its national greenhouse gas 1594 

                                                           
10 In the case of a ratoon crop, ‘cultivation period’ should be extended by the respective number of days. 

11 In case of multiple cropping during the same year, ‘harvested area’ is equal to the sum of the area cultivated for each cropping. 
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emissions. The specific steps and variables in this decision tree, and the logic behind it, are discussed in the text 1595 
that follows the decision tree. 1596 

Figure 5 .  2  Decision tree for CH4 emissions from rice production 1597 

 1598 
 1599 

Tier 1 1600 

Start

Are country-
specific methods,

including modelling or direct
measurement approach,

available?

Are
country-specific

emission factors available for 
different water 

regime?
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production a key source 

category1?

Collect data for
Tier 2 or Tier 3

method.

Calculate emissions using
country-specific methods for

higher level of
disaggregation as basis for

the Tier 3 method.

Calculate emissions using
the Tier 2 method.

Calculate emissions using the
Tier 1 default emission factor and

scaling factors together with
activity data for harvested area

and cultivation period.

Yes

No

Yes

No

No

Box 3: Tier 3

Box 2: Tier 2

Box 1: Tier 1

Yes

Note:
1: See Volume 1 Chapter 4, "Methodological Choice and Identification of Key Categories" (noting Section 4.1.2 on limited resources), for 
discussion of key categories and use of decision trees.

Calculate emissions for each
cropping (i.e., dry season-,
wet season-, early-, single-,
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Calculate emissions for each
agro-ecological zone.
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agroecological zones in
the country?

No

No

Yes

Yes



 DO NOT CITE OR QUOTE                                                                                Chapter 5_Volume 4 (AFOLU)  
 
Final Draft 
 

5.56 DRAFT 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 
 

 

 

Tier 1 applies to countries in which either CH4 emissions from rice cultivation are not a key category or country-1601 
specific emission factors do not exist. The disaggregation of the annual harvest area of rice needs to be done for at 1602 
least three baseline water regimes including irrigated, rainfed, and upland. It is encouraged to incorporate as many 1603 
of the conditions (i, j, k, etc.) that influence CH4 emissions (summarized in Box 5.2) as possible. Emissions for each 1604 
sub-unit are adjusted by multiplying a baseline default emission factor (for field with no pre-season flooding for 1605 
less than 180 days prior to rice cultivation and continuously flooded fields without organic amendments, EFc) by 1606 
various scaling factors as shown in Equation 5.2. The calculations are carried out for each water regime and organic 1607 
amendment separately as shown in Equation 5.3.  1608 

EQUATION 5.2 (UPDATED) 1609 
ADJUSTED DAILY EMISSION FACTOR (TIER 1) 1610 

 1611 
= • • •i c w p oEF EF SF SF SF  1612 

 1613 

Where: 1614 

EFi = adjusted daily emission factor for a particular harvested area 1615 

EFc = baseline emission factor for continuously flooded fields without organic amendments 1616 

SFw = scaling factor to account for the differences in water regime during the cultivation period (from Table 1617 
5.12)  1618 

SFp = scaling factor to account for the differences in water regime in the pre-season before the cultivation 1619 
period (from Table 5.13)  1620 

SFo = scaling factor should vary for both type and amount of organic amendment applied (from Equation 1621 
5.3 and Table 5.14)  1622 

Tier 2 1623 
Tier 2 applies the same methodological approach as Tier 1, but country-specific emission factors and/or scaling 1624 
factors should be used. These country-specific factors are needed to reflect the local impact of the conditions (i, j, 1625 
k, etc.) that influence CH4 emissions, preferably being developed through collection of field data (e.g. effects of 1626 
soil type and rice cultivar). As for Tier 1 approach, it is encouraged to implement the method at the most 1627 
disaggregated level and to incorporate the multitude of conditions (i, j, k, etc.) that influence CH4 emissions.  1628 

EQUATION 5.2A (NEW) 1629 
ADJUSTED DAILY EMISSION FACTOR (TIER 2) 1630 

 1631 
 = • • • • •i c w p o s rEF EF SF SF SF SF SF  1632 

 1633 

Where: 1634 

SFs = scaling factor for soil type 1635 

SFr = scaling factor for rice cultivar 1636 

Tier 3 1637 
Tier 3 includes models and monitoring networks tailored to address national circumstances of rice cultivation, 1638 
repeated over time, driven by high-resolution activity data (e.g. satellite-based and in-situ measurement) and 1639 
disaggregated at sub-national level. Models can be empirical or mechanistic, but in either case need to be validated 1640 
with independent observations from country or region-specific studies (Cai et al., 2003b; Li et al., 2004; Huang et 1641 
al., 2004; and Pathak et al., 2005). Tier 3 methodologies may also take into account inter-annual variability triggered 1642 
by typhoon, flooding, drought, etc.  A few countries have used Tier 3 method in their national communications to 1643 
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UNFCCC12 [e.g. China and Japan used CH4MOD (Huang et al., 2004) and DNDC-Rice models (Katayanagi et 1644 
al., 2017), and USA used DayCent (Cheng et al. 2013)]. 1645 

BOX 5.2 (UPDATED) 1646 
CONDITIONS INFLUENCING CH4 EMISSIONS FROM RICE CULTIVATION  1647 

The following rice cultivation characteristics should be considered in calculating CH4 emissions as 1648 
well as in developing emission factors: 1649 

Regional differences in rice cropping practices: If the country is large and has distinct agricultural 1650 
regions with different climate and/or production systems (e.g., flooding patterns), a separate set of 1651 
calculations should be performed for each region. 1652 

Multiple crops: If more than one rice crop is harvested on a given area of land during the year, and 1653 
the growing conditions vary among cropping seasons, calculations should be performed for each 1654 
season. 1655 

Water regime: In the context of this chapter, water regime is defined as a combination of (i) ecosystem 1656 
type and (ii) flooding pattern. 1657 

Ecosystem type: At a minimum, separate calculations should be undertaken for each rice ecosystem 1658 
(i.e., irrigated, rainfed, and deep water rice production). 1659 

Flooding pattern: Flooding pattern of rice fields has a significant effect on CH4 emissions (Sass et al., 1660 
1992; Yagi et al., 1996; Wassmann et al., 2000; Pathak and Wassmann, 2007; Pathak et al., 2003). 1661 
Rice ecosystems can further be distinguished into continuously and intermittently flooded (irrigated 1662 
rice), and regular rainfed, drought prone, and deep water (rainfed), according to the flooding patterns 1663 
during the cultivation period. Also, flooding pattern before cultivation period should be considered 1664 
(Yagi et al., 1998; Cai et al., 2000; 2003a; Fitzgerald et al., 2000). 1665 

Organic amendments to soils: Organic material incorporated into rice soils increases CH4 emissions 1666 
(Schütz et al., 1989; Yagi and Minami, 1990; Sass et al., 1991; Pathak and Wassmann, 2007; Pathak 1667 
et al., 2003). The impact of organic amendments on CH4 emissions depends on type and amount of 1668 
the applied material which can be described by a dose response curve (Denier van der Gon and Neue, 1669 
1995; Yan et al., 2005). Organic material incorporated into the soil can either be of endogenous 1670 
(straw, green manure, etc.) or exogenous origin (compost, farmyard manure, etc.). Calculations of 1671 
emissions should consider the effect of organic amendments. 1672 

