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5.1 INTRODUCTION 127 

No Refinement 128 

5.2 CROPLAND REMAINING CROPLAND  129 

No Refinement 130 

5.2.1 Biomass 131 

5.2.1.1 CHOICE OF METHODS 132 

This section provides elaboration on methods, clarifying how to use updated factors.  133 

Carbon can be stored in the biomass of croplands that contain perennial woody vegetation including, but not 134 
limited to, monocultures such as coffee, oil palm, coconut, rubber plantations, fruit and nut orchards, and 135 
polycultures such as agroforestry systems. The default methodology for estimating carbon stock changes in woody 136 
biomass is provided in Chapter 2, Section 2.2.1. This section elaborates this methodology with respect to 137 
estimating changes in carbon stocks in biomass in Cropland Remaining Cropland.  138 

The change in biomass is only estimated for perennial woody crops. For annual crops, increase in biomass stocks 139 
in a single year is assumed equal to biomass losses from harvest and mortality in that same year - thus there is no 140 
net accumulation of biomass carbon stocks.  141 

Changes in carbon in cropland biomass (CCCB
) may be estimated from either: (a) annual rates of biomass gain 142 

and loss (Chapter 2, Equation 2.7) or (b) carbon stocks at two points in time (Chapter 2, Equation 2.8). The first 143 
approach (gain-loss method) provides the default Tier 1 method and can also be used at Tier 2 or 3 with refinements 144 
described below. The second approach (the stock-difference method) applies either at Tier 2 or Tier 3, but not Tier 145 
1. It is good practice to improve inventories by using the highest feasible tier given national circumstances. It is 146 
good practice for countries to use a Tier 2 or Tier 3 method if carbon emissions and removals in Cropland 147 
Remaining Cropland is a key category and if the sub-category of biomass is considered significant. It is good 148 
practice for countries to use the decision tree in Figure 2.2 in Chapter 2 to identify the appropriate tier to estimate 149 
changes in carbon stocks in biomass. 150 

Tier 1 151 
The default method is to multiply the area of perennial woody cropland by a net estimate of biomass accumulation 152 
from growth and subtract losses associated with harvest or gathering or disturbance (according to Equation 2.7 in 153 
Chapter 2). Losses are estimated by multiplying a carbon stock value by the area of cropland on which perennial 154 
woody crops are harvested.   155 

Default Tier 1 assumptions are: all carbon in perennial woody biomass removed (e.g., biomass cleared and 156 
replanted with a different crop) is emitted in the year of removal; and perennial woody crops accumulate carbon 157 
for an amount of time equal to a nominal harvest/maturity cycle. The latter assumption implies that perennial 158 
woody crops accumulate biomass for a finite period until they are removed through harvest or reach a steady state 159 
where there is no net accumulation of carbon in biomass because growth rates have slowed and incremental gains 160 
from growth are offset by losses from natural mortality, pruning or other losses. 161 

Under Tier 1, updated default factors shown in updated Table 5.1 to Table 5.4, are applied to nationally derived 162 
estimates of land areas.   For perennial cropland C uptake, multiply unharvested area that is still younger than the 163 
age of maturity by the above-ground growth rate.  If harvest and immature areas are unknown, it is assumed C 164 
uptake in growth is balanced by emissions due to crop turnover in cropland remaining cropland.  For perennial 165 
cropland C losses, it should be noted that updated tables provide two types of carbon stocks of perennial woody 166 
biomass per area. One is maximum carbon stock at harvest/maturity state and the other is mean carbon stock for 167 
whole lifetime of perennial woody biomass.  These values should be used appropriately to calculate carbon losses 168 
following the guidance in 5.2.1.2.  169 

Tier 2 170 
Two methods can be used for Tier 2 estimation of changes in biomass. Method 1 (also called the Gain-Loss 171 
Method) requires the biomass carbon loss to be subtracted from the biomass carbon increment for the reporting 172 
year (Chapter 2, Equation 2.7).  Method 2 (also called the Stock-Difference Method) requires biomass carbon 173 
stock inventories for a given land-use area at two points in time (Chapter 2, Equation 2.8). 174 
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A Tier 2 estimate, in contrast, will generally develop estimates for the major woody crop types by climate zones, 175 
using country-specific carbon accumulation rates and stock losses where possible or country-specific estimates of 176 
carbon stocks at two points in time. Under Tier 2, carbon stock changes are estimated for above-ground and below-177 
ground biomass in perennial woody vegetation. Tier 2 methods involve country-specific or region-specific 178 
estimates of biomass stocks by major cropland types and management system, and estimates of stock change as a 179 
function of major management system (e.g., dominant crop, productivity management).  To the extent possible, it 180 
is good practice for countries to incorporate changes in perennial crop or tree biomass using country-specific or 181 
region-specific data.  Where data are missing, default data may be used.   182 