Other conditions: It is known that other factors, such as soil type (Sass et al., 1994; Wassmann et al., 1673 
1998; Huang et al., 2002), rice cultivar (Watanabe and Kimura, 1998; Wassmann and Aulakh, 2000), 1674 
sulphate containing amendments (Lindau et al., 1993; Denier van der Gon and Neue, 2002), etc., can 1675 
significantly influence CH4 emissions. Inventory agencies are encouraged to make every effort to 1676 
consider these conditions if country-specific information about the relationship between these 1677 
conditions and CH4 emissions is available. 1678 

5.5.2 Choice of emission and scaling factors 1679 

Tier 1 1680 
Scaling factors are used to adjust the baseline emission factor (EFc), as provided in Table 5.11, to account for the 1681 
various conditions discussed in Box 5.2, which result in adjusted daily emission factors (EFi) for a particular sub-1682 

                                                           
12 https://unfccc.int/ 
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unit of disaggregated harvested area according to Equation 5.3. Default cultivation period is provided in Table 1683 
5.11A which can be used for Equation 5.1. 1684 

The most important scaling factors, namely water regime during and before cultivation period and organic 1685 
amendments, are represented in Tables 5.12, 5.13 and 5.14, respectively, through default values.  Country-specific 1686 
scaling factors should only be used if they are based on well-researched and documented measurement data. It is 1687 
encouraged to consider soil type, rice cultivar, and other factors, if available. 1688 

 1689 

 TABLE 5.11 (UPDATED) 
DEFAULT CH4 BASELINE EMISSION FACTOR ASSUMING NO FLOODING FOR LESS THAN 180 DAYS PRIOR TO RICE 

CULTIVATION, AND CONTINUOUSLY FLOODED DURING RICE CULTIVATION WITHOUT ORGANIC AMENDMENTS 

World Regional 

Emission factor 
(kg CH4 ha-1 d-1) 

Error range 
(kg CH4 ha-1 d-1) 

Region Emission factor 
(kg CH4 ha-1 d-1) 

Error range 
(kg CH4 ha-1 d-1) 

1.19 0.80 – 1.76 

Africa 1 1.19 0.80 – 1.76 

East Asia 1.32 0.89 – 1.96 

Southeast Asia 1.22 0.83 – 1.81 

South Asia 0.85 0.58 – 1.26 

Europe 1.56 1.06 – 2.31 

North America 0.65 0.44 – 0.96 

South America 1.27 0.86 – 1.88 

Note:  Emission factors and error ranges were estimated based on 95% confidence interval, using statistical model with updated database; 
See Annex 5A.2 for more information. 
1 For Africa, the global estimate is used due to lack of data. 

 1690 

 TABLE 5.11A (NEW GUIDANCE) 
DEFAULT CULTIVATION PERIOD OF RICE 

World Regional 

Cultivation Period 
(day) 

Error range 
(day) 

Region Cultivation Period 
(day) 

Error Range 
(day) 

 
 

113 74– 152 

Africa 1 113 74 – 152 

East Asia 112 73 – 147 

Southeast Asia 102 78 – 150 

South Asia 112 90 – 140 

Europe 123 111 – 153 

North America 139 110 – 165 

South America 124 110 – 146 

Note: Cultivation period was calculated from updated database, and the error range or uncertainty was based on the 2.5th percentile to 
97.5th percentile of the distribution of ratios; See Annex 5A.2 for more information.  
1 For Africa, the global estimate is used due to lack of data. 

 1691 

Water regime during the cultivation period (SFw): Table 5.12 provides default scaling factors and error ranges 1692 
reflecting different water regimes. The aggregated case refers to a situation when activity data are only available 1693 
for rice ecosystem types, but not for flooding patterns (see Box 5.2). In the disaggregated case, flooding patterns 1694 
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can be distinguished in the form of three subcategories as shown in Table 5.12. It is good practice to collect more 1695 
disaggregated activity data and apply disaggregated case SFw whenever possible. 1696 

 1697 

TABLE 5.12 (UPDATED) 

DEFAULT CH4 EMISSION SCALING FACTORS FOR WATER REGIMES DURING THE CULTIVATION PERIOD RELATIVE TO 
CONTINUOUSLY FLOODED FIELDS   

Water regime 

Aggregated case Disaggregated case 

Scaling 
factor 
)SFw( 

Error 
range  

Scaling 
factor 
)SFw( 

Error 
range  

Upland a 0 - 0 – 

Irrigated b 

Continuously flooded 

0.60 0.44 – 0.78 

1.00 0.73 – 1.27 

Single drainage period 0.71 0.53 – 0.94 

Multiple drainage periods 0.55 0.41 – 0.72 

Rainfed and 
deep water c 

Regular rainfed 
0.45 0.32 – 0.62 

0.54 0.39 – 0.74 

Drought prone 0.16 0.11 – 0.24 

Deep water 0.06 0.03 – 0.12 0.06 0.03 – 0.12 

Source: Scaling factors and error ranges (based on 95% confidential interval) were determined using statistical model and updated 
database; see Annex 5A.2 for more information. 
Notes: 
a Fields are never flooded for a significant period of time. 
  
b Fields are flooded for a significant period of time and the water regime is fully controlled.  
 • Continuously flooded: Fields have standing water throughout the rice growing season and may only dry out for harvest )end-season 
drainage(. 
 • Single drainage period: Fields have a single drainage event and period during the cropping season at any growth stage, in addition to 
tthe end of season drainage. 
   • Multiple drainage periods: Fields have more than one drainage event and period of time without flooded conditions during the 
cropping season, in addition to an end of season drainage, including alternate wetting and drying (AWD). 
 
c Fields are flooded for a significant period of time with water regimes that depend solely on precipitation.  
 • Regular rainfed: The water level may rise up to 50 cm during the cropping season. 
 • Drought prone: Drought periods occur during every cropping season. 
 • Deep water rice: Water level rises to more than 50 cm above the soil for a significant period of time during the cropping season. 
Other rice ecosystem categories, like swamps and inland, saline or tidal wetlands may be discriminated within each sub-category. 

 1698 

Water regime before the cultivation period (SFp): Table 5.13 provides default scaling factors for water regime 1699 
before the cultivation period, which can be used when country-specific data are unavailable. This table 1700 
distinguishes four different water regimes prior to rice cultivation, namely:  1701 

1. Non-flooded pre-season < 180 days, which often occurs under double cropping of rice;   1702 

2. Non-flooded pre-season > 180 days, e.g., single rice crop following a dry fallow period;  1703 

3. Flooded pre-season in which the minimum flooding interval is set to 30 days; i.e., shorter flooding periods 1704 
(usually done to prepare the soil for ploughing) will not be included in this category; and 1705 

4. Non-flooded pre-season in which the rice fields were not flooded for > 365 days such as upland crop ̶ paddy 1706 
rotation.  1707 
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When activity data for the pre-season water status are not available, aggregated case factors can be used. It is good 1708 
practice to collect more disaggregated activity data and apply disaggregated case of SFp. Scaling factors for 1709 
additional water regimes can be applied if country-specific data are available. Note that the scaling factor SFp 1710 
indicates the water management condition of a rice field before planting, which consequently affects the seasonal 1711 
CH4 emission. SFp, however, is only used to estimate CH4 emission during the rice growing period, and cannot be 1712 
used to quantify CH4 emissions that occurred before the cultivation period or after harvest (i.e. outside of rice 1713 
growing season, such as CH4 emission during winter flooding period). 1714 