Tier 3 183 
A Tier 3 estimate will use a highly disaggregated Tier 2 approach or a country-specific method involving process 184 
modelling and/or detailed measurement. Tier 3 involves inventory systems using statistically-based sampling of 185 
carbon stocks over time and/or process models, stratified by climate, cropland type and management regime. For 186 
example, validated species-specific growth models that incorporate management effects such as harvesting and 187 
fertilization, with corresponding data on management activities, can be used to estimate net changes in cropland 188 
biomass carbon stocks over time. Models, perhaps accompanied by measurements like those in forest inventories, 189 
can be used to estimate stock changes and extrapolate to entire cropland areas, as in Tier 2. 190 

Key criteria in selecting appropriate models are that they are capable of representing all of the management 191 
practices that are represented in the activity data. It is critical that the model be validated with independent 192 
observations from country-specific or region-specific field locations that are representative of climate, soil and 193 
cropland management systems in the country. 194 

5.2.1.2 CHOICE OF EMISSION FACTORS 195 

This section has updated factors and an elaboration on the methods.  196 

Emission and removal factors required to estimate the changes in carbon stocks include (a) annual biomass 197 
accumulation or growth rate, and (b) biomass loss factors which are influenced by such activities as removal 198 
(harvesting), fuelwood gathering and disturbance.      199 

Above-ground woody biomass growth rate 200 

Tier 1 201 
Updated Tables 5.1 to 5.4 provide estimates of biomass stocks and biomass growth rates and losses for major 202 
climatic regions and agricultural systems. Updated Table 5.1 provides default values of biomass growth and losses 203 
applicable to general perennial cropping system for each climate region.  Updated Table 5.2 provides default 204 
potential carbon storage for agro-forestry system in tropical and sub-tropical region.  Updated Table 5.3 provides 205 
default values of biomass growth and losses for various perennial cropping systems for each climate region.  206 
Countries should use appropriate default values of above-ground biomass growth rate relative to each climate 207 
region and cropping system from updated Table 5.1 or Table 5.4.  However, given the large variation in cropping 208 
systems, incorporating trees or tree crops, it is good practice to seek national data on above-ground woody biomass 209 
growth rate. 210 

Tier 2 211 
Annual woody biomass growth rate data can be, at a finer or disaggregated scale, based on national data sources 212 
for different cropping and agroforestry systems. Rates of change in annual woody biomass growth rate should be 213 
estimated in response to changes in specific management/land-use activities (e.g., fertilization, harvesting, 214 
thinning). Results from field research should be compared to estimates of biomass growth from other sources to 215 
verify that they are within documented ranges. It is important, in deriving estimates of biomass accumulation rates, 216 
to recognize that biomass growth rates will occur primarily during the first 20 years following changes in 217 
management, after which time the rates will tend towards a new steady-state level with little or no change occurring 218 
unless further changes in management conditions occur.  219 

Tier 3 220 
For Tier 3, highly disaggregated factors for biomass accumulation are needed. These may include categorisation 221 
of species, specific for growth models that incorporate management effects such as harvesting and fertilization. 222 
Measurement of above-ground biomass, similar to forest inventory with periodic measurement of above-ground 223 
biomass accumulation, is necessary.  224 

 225 
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 UPDATED-TABLE 5. 1  DEFAULT COEFFICIENTS FOR ABOVE-GROUND WOODY BIOMASS AND HARVEST CYCLES IN CROPPING SYSTEMS CONTAINING PERENNIAL SPECIES 

 

Domain Ecological 
zone 

Continent Cropping-system Maximum above-ground 
biomass carbon stock at 

harvest 

 (Lmax) 

(tonnes C ha-1) 

Harvest 
/Maturity 

cycle 

(yr) 

Biomass 
accumulation rate 

(G) 

(tonnes C ha-1 yr-1) 

Mean biomass 
carbon loss  

(Lmean) 

(tonnes C ha-1 yr-1) 

Error 
range1 

Tropical 3 Highland All General perennial agroforestry 117 2 30 3.9 2  63 + 75% 

Tropical Dry All General perennial agroforestry 13 2 5 2.6 2 9 + 75% 

Tropical Moist All General perennial agroforestry 13 2 8 6.1 2 21 + 75% 

Tropical Wet All General perennial agroforestry 13 2 5 10.0 25 2 + 75% 

Temperate and 
subtropical 4 

 All General perennial cropland TBD TBD TBD TBD TBD 

TBD – To be determined, Temperate (and subtropical) values will be prepared for the second order draft. 

Note: Values for tropical zones are derived from the literature survey and synthesis published by Schroeder (1994).  
1 Represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean. 
2 The default factors are modified from the original Table 5.1 in the 2006 IPCC guidelines in order to be consistent with the information provided in Schroeder (1994).  
3 The climate region are modified from the original Table 5.1 in the 2006 IPCC guidelines in order to be consistent with the information provided in Schroeder (1994). 
4 Values for temperate domain are derived from cropping systems in Table 5.4.  
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UPDATED - 
TABLE 5. 2 POTENTIAL C STORAGE FOR AGROFORESTRY SYSTEMS IN DIFFERENT ECOREGIONS OF THE WORLD  

 

Domain 
Ecological 

zone 
Continent Agroforestry System 

Above-ground 
biomass 

(tonnes ha-1) 

Range 

(tonnes ha-1) 
Reference Note 

Tropical 

Tropical 
rainforest 

Africa 
Multi-strata (Togo: Coffee- 

Albizia) 
140  Dossa et al. (2008) 

The climate is a Sudan-Guinean type 
characterized by a bimodal rainfall 
regime with a mean annual rainfall of 
1,400 mm

North and South 
America 

      

Asia 

Multistrata (Philippines: 
Gmelina arborea + coffee)

116 sd= 31 Lasco et al., 2001  

Improved fallow 
(Philippines: Leaucana 
leucocephala)

32 sd= 11.6 Lasco et al. (2010) 
Average annual biomass for 6 year 
cycle 

Multi-strata (SE Asia: 
Jungle rubber)

304 Error= 17 Tomich et al., 1998 From GPG 2006 

Multi-strata (SE Asia: 
Jungle rubber)

116 Error= 53 Lasco et al., 2001 From GPG 2006 

Tropical moist 
deciduous 

forest 

Africa      

North and South 
America 

Mexico: various AF 
systems

56.5 35.3 to 74.0 Soto-Pinto et al., (2010) 
Low-tropical agro-climatic zone of 
Chiapas

Improved fallow 
(Columbia)

20.9 6.7 to 37 Barrios and Cabo, (2004) Mean annual rainfall of 1900 mm  

Multi-strata (Guatemala: 
Coffee agroforests) 

255.2 ±  13.2 148 to 518 Schmitt-Harshet et al. 
(2012) 

Annual rainfall and temperature 
averages 2504 mm and 18–24 ℃,  

Multi-strata (Cocoa 
agroforestry [six countries])

49 ± 35  Somarriba et al. (2013)  

Agrosilvicultural (S 
America)

70.5 39 - 102 Albrecht and Kandji, 2003 From GPG 2006 

Silvopastoral (N America) 151.0 104 - 198 Albrecht and Kandji, 2003 From GPG 2006

Australia Silvopastoral 39.5 28 - 51 Albrecht and Kandji, 2003 From GPG 2006

Asia 
Agrosilvicultural (SE Asia) 120.0 12 - 228 Albrecht and Kandji, 2003 From GPG 2006

Silvopastoral (N Asia) 16.5 15 - 18 Albrecht and Kandji, 2003 From GPG 2006 

 235 
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UPDATED -  TABLE 5.2 (CONTINUED) 
Potential C storage for agroforestry systems in different ecoregions of the world 

Domain 
Ecological 

zone 
Continent Agroforestry System 

Above-ground 
biomass 

(tonnes ha-1) 

Range 

(tonnes ha-1) 
Reference Note 

Tropical 

Tropical dry 
forest 

Africa  

North and South 
America 

Agrosilvicultural (S 
America )

117.0 39 - 195 Albrecht and Kandji, 2003 From GPG 2006 

Silvopastoral (N America) 132.5 90 - 175 Albrecht and Kandji, 2003 From GPG 2006 
Asia Agrosilvicultural (SE Asia) 75.0 68 - 81 Albrecht and Kandji, 2003 From GPG 2006

Tropical shrub 
land 

Africa 

Multi-strata (Kenya: 
Homegarden) 

15.6 13.8-17.3 Henry et al. (2009) 

East African highlands with average 
altitudes of 1600 and 1200 m.a.s.l., 

and annual rainfall of 1400-1800 mm 
(Kenya) 

Plantation (Kenya:   
Woodlots) 