TABLE 5.13 (UPDATED) 

DEFAULT CH4 EMISSION SCALING FACTORS FOR WATER REGIMES BEFORE THE CULTIVATION PERIOD  

Water regime prior to rice cultivation (schematic 
presentation showing flooded periods as shaded) 

Aggregated case Disaggregated case 

Scaling 
factor (SFp) 

Error 
range  

Scaling 
factor (SFp) 

Error 
range  

Non flooded pre-

season <180 d 
 

1.22 1.08 – 1.37 

1.00 0.88 – 1.12 

Non flooded pre-

season >180 d 
 0.89 0.80 – 0.99 

Flooded pre-season 
(>30 d)a,b 

 
2.41 2.13 – 2.73 

Non-flooded pre-

season >365 d c 
 

0.59 0.41 – 0.84 

Source: Scaling factors and error ranges (based on 95% confidential interval) were determined using statistical model and updated 
database; see Annex 5A.2 for more information. 
a Short pre-season flooding periods of less than 30 d are not considered in selection of SFp 
b For calculation of pre-season emission see below (section on completeness) 

c  Refers to "upland crop - paddy rotation" or fallow without flooding in previous year. 

 1715 

Organic amendments (SFo): It is good practice to develop scaling factors that incorporate information on the type 1716 
and amount of organic amendment applied (compost, farmyard manure, green manure, and rice straw). On an equal 1717 
mass basis, more CH4 is emitted from amendments containing higher amounts of easily decomposable carbon and 1718 
emissions also increase as more of each organic amendment is applied. Equation 5.3 and Table 5.14 present an 1719 
approach to vary the scaling factor according to the amount of different types of amendment applied. Rice straw is 1720 
often incorporated into the soil after harvest. In the case of a long fallow after rice straw incorporation, CH4 1721 
emissions in the ensuing rice-growing season will be less than the case that rice straw is incorporated just before 1722 
rice transplanting (Fitzgerald et al., 2000). Therefore, the timing of rice straw application was distinguished. An 1723 
uncertainty range of 0.54-0.64 can be adopted for the exponent 0.59 in Equation 5.3. 1724 

 1725 

EQUATION 5.3. 1726 
ADJUSTED CH4 EMISSION SCALING FACTORS FOR ORGANIC AMENDMENTS 1727 

59.0

1 







•+= ∑

i
iio CFOAROASF

 1728 
 1729 

Where: 1730 

SFo = scaling factor for both type and amount of organic amendment applied 1731 

ROAi = application rate of organic amendment i, in dry weight for straw and fresh weight for others, tonne 1732 
ha-1 1733 

CFOAi = conversion factor for organic amendment i (in terms of its relative effect with respect to straw 1734 
applied shortly before cultivation) as shown in Table 5.14. 1735 

CROP
> 30 d

CROP
> 180 d

CROP
< 180 d
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TABLE 5.14 (UPDATED) 
 DEFAULT CONVERSION FATORS FOR DIFFERENT TYPES OF ORGANIC AMENDMENTS 

Organic amendment 
Conversion factor 
(CFOA) Error range 

Straw incorporated shortly (<30 days) before cultivationa 1.00 0.85 – 1.17   

Straw incorporated long (>30 days) before cultivationa 0.19 0.11 –  0.28 

Compost 0.17 0.09 –  0.29 

Farm yard manure 0.21 0.15 – 0.28 

Green manure 0.45 0.36 –  0.57 

Source: Conversion factors and error ranges (based on 95% confidential interval) were determined using statistical model and updated 
database; see Annex 5A.2 for more information. 
a Straw application means that straws are incorporated into the soil. It does not include cases where straws are just placed on soil surface, 
and straws that were burnt on the field. 

 1736 

Tier 2 1737 
Inventory agencies can use country-specific emission factors from field measurements that cover the conditions of 1738 
rice cultivation in their respective country. Box 5.2A provides information about measuring methane emissions 1739 
for developing a baseline emission factor for rice cultivation. It is good practice to compile country-specific data 1740 
bases on available field measurements which supplement the Emission Factor database13 by other measurement 1741 
programs (e.g., national) not yet included in this data base. However, certain standard QA/QC requirements apply 1742 
to these field measurements (see Section 5.5.5).  1743 

In Tier 2, inventory agencies can define the baseline management according to the prevailing conditions found in 1744 
their respective country and determine country-specific emission factors for such a baseline. Then, inventory 1745 
agencies can also determine country-specific scaling factors for management practices other than the baseline. In 1746 
case where country-specific scaling factors are not available, default scaling factors can be used.  However, this 1747 
may require some recalculation of the scaling factors given in Tables 5.12 to 5.14 if the condition is different from 1748 
the baseline. 1749 

Soil type (SFs) and rice cultivar (SFr): In some countries, emission data for different soil types and rice cultivar 1750 
are available and can be used to derive SFs and SFr, respectively, for Tier 2 method. Both experiments and 1751 
mechanistic knowledge confirm the importance of these factors, but large variations within the available data do 1752 
not allow one to define reasonably accurate default values for Tier 1 method.  1753 

Tier 3 1754 
Tier 3 approaches do not require choice of emission factors, but are instead based on a thorough understanding of 1755 
drivers and parameters (see above). 1756 

 1757 

                                                           
5 https://www.ipcc-nggip.iges.or.jp/EFDB/main.php 
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 BOX 5.2A (NEW GUIDANCE) 1758 
GOOD PRACTICE GUIDANCE FOR DEVELOPING BASELINE EMISSION FACTORS )EF( FOR METHANE EMISSIONS 1759 

FROM RICE CULTIVATION 1760 

The following information provides good practices in performing manual measurement of methane 1761 
emissions using the closed-chamber technique for continuously flooded rice fields with 1762 
recommended fertilizer application and no organic amendment. The data can be used to develop 1763 
country- and region-specific EFc. 1764 

Chamber Design: It is good practice to use lightweight material that is break resistant and inert to 1765 
reactions with CH4 )e.g., acrylic and PVC(. It may be a rectangular or cylindrical chamber, covering 1766 
at least two rice hills. The chamber height must be higher than the rice plant. If necessary, use a base 1767 
with a grove that can be filled with water to ensure a gas-tight closure. The chamber is equipped 1768 
with a small fan, a thermometer, a vent hole with a stopper, and a gas sampling port )e.g., a flexible 1769 
tube connected to a valve(. 1770 

Field Set up and Experimental Design: Select a field that is homogeneous with respect to soil 1771 
properties. Use an appropriate experimental design with at least 3 replications.  1772 

Sampling Strategies:  Sampling can be done 1 or 2 times per day between mid-morning and late 1773 
morning period, and at least once a week for the whole growing period. More frequent measurements 1774 
are needed during agricultural management events )e.g., irrigation, drainage, and N fertilization(. 1775 
All treatments would have to be measured at the same time. At each sampling time, it is good practice 1776 
to obtain 3 to 4 gas samples within 30 minutes after closure of the chamber.   1777 

For gas sampling, the use of a syringe or a pump is recommended depending on the required sample 1778 
volume. Plastic or glass containers can be used for collecting samples and should be transferred to a 1779 
laboratory and analyzed within the allowable storage period. 1780 

Gas Analysis: Use gas chromatograph )GC( equipped with a flame ionization detector (FID) for 1781 
analysis. Calibrate the GC before every analysis, using certified standard gases. 1782 

Data Processing: Use a linear regression of the gas concentration inside the chamber against time to 1783 
calculate the hourly flux. Identify the reasons of non-linearity )if exists( for the validation and 1784 
correction of calculated flux. Use trapezoidal integration to calculate cumulative gas emissions from 1785 
the hourly flux data. 1786 

Deriving Emission Factor:  Flux data from several sites, regions, or environmental conditions that 1787 
conform to the requirements for a continuously flooded rice system with no organic amendments, 1788 
can be used to derive region- or country-specific EFs based on a simple average and standard 1789 
deviation.  The compiler could also derive disaggregated EFs using regression models to predict the 1790 
values for different regions and/or environmental conditions. 1791 

For more details refer to Minamikawa et al. )2015) and Sanders and Wassmann (2014). 1792 

5.5.3 Choice of activity data  1793 

In addition to the essential activity data requested above, it is good practice to match data on organic amendments 1794 
and soil types to the same level of disaggregation as the activity data. It may be necessary to complete a survey of 1795 
cropping practices to obtain data on the type and amount of organic amendments applied. 1796 

Activity data are primarily based on harvested area statistics, which should be available from a national statistics 1797 
agency as well as complementary information on cultivation period and agronomic practices. The activity data 1798 
should be broken down by regional differences in rice cropping practices or water regime (see Box 5.2). Harvested 1799 
area estimates corresponding to different conditions may be obtained on a countrywide basis through accepted 1800 
methods of reporting. The use of locally verified areas would be most valuable when they are correlated with 1801 
available data for emission factors under differing conditions such as climate, agronomic practices, and soil 1802 
properties. If these data are not available in-country, they can be obtained from international data sources: e.g., the 1803 
World Rice Statistics on the website of IRRI14 (International Rice Research Institute), which include harvest area 1804 
of rice by ecosystem type for major rice producing counties, a rice crop calendar for each country, and other useful 1805 

                                                           
14 http://www.irri.org/science/ricestat/ 
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information, and the FAOSTAT on the website of FAO15, where data of rice area harvested can be obtained. The 1806 
use of locally verified areas would be most valuable when they are correlated with available data for emission 1807 
factors under differing conditions such as climate, agronomic practices, and soil properties. It may be necessary to 1808 
consult local experts for a survey of agronomic practices relevant to methane emissions (organic amendments, 1809 
water management, etc.). 1810 

Most likely, activity data will be more reliable as compared to the accuracy of the emission factors. However, for 1811 
various reasons the area statistics may be biased and a check of the harvested area statistics for (parts of) the 1812 
country with remotely sensed data is encouraged.  1813 

In addition to the essential activity data requested above, it is good practice, particularly in Tiers 2 and 3 1814 
approaches, to match data on organic amendments and other conditions, e.g., soil types, to the same level of 1815 
disaggregation as the activity data.  1816 

5.5.4 Example Calculation for Tier 1 1817 

An example is provided for estimating methane emission from rice cultivation, with the following background 1818 
information.   1819 

A country in Southeast Asia has rice area of 3 million hectares, with 50% of the area classified as irrigated, 30% 1820 
rainfed, 15% upland, and 5% deep water. Irrigated areas are planted for 2 growing seasons annually. Rice growing 1821 
periods are 102 days, except for deep water rice which has 220 days. For irrigated areas, 50% is continuously 1822 
flooded and 50% is managed with multiple drainage periods. All irrigated areas are not flooded for less than 180 1823 
days prior to cultivation, while rainfed and upland areas are not flooded for more than 180 days prior to cultivation. 1824 
Deepwater rice areas are flooded for 30 days prior to cultivation. For irrigated areas, 2 tonnes/ha of straw residues 1825 
are incorporated long before cultivation (less than 30 days). 1826 

Table 5.14A shows the calculation for total rice harvested area in a given year. Cropping season refers to the number 1827 
of times rice is harvested per year. The calculation for adjusted daily emission factor is presented in Table 5.14B 1828 
using Equation 5.2. The scaling factor for organic amendment (SFo), for irrigated rice field, is computed using 1829 
Equation 5.3 for rice straw application rate of 2 tonnes/ha and conversion factor (CFOA) of 1.0 as provided in Table 1830 
5.14. Based on Equation 5.1, the total methane emission is 481.01 Gg CH4/yr, as shown in Table 5.14C. 1831 

TABLE 5.14A (NEW GUIDANCE) 

CALCULATION FOR TOTAL HARVESTED AREA  

Rice Ecosystem 
  

Rice Area 
(ha) 

% of Total 
Area 

Cropping 
Season 

(per year) 

Harvested Area 
(ha yr-1) 

A B C D =  (A x C) 

Irrigated     
- Irrigated, continuously flooded 750,000  25  2  1,500,000  
- Irrigated, with multiple drainage 
periods 750,000  25  2  1,500,000  
Rainfed 900,000  30  1  900,000  
Upland 450,000  15  1  450,000  
Deepwater 150,000  5  1  150,000  
Total 3,000,000  100    4,500,000  

 1832 
  1833 

                                                           
15 www.fao.org/faostat/ 
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TABLE 5.14B (NEW GUIDANCE) 

CALCULATION FOR ADJUSTED DAILY EMISSION FACTOR 

Rice Ecosystem 
  

Baseline 
Emission 
Factor (EFc) 

(kg CH4 ha-1 
d-1) 

[from Table 
5.13] 

Scaling 
Factor for 
Water 
Regime 
during 
Cultivation 
(SFw) 

[from Table 
5.14] 

Scaling 
Factor for 
Pre-season 
Water 
Regime 
(SFp) 

[from Table 
5.15] 

Scaling 
Factor for 
Organic 
Amendment 
(SFo) 

[using 
Equation 5.4 
and Table 
5.16] 

Adjusted Daily 
Emission Factor  
(EFi) 

[kg CH4 ha-1 d-1] 

 

E F G H I= (E x F x G x H) 

Irrigated 
    

 

- Irrigated, continuously flooded 1.22 1.00 1.00 1.21 1.48 

- Irrigated, with multiple drainage 
periods 

1.22 0.55 1.00 1.21 0.81 

Rainfed 1.22 0.54 0.89 1.00 0.59 

Upland 1.22 0 0.89 1.00 0.00 

Deepwater 1.22 0.06 2.41 1.00 0.18 

 1834 
 1835 

TABLE 5.14 C (NEW GUIDANCE) 

CALCULATION FOR TOTAL METHANE EMISSIONS FROM RICE CULTIVATION 

Rice Ecosystem 
  

Harvested 
Area 
(ha yr-1) 

[from Table 
5.17] 

Adjusted Daily 
Emission Factor  
(EFi) 

[kg CH4 ha-1 d-1] 

[from Table 5.18] 

 

Cultivation 
Period 
(days) 

Methane Emissions 
(Gg CH4 y-1) 

D I J K= [(D x I x J)/106] 