81 13.8-17.3 Henry et al. (2009) 

East African highlands with average 
altitudes of 1600 and 1200 m.a.s.l., 

and annual rainfall of 1400-1800 mm 
(Kenya)

Improved fallow (E Africa: 
1 year fallow) 35.0 27 - 44 Albrecht and Kandji, 2003 From GPG 2006 

Improved fallow (E Africa: 
2 year fallow) 12.0 7 - 21 Albrecht and Kandji, 2003 From GPG 2006 

North and South 
America 

 
   

 

Asia 

Improved fallow (SE Asia: 
6 year fallow (average))

16.0 4 - 64 Lasco and Suson, 1999 From GPG 2006 

Alley cropping (SE Asia) 2.9 1.5 - 4.5 Lasco et al., 2001 From GPG 2006 

Tropical 
mountain 
systems 

Africa Agrosilvicultural  41.0 29 - 53 Albrecht and Kandji, 2003  

North and South 
America 

Silvopastoral (N America) 143.5 133 - 154 Albrecht and Kandji, 2003  

Asia TBD TBD TBD TBD  

 236 
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UPDATED TABLE 5.2 (CONTINUED) 
Potential C storage for agroforestry systems in different ecoregions of the world 

Domain 
Ecological 

zone 
Continent Agroforestry System 

Above-ground 
biomass 

(tonnes ha-1) 

Range 

(tonnes ha-1) 
Reference Note 

Subtropical 

Subtropical 
humid forest 

North and South 
America 

TBD TBD TBD TBD  

Asia 

India: Gmelina arborea 
+crops

14.1 TBD Swamy and Puri (2005) 5 years old 

India: Populus deltoides + 
crops

203 TBD Singh and Lodhiyal (2009) 8 years old 

India: Populus deltoides + 
crops

74.5 TBD Rizvi et al., (2011) Average of two values 

India: Populus deltoides + 
crops

40.3 19.3 to 57.7 Yadava (2010)  

Subtropical 
dry forest 

North and South 
America 

TBD TBD TBD TBD  

Asia TBD TBD TBD TBD  

Subtropical 
steppe 

North and South 
America 

TBD TBD TBD TBD  

Asia TBD TBD TBD TBD  

Subtropical  
North and South 
America 

TBD TBD TBD TBD  

Asia TBD TBD TBD TBD  

Temperate TBD TBD TBD TBD TBD TBD  

Boreal TBD TBD TBD TBD TBD TBD  

TBD – To be determined for the second order draft based on information on studies including Dossa et al. (2008), Makumba et al. (2007), Takimoto et al. (2008), Henry et al. (2009), Soto-Pinto et al., (2010), Barrios and 
Cabo, (2004), Schmitt-Harshet et al. (2012), Somarriba et al. (2013), Swamy and Puri (2005), Singh and Lodhiyal (2009), Rizvi et al., (2011), Yadava (2010), Lasco et al. (2010)] 

 237 
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TABLE 5. 3 EXAMPLES OF CLASSIFICATION OF AGROFORESTRY SYSTEM 

Agroforestry system Description 

Multi-strata 

This class includes (I) Home garden systems, which refer to intimate combination of multipurpose trees, shrubs, herbaceous plants with annual and perennial crops 
growing in or adjacent to a home compound. The garden is managed intensively usually by family labor. (ii) Growing shade-tolerant perennials species such as 
cacao, coffee under or in between over story shade-, timber-, or other commercial tree crops (USAID 2014). For this study, plantation crops were not included in this 
class. 

Tree Intercropping 

Includes (I) Alley cropping systems, which are defined as growing food crops between hedgerows of planted shrubs and trees, preferably leguminous species. The 
hedges are pruned periodically during the crop's growth to provide biomass (which, when returned to the soil, enhances its nutrient status and physical properties) 
and to prevent shading of the growing crops. (ii) This class also comprises traditional intercropping systems, which consist of growing crops under scattered or in 
systematically-planted trees (Nair 1993b).  

Silvopastoral This class refers to grazing under scattered or planted trees or tree-fodder systems: fodder banks, parkland.  

Protective Systems 
This class refers to (I) Protective systems, which refers to boundary planting, windbreaks, shelterbelts, soil conservation hedges trees used to protect fields from wind 
damage, sea encroachment, floods, etc.  

Plantations  
This class refers to plantation crops systems such as oil palm, rubber, coconut, cacao, coffee, and tea, cashew, which may include understory crops production in 
alternate or in other regular arrangements.  