Irrigated  
 

  
- Irrigated, continuously flooded 1,500,000  1.48 102  226.44  

- Irrigated, with multiple drainage periods 1,500,000  0.81 102 123.93  

Rainfed 900,000  0.59 102  54.16  

Upland 450,000  0.00 102  - 

Deepwater 150,000  0.18 220  5.94  

Total 4,500,000   410.47  
 1836 

5.5.5 Uncertainty assessment 1837 

The general principles of uncertainty assessment relevant for national emission inventories are elucidated in 1838 
Volume 1, Chapter 3. The uncertainty of emission and scaling factors may be influenced by climatic, temporal, 1839 
and spatial heterogeneity. Reducing the uncertainty depends on a better undertstanding of the spatial heterogeneity 1840 
and correlation among these variables and the complexity of the mechanisms driving methane emission (Zhang et 1841 
al., 2017). 1842 
 1843 
For this source category, good practice should permit determination of uncertainties using standard statistical 1844 
methods when enough experimental data are available. Studies to quantify some of this uncertainty are rare but 1845 
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available (e.g., for soil type induced variability). The variability found in such studies is assumed to be generally 1846 
valid. For more detail, see Sass (2002). 1847 

Important activity data necessary to assign scaling factors (i.e., data on cultural practices and organic amendments) 1848 
may not be available in current databases/statistics. Estimates of the fraction of rice farmers using a particular 1849 
practice or amendment must then be based on expert judgement, and the uncertainty range in the estimated fraction 1850 
should also be based on expert judgement. As a default value for the uncertainty in the fraction estimate as ± 0.2 1851 
(e.g., the fraction of farmers using organic amendment estimated at 0.4, the uncertainty range being 0.2 - 0.6). 1852 
Volume 1, Chapter 3 provides advice on quantifying uncertainties in practice including combining expert 1853 
judgements and empirical data into overall uncertainty estimates. 1854 

In the case of CH4 emissions from rice cultivation, the uncertainty ranges of Tier 1 values (emission and scaling 1855 
factors) can be adopted directly from Tables 5.11-5.14. Ranges are defined as the standard deviation about the 1856 
mean, indicating the uncertainty associated with a given default value for this source category. The exponent in 1857 
Equation 5.3 is provided with an uncertainty range of 0.54 - 0.64. Uncertainty assessment of Tier 2 and Tier 3 1858 
approaches will depend on the respective data-base and model used. Therefore, it is good practice to apply general 1859 
principles of statistical analysis as outlined in Volume 1, Chapter 3 as well as model approaches as outlined in 1860 
Volume 4, Chapter 3, Section 3.5. 1861 

5.5.6 Completeness, time series, QA/QC, and reporting 1862 

No Refinement 1863 

 1864 

  1865 
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Annex 5A.1 Estimation of default stock change factors for 3548 

mineral soil C emissions/removals for cropland 3549 

Long-Term Cultivation, Perennial Crops and Tillage Management Factors: 3550 

Default stock change factors have been updated in Table 5.5 based on an analysis of a global dataset of 3551 
experimental results for tillage long-term cultivation, and perennial crops to a 30cm depth. The land-use factor for 3552 
long-term cultivation and perennial crops represents the change in carbon that occurs after 20 or more years of 3553 
continuous cultivation or perennial crop production, respectively. Tillage factors represent the effect on C stocks 3554 
at 20 years following the management change. Data were compiled from published literature based on the 3555 
following criteria: a) must be an experiment with a control and treatment; b) provide soil organic C stocks or the 3556 
data needed to compute soil organic C stocks (bulk density, OC content, gravel content); c) provide depth of 3557 
measurements; d) provide the number of years from the beginning of the experiment to C stock sample collection; 3558 
and c) provide location information. 3559 

There were 303 published studies with 2383 observations for long-term cultivation and perennial tree/woody crops, 3560 
and 212 published studies with 2046 observations for reduced tillage and no-tillage (References provided at bottom 3561 
of Table 5.5). The histograms below provide summaries of the distribution of published studies for climate regions. 3562 
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Tillage Management
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 3565 
Semi-parametric mixed effect models were developed to estimate the new factors (Breidt et al., 2007). Several 3566 
variables were tested including depth, number of years since the management change, climate, the type of 3567 
management change (e.g., reduced tillage vs. no-till), and the first-order interactions among the variables.  3568 
Variables and interactions terms were retained in the model if they met an alpha level of 0.05 and decreased the 3569 
Akiake Information Criterion by two. For depth, data were not aggregated to a standardized set of depths but rather 3570 
each of the original depth increments were used in the analysis (e.g., 0-5 cm, 5-10 cm, and 10-30 cm) as separate 3571 
observations of stock changes. Similarly, time series data were not aggregated, even though those measurements 3572 
are taken from the same plots. Consequently, random effects were included to account for the dependencies in 3573 
times series data and among data points representing different depths from the same study. 3574 

Special consideration was given to representing depth increments in order to avoid aggregating data across 3575 
increments from the original experiments.  Data are collected by researchers at various depths that do not match 3576 
among studies. We created a custom set of covariates, which are functions of the increment endpoints. These 3577 
functions come from integrating the underlying quadratic function over the increments. This approach was needed 3578 
in order to make statistically valid inferences with the semi-parametric mixed effect model techniques, and to 3579 
avoid errors associated with aggregating data into a uniform set of depth increments.  3580 

Using this customized approach, we estimated land use and management factors to a 30 cm depth.  Uncertainty 3581 
was quantified based on the prediction error for the model, and represents a 95% confidence interval for each of 3582 
the factor values. The resulting confidence intervals can be used to construct probability distribution functions 3583 
with a normal density for propagating error through the inventory calculations. 3584 

Paddy Rice Land-Use Factors: 3585 

Evidence from chronosequences with up to 2000 years of rice cultivation history show rice paddy production 3586 
accumulates soil organic carbon at a fast rate during the first few decades, and then continues to accumulate carbon 3587 
at a slower rate until a steady-state is reached at about 300 years (Huang et al., 2015; Kölbl et al., 2014). To update 3588 
this land use factor for paddy rice, we conducted a literature review and collected the field experiment data of soil 3589 
carbon stock changes in paddy rice fields that are available in peer-reviewed journals (References provided at 3590 
bottom of Table 5.5). For each long-term experiment site, data were compiled for conventional management (e.g., 3591 
normal levels for N, P, K chemical fertilizer applications, rice straw residue management and organic amendments). 3592 
We calculated the ratio of soil organic carbon (tonne C ha-1 for 0-30 cm soil depth) between survey years for the 3593 
paired comparisons between paddy rice and corresponding native vegetation.  The length of time ranged from 15 3594 
to 25 years. The resulting estimates capture the large increase in carbon in the first few decades after rice cultivation, 3595 
and therefore, are considered conservative because carbon can still increase at a slower rate for several more years 3596 
(Huang et al., 2015; Kölbl et al., 2014). The land use factor for paddy rice is estimated as the average of these 3597 
ratios, and uncertainty is based on the 2.5 percentile to 97.5 percentile of the distribution of ratios. 3598 

 3599 
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Annex 5A.2 Background for developing emission factors and 3600 

scaling factors for methane emission from paddy field, using 3601 

scientific literature 3602 

1. Collection of data  3603 
• Since 2004, there exists a large body of field measurements of CH4 emission from rice fields across the 3604 

world. The data set of Yan et al., 2005 (which is the data set used in developing the default emission factor 3605 
and scaling factors in the IPCC 2006 Guidelines) was updated with all studies conducted through 30 June 3606 
2017, expanding the dataset with observations of CH4 emission from rice fields around the world.  3607 

• A comprehensive search was performed of published literature, which report field measurements of CH4, 3608 
as described previously in the paper by Yan et al., 2005. This included a keyword search for topics such 3609 
as rice or paddy*; methane or CH4 or greenhouse gas*; and flux* or emission*, in the ISI Web of Science 3610 
(Thomson Reuters, New York, NY, USA) and Google Scholar (Google, Mountain View, CA, USA).  3611 

• From this comprehensive search, the following information was compiled: (i) the average CH4 flux in the 3612 
rice-growing season; (ii) integrated seasonal emission; (iii) water regime during and before the rice-growing 3613 
season; (iv) the timing, type and amount of organic amendment; (v) soil properties (i.e., SOC and soil pH); 3614 
(vi) location, agroecological zone, and year of experiment or studies; and (viii) duration and season of 3615 
measurement. 3616 

• The following information describes the criteria for selecting data that were included in the data set:  3617 

o As suggested previously by Yan et al., 2005, hourly or daily flux is used in the compilation 3618 
because it has a better index of emission strength than the integrated seasonal emission. When 3619 
the average daily CH4 flux was not directly reported, the value is estimated using integrated 3620 
seasonal emissions divided by the measurement period. 3621 

o Water regimes were categorized into following conditions: (i) continuous flooding; (ii) single 3622 
drainage; (iii) multiple drainage; (iv) rainfed; and (v) deep water. The pre-season water regime was 3623 
classified as: (i) non flooded pre-season for less than 180 days; (ii) non flooded pre-season for more 3624 
than 180 days; (iii) flooded pre-season for more than 30 days; and (iv) non-flooded pre-season for 3625 
more than 365 days. See Table 5.15 for the illustration of the water regimes before the cultivation 3626 
period. 3627 

o For organic amendments, the data were classified as (i) straw incorporated shortly (i.e. less than 3628 
30 days) before cultivation; (ii) straw incorporated long (i.e. more than 30 days) before cultivation; 3629 
(iii) compost; (iv) farmyard manure; and (v) green manure.  Data for rice straw are expressed in dry 3630 
weight, while for other organic materials data are expressed in fresh weight.  3631 

o To account for the spatial variability of CH4 emissions at the global scale, experimental sites 3632 
were classified into different zones based on their climatic conditions. Using IRRI’s climatic 3633 
classification (IRRI, 2002), Asian rice fields were categorized into six agro-ecological zone: (i) 3634 
warm arid and semi-arid tropics; (ii) warm sub-humid tropics; (iii) warm humid tropics; (iv) warm 3635 
arid and semi-arid sub-tropics with summer rainfall; (v) warm sub-humid sub-tropics with summer 3636 
rainfall; and (vi) warm/cool humid sub-tropics with summer rainfall. Rice fields in the other region 3637 
of the world were grouped into three regions, i.e., Latin America, Europe and United States. 3638 

o For soil properties, because of the limited availability of information, only soil organic carbon 3639 
(SOC) and soil pH (as continuous variables) were included in the data set. If soil organic matter 3640 
content rather than SOC was reported, it was converted to SOC using a Bemmelen index value 3641 
of 0.58. To meet the requirement of the statistical model, measurements without information for 3642 
three continuous variables (i.e. SOC data, soil pH and the amount of organic amendment) were 3643 
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excluded. The final dataset used in the analysis included 1089 measurements, from 122 rice fields 3644 
across the world. In this data set, measurements from Asian rice fields increased from 554 (Yan 3645 
et al., 2005) to 942. In addition, 147 measurements from other regions of the world were added 3646 
to the datasets (dataset provided in Wang et al., 2018). 3647 

2. Processing and compilation of data  3648 
Consistent with previous study by Yan et al., (2005), the following linear mixed model, suitable for analyzing 3649 
unbalanced data (Speed et al., 2013), was used to determine the effect of controlling variables on CH4 flux from 3650 
rice fields: 3651 

EQUATION 5A.2.1(NEW) 3652 
EFFECT OF CONTROLLING VARIABLES ON CH4 FLUX FROM RICE FIELDS 3653 

 3654 
ln (flux)  = constant + a • ln (SOC) + pHh + PWi + WRj + CLk + OMl • ln (1 + AOMl) 3655 

Where:  3656 

ln (flux) = natural logarithm of average CH4 flux (mg CH4 m-2 h-1) during the rice-growing season 3657 

SOC = soil organic carbon content, % 3658 

constant “a”  = represents the effect on soil organic carbon, unitless 3659 

pHh =  soil pH, unitless 3660 

PWi = pre-season water regime (e.g. continuous flooding; single drainage; multiple drainage; rainfed; and deep 3661 
water), unitless 3662 

WRj = water regime in the rice-growing season (e.g. non flooded pre-season for less than 180 days; non flooded 3663 
pre-season for more than 180 days; flooded pre-season for more than 30 days; and non-flooded pre-season for more 3664 
than 365 days), unitless 3665 

CLk = climate type expressed using IRRI’s agro-ecological zone for Asia; other regions were categorized into 3666 
Europe, Latin America and United States, unitless 3667 

OMl  = organic amendment (straw incorporated shortly (<30 days) before cultivation, straw incorporated long ( >30 3668 
days) before cultivation, compost, farmyard manure, and green manure), unitless 3669 

AOMl =  amount of organic amendment, tonne ha-1  3670 

 3671 

In this model soil pH was treated as a categorical variable and grouped into the following “h” classes: <4.5, 4.5-5.0, 3672 
5.0-5.5, 5.5-6.0, 6.0-6.5, 6.5-7.0, 7.0-7.5, 7.5- 8.0 and >8.0. For other categorical variables, their corresponding 3673 
sublevels (i, j, k, l) and descriptions are shown in Tables 5A.2-1.  3674 

The last part of Equation 5A.2-1 reflects the effect of the application of organic amendment on CH4 flux. This effect 3675 
is an interaction of the type and amount of organic material. In cases where the amount of organic amendment is 3676 
zero, it is assumed that there is zero application rate for each type of organic material. Obviously, this assumption 3677 
will result in more data points in the analysis than there are in real observations of organic amendments. To 3678 
ameliorate this problem, the residuals of observations are weighted with organic amendment as 1 and those without 3679 
as 0.2 (as the observational result was repeated five times for the five types of organic materials. All the variables 3680 
were treated as fixed effect, and experimental site was treated as a random effect to address dependencies in data 3681 
collected from the same experiment. 3682 

The effects of the controlling variables on CH4 flux were computed by fitting Equation 5A.2.1 to field 3683 
observations using the SPSS Mixed Model procedure (V24.0, SPSS Inc., Chicago, IL, USA). 3684 

3. Developing of global and regional emission factors and scaling factors 3685 
 The estimated effects of various variables were used to derive a default EF. In the model, the CH4 3686 

emissions from rice fields are a combination of the effects of SOC and pH values, pre-season water status, 3687 
water regime in the rice-growing season, organic amendment and climate. An assumption was made to 3688 
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provide a default EF, that is, all observations in the data set to have a water regime of continuous flooding, 3689 
a preseason water status of non flooded pre-season <180 d and no organic amendments, while keeping 3690 
other conditions constant, as stated in the original papers (Yan et al., 2005). Using Equation 5A.2.2, the 3691 
default EF is derived for continuously flooded rice fields, with a pre-season water status of non flooded 3692 
pre-season <180 days, and without organic amendment: 3693 

 3694 

EQUATION 5A.2.2 (NEW) 3695 
DEFAULT EMISSION FACTOR FOR CONTINUOUSLY FLOODED RICE FIELDS 3696 

 3697 
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Where: 3699 

EF = default emission factor derived for continuously flooded rice fields, with a pre-season water status of 3700 
non-flooded pre-season <180 days, and without organic amendment, mg CH4 m-2 h-1 (Note: EF was 3701 
converted to “kg CH4 ha-1 day-1” in Table 5.11) 3702 

‘constant’ and ‘a’ = values estimated in Equation 5A.2.1 3703 

n = total number of observations in the data set 3704 

SOCi = soil organic carbon content for the ith observation, % 3705 

pHi = soil pH for the ith observation, unitless 3706 

CLi = climate type for the ith observation, (expressed using IRRI’s  agro-ecological zone for Asia, other 3707 
regions were categorized into Europe, Latin America and United States), unitless 3708 

PWshort drainage =   pre-season water regime (i.e. as ‘non flooded pre-season <180 days), unitless 3709 

WRcontinuous flooding =  water regime in the rice-growing season (i.e. as continuous flooding), unitless 3710 

The values of scaling factors from the aggregated and disaggregated cases are assumed to be referenced as global 3711 
and regional scaling factors, respectively. The scaling factors of the disaggregated case for water regime during the 3712 
rice season and preseason are estimated using the modelling results in Equation 5A.2.1. Firstly, the fluxes of CH4 3713 
for ‘continuously flooding’ during the rice season and ‘non flooded pre-season <180 d’ in preseason were assumed 3714 
to be 1. Then, the corresponding relative fluxes for different water regimes were calculated by the ratios of back-3715 
transformed estimates (i.e., exponential function) of different water regimes to back-transformed estimates (i.e., 3716 
exponential function) of ‘continuously flooding’ during the rice season and ‘non flooded pre-season <180 d’ in pre-3717 
season. Given the different sizes of observations for various water regimes in the data set, the calculations of the 3718 
scaling factors for the aggregated case were weighted accordingly. For organic amendment, the fluxes of CH4 from 3719 
various form of organic materials were calculated, first with an application amount of 6 t/ha. The CH4 flux from 3720 
straw applied shortly (<30 days) before cultivation (6 t/ha) is assumed to be 1, the relative fluxes for other organic 3721 
materials are then calculated. 3722 

See Wang et al. (2018) for more information and datasets used for the analysis. 3723 

  3724 
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 3725 

TABLE 5A.2-1 (NEW GUIDANCE) 
DESCRIPTION OF THE SELECTED VARIABLES THAT CONTROL CH4 EMISSIONS FROM RICE FIELDS  

Variables Description 

Preseason water status 
Flooded pre-season Permanently flooded rice fields are assumed to have a preseason water regime of ‘flooded 

pre-season’. Late rice (e.g., in China) is usually planted immediately after early rice on the 
same field and is therefore regarded as having a preseason water regime of ‘flooded pre-

season’. 
Non flooded pre-season >180 d If rice is planted once a year and the field is not flooded in the non-rice growing season, the 

preseason water regime is classified as ‘non flooded pre-season >180 d’. 

Non flooded pre-season <180 d Rice is planted more than once a year, but there is more than one month of fallow time 
between the two seasons, ‘non-flooded pre-season <180 d’ usually implies preseason 
drainage. 

Non-flooded pre-season >365 d For measurements conducted on rice fields that are preceded by two upland crops or an 
upland crop and a drained fallow season, the preseason water regime of such experiments is 
classified as ‘non-flooded pre-season >365 d’. 

Water regime in the rice-growing season 
Continuous flooding Rice is cultivated under continuously flooded condintion but sometimes an end-season 

drainage before rice harvest included. 
Single drainage One mid-season drainage and an end-season drainage are adopted over the entire rice-

growing season. 
Multiple drainage Multiple drainge refers to the management water regime, also called 'intermittent irrigation', 

in which the number of drainage events was not clear, but there are more than one events 
during the growing season. 

Rainfed, wet season (regular 
rainfed) Rice cultivation that relies on rainfall for water, in this case the field is flood prone during 

the rice-growing season. 
Rainfed, dry season (drought 
prone) Rice cultivation that relies on rainfall for water, in this case the field is drought prone during 

the rice-growing season. 
Deep water Rice grown in flooded conditions with water depth more than 50 cm deep. 

Organic amendment  
Straw incorporated shortly (<30 
days) before cultivation 

Straw applied just before rice transplanting as on-season; straw that is left on the soil surface 
in the fallow season and incorporated into the soil before the next rice transplanting is also 
categorized as ‘straw incorporated shortly (<30 days) before cultivation’. The amount of 
straw return is expressed in dry weight (t ha-1). 

Straw incorporated long (>30 
days) before cultivation 

Straw incorporated into soils in the previous season (upland crop or fallow) is categorized as 
‘straw incorporated long (>30 days) before cultivation’. The amount of straw return is 
expressed in dry weight (t ha-1). 

Compost, farmyard manure, 
green manure 

The amount of organic materials is expressed in fresh weight (t ha-1). 

 3726 

  3727 
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ANNEX 5A.3  Parameterisation of the Tier 2 – Steady State 3728 

Method for Mineral Soils  3729 

The Tier 2 steady state method was parameterised using Bayesian methods after evaluating the sensitivity of the 3730 
model parameters. The studies that were used to evaluate model sensitivities and parameterise the model are given 3731 
in Table 5A.3-1. 3732 

TABLE 5A.3-1 (NEW GUIDANCE) 
STUDIES THAT WERE USED TO EVALUATE THE MODEL SENSITIVITIES AND PARAMETERISE THE TIER 2 STEADY STATE 

METHOD FOR MINERAL SOILS 

References Site Location Length of Study 
(years) 

Treatments 

Halvorson et al. 1997 Akron, CO, USA 25 Till 

Vanotti et al. 1997 Arlington, WI, USA 34 MN 

Dimassi et al. 2013 Boigneville, France 41 Till 

Juma et al. 1997 Breton, AB, Canada 62 MN, ON 

e-RA 2013; Jenkinson 1990 Broadbalk, Rothamsted, UK 153 MN, ON 

Pierce and Fortin 1997 East Lansing, MI, USA 12 Till, CC 

e-RA 2013; Jenkinson and 
Johnston 1977 

Hoosefield, Rothamsted, 
UK 

146 MN, ON 

Dick et al. 1997 Hoytville, OH, USA 42 CR, Till 

Campbell et al. 1997 Indianhead, SK, Canada 35 MN, CR 

KBS LTER 2017; Collins et al. 
2000 

Hickory Corners, MI, USA 7 Till 

Díaz-Zorita et al. 2004 General Villegas, Argentina 25 Till 

Huggins and Fuchs 1997 Lamberton, MN, USA 32 MN 

Janzen et al. 1997 Lethbridge, AB, Canada 41 MN, CR 

Janzen et al. 1997 Lethbridge, AB, Canada 80 CR 

Machado et al. 2008; Marchado 
2011; Rasmussen and Smiley 
1997 

Pendleton, OR, USA 64 MN, ON 

Machado et al. 2008; Marchado 
2011; Rasmussen and Smiley 
1997 

Pendleton, OR, USA 55 MN, Till 

Dick et al. 1997 South Charleston, OH, USA 29 Till 

Küstermann et al. 2013 Scheyern, Germany 12 Till 

Maillard et al. 2018 Swift Current, SK, Canada 30 Till, CR 

Skjemstad et al. 2004; Schultz 
1995 

Tarlee, Australia 20 CR 

Gregorich et al. 1996 Woodslee, ON, Canada 36 MN 

Dick et al. 1997 Wooster, OH, USA 31 CR, Till 

MN = Mineral nitrogen additions; ON = organic nitrogen additions; Till = Tillage change; CR = Crop Rotations; CC = Cover Crops 

 3733 

The sensitivity analysis was based on a method developed by Sobol (2001).  We evaluated all parameters except 3734 
for the temperate effect on decomposition (Equation 5.0E) and moisture effects on decomposition (Equation 5.0F). 3735 
The parameters in these functions were highly correlated so we only evaluated one parameter from each function 3736 
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(𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 for Equation 5.0E and 𝑤𝑤1 for Equation 5.0F).  A bootstrap sampling method was used to evaluate the total 3737 
global sensitivity index of the parameters given the log-likelihood value of the mismatch between the model output 3738 
and the observed data.  This information was used to determine if the sample size was sufficient for ranking the 3739 
sensitivity of the parameters (i.e., minimising the variance enough on the index values to avoid Type 1 error). The 3740 
sensitivity analysis was conducted in R using the Sensitivity Package (Pujol, Iooss, & Janon, 2017).  The results 3741 
are given in the Table 5A.3-2. 3742 

 3743 

TABLE 5A.3-2 (NEW GUIDANCE) 
SENSITIVITY OF MODEL PARAMETERS, PARAMETER VALUES AND MINIMUM AND MAXIMUM VALUES FOR THE TIER 2 

STEADY STATE METHOD FOR MINERAL SOILS 

Parameter Practice Sensitivity Value (min, max) 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓 Full-till 0.001 3.036 (1.4, 4.0) 

Reduced-till <0.001 2.075 (1.0, 3.0) 

No-till n/a1 1 

𝑤𝑤𝑠𝑠 All 0.003 1.331 (0.8, 2.0) 

𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎  All <0.001 7.4 

𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠  All 0.005 0.209 (0.058, 0.3) 

𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝  All 0.015 0.00689 (0.005, 0.01) 

𝑓𝑓1 All 0.032 0.378 (0.01, 0.8) 

𝑓𝑓2 All 0.016 0.368 (0.007, 0.5) 

𝑓𝑓3 All 0.003 0.455 (0.1, 0.8) 

𝑓𝑓5 All 0.020 0.0855 (0.037, 0.1) 

𝑓𝑓6 All 0.040 0.0504 (0.02, 0.19) 

𝑓𝑓7 All <0.001 0.42 

𝑓𝑓8 All <0.001 0.45 

𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 All 0.960 33.69 (30.7, 35.34) 

𝑡𝑡𝑚𝑚𝑓𝑓𝑚𝑚 All n/a2 45 
1 No-till cultivation factor is fixed at a value of 1 based on the model formulation. 
2 The maximum temperature for decomposition was not evaluated because it was highly correlated with the temperature 
optimum for decomposition. 

Bayesian parameterisation techniques were used to determine the probability distributions of the most sensitive 3744 
parameters, which included parameters with a sensitivity greater than 0.001 (Table 5A.3-2). However, the 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓 3745 
parameter for reduced-till is included because the parameter for full-till was included. Sampling-importance 3746 
resampling was used to generate a joint posterior distribution (Rubin, 1998). This approach includes two steps, a) 3747 
drawing independent random samples from a known prior distribution, and b) resampling the initial draws from 3748 
step (a) based on importance sampling weights for individual parameter sets. Samples are more likely to be 3749 
maintained in the posterior distribution with higher likelihoods (Smith & Gelfand, 1992).  Uniform priors were 3750 
selected with an initial sample size 𝑛𝑛 = 1,000,000 and a re-sample size 𝑚𝑚 = √𝑛𝑛, i.e., 1000, which allows for 3751 
distributional convergence in the posterior distribution (Givens & Hoeting, 2005). The final posterior distribution 3752 
was estimated as a truncated multivariate distribution under the assumption that parameter values should not 3753 
exceed the minimum and maximum values in the posterior distribution. The resulting parameters are given in 3754 
Table 5A.3-2 and the covariance matrix is given Table 5A.3-3. 3755 
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TABLE 5A.3-3 (NEW GUIDANCE) 
COVARIANCE MATRIX FOR THE TIER 2 STEADY STATE METHOD FOR MINERAL 

SOILS 

 𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓5 𝑓𝑓6 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓
− 𝐶𝐶𝐶𝐶 0.0007889 -0.0010958 -0.0024497 0.0001000 0.0015558 0.0387919 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓
− 𝑅𝑅𝐶𝐶 0.0041484 0.0020256 0.0068887 0.0000775 -0.0017836 0.0047429 

𝑤𝑤𝑜𝑜𝑓𝑓𝑝𝑝 0.0084023 0.0055629 -0.0033270 0.0004484 0.0011228 -0.0389749 

𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠 0.0022843 0.0015645 0.0008130 -0.0001062 -0.0002235 0.0051276 

𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝 
0.0000217 0.0000186 0.0000116 0.0000033 0.0000077 0.0002567 

𝑓𝑓1 0.0051767 0.0021790 0.0023559 -0.0001210 -0.0004680 -0.0086628 

𝑓𝑓2 0.0021790 0.0099681 -0.0049865 0.0000755 -0.0005823 -0.0139913 

𝑓𝑓3 0.0023559 -0.0049865 0.0405470 -0.0001415 0.0001638 -0.0274010 

𝑓𝑓5 -0.0001210 0.0000755 -0.0001415 0.0001479 -0.0000365 -0.0009000 

𝑓𝑓6 -0.0004680 -0.0005823 0.0001638 -0.0000365 0.0007861 -0.0057748 

𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 -0.0086628 -0.0139913 -0.0274010 -0.0009000 -0.0057748 0.4347643 
 3756 

TABLE 5A.3-3 (CONTINUED) 
COVARIANCE MATRIX FOR THE TIER 2 STEADY STATE METHOD FOR MINERAL 

SOILS 

 𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓5 𝑓𝑓6 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓
− 𝐶𝐶𝐶𝐶 0.0007889 -0.0010958 -0.0024497 0.0001000 0.0015558 0.0387919 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓
− 𝑅𝑅𝐶𝐶 0.0041484 0.0020256 0.0068887 0.0000775 -0.0017836 0.0047429 

𝑤𝑤𝑜𝑜𝑓𝑓𝑝𝑝 0.0084023 0.0055629 -0.0033270 0.0004484 0.0011228 -0.0389749 

𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠 0.0022843 0.0015645 0.0008130 -0.0001062 -0.0002235 0.0051276 

𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝 
0.0000217 0.0000186 0.0000116 0.0000033 0.0000077 0.0002567 

𝑓𝑓1 0.0051767 0.0021790 0.0023559 -0.0001210 -0.0004680 -0.0086628 

𝑓𝑓2 0.0021790 0.0099681 -0.0049865 0.0000755 -0.0005823 -0.0139913 

𝑓𝑓3 0.0023559 -0.0049865 0.0405470 -0.0001415 0.0001638 -0.0274010 

𝑓𝑓5 -0.0001210 0.0000755 -0.0001415 0.0001479 -0.0000365 -0.0009000 

𝑓𝑓6 -0.0004680 -0.0005823 0.0001638 -0.0000365 0.0007861 -0.0057748 

𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 -0.0086628 -0.0139913 -0.0274010 -0.0009000 -0.0057748 0.4347643 
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