Improved fallow  
Defined as land resting for cultivation, but comprises planted and managed trees, preferably leguminous, shrubs and herbaceous cover crops before it is cultivated 
again. The improved fallow agroforestry system can be implemented prior to the establishment of any other class mentioned above.  

Vineyard systems  A plantation of grapevines, typically producing grapes used for winemaking 

Orchards systems  Land planted with fruit trees (apple, pear, plum and cherry tree). Understory vegetation is usually mowed or grazed.  

Source: Description of agroforestry systems adopted from USAID (2014) and Nair (1993b) 

  240 
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UPDATED- TABLE 5. 4 DEFAULT MAXIMUM AND TIME-AVERAGED MEAN ABOVE-GROUND BIOMASS FOR VARIOUS TYPES OF PERENNIAL CROPLANDS (TONNES HA-1)   

Domain 
Ecological 

zone 
Continent Cropping system 

Maximum 
above-ground 

biomass 
carbon stock 

at harvest 
(Lmax) 

(tonnes C ha-1) 

Error 
Lmax 

Harvest 
/Maturit
y cycle 

(yr) 

Above-
ground 
biomass 

accumulatio
n rate (G) 

(tonnes C 
ha-1 yr-1) 

Error 
G 

Mean 
biomass 
carbon 
stock 

(Lmean) 

(tonnes C 
ha-1 yr-1) 

Error 
Lmean 

References 

Temperate All All 

General perennial 
cropland

TBD TBD TBD TBD TBD TBD TBD  

Orchard e.g. 
apple

TBD TBD TBD TBD TBD TBD TBD  

Shrub e.g. berry TBD TBD TBD TBD TBD TBD TBD  

Vine e.g. grape 9.1 TBD 30 0.32 TBD 4.5 TBD 
Kroodsma & Field 2006; 
Morande et al 2017; 
Buwalda and Smith 1987 

Nurseries e.g. 
Christmas trees

TBD TBD TBD TBD TBD TBD TBD  

Short Rotation 
Coppice 

12.69 TBD 4 3.2 TBD 6.35 TBD 
Hauk et al 2013, 
adjustment from Krasuska 
and Rosenqvist 2011 

Tropical 
Wet, 
humid 

All 

Oil palm Elaeis 
guineensis 

94.75 TBD 25 1.53 TBD 24.24 TBD 

Germer and Sauerborn 
2008 
[Agus et al 2013; Ziegler 
et al 2012; Khasanah et al 
2015; Sanquetta et al 
2015…]

Rubber 
monoculture 
Hevea 
brasiliensis 

TBD TBD 30 TBD TBD 

45.1 
[Z et al 56; 

M et al 
44.1; A et al 

58]

TBD 

Blagodatsky et al 2016 
[Ziegler et al 2012; 
Nizami et al 2014; 
Margiotto et al 2014; 
Agus et al 2013…] 

Coffee Coffea TBD TBD TBD TBD TBD TBD TBD  

Cacao 
Theobroma 
cacao 

TBD TBD TBD TBD TBD TBD TBD 
 

Tropical Wet, 
humid 

All 
Coconut Cocos 
nucifera 

196 TBD TBD TBD TBD TBD TBD Lasco et al., 2002 
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UPDATED- TABLE 5. 4 DEFAULT MAXIMUM AND TIME-AVERAGED MEAN ABOVE-GROUND BIOMASS FOR VARIOUS TYPES OF PERENNIAL CROPLANDS (TONNES HA-1)   

Domain 
Ecological 

zone 
Continent Cropping system 

Maximum 
above-ground 

biomass 
carbon stock 

at harvest 
(Lmax) 

(tonnes C ha-1) 

Error 
Lmax 

Harvest 
/Maturit
y cycle 

(yr) 

Above-
ground 
biomass 

accumulatio
n rate (G) 

(tonnes C 
ha-1 yr-1) 

Error 
G 

Mean 
biomass 
carbon 
stock 

(Lmean) 

(tonnes C 
ha-1 yr-1) 

Error 
Lmean 

References 

Banana Musa TBD TBD TBD TBD TBD TBD TBD  

Orchard e.g. 
fruit, nuts 

TBD TBD TBD TBD TBD TBD TBD  

All All Cinnamon TBD TBD TBD TBD TBD TBD TBD 
Siregar & Gintings, 2000 
Lakprasadi & Navaratne 
2012 

Tropical 
rainforest 

SE Asia Oil Palm 136.0 62 - 202 TBD TBD TBD TBD TBD  

SE Asia Mature rubber  178.0  TBD TBD TBD TBD TBD Palm et al., 1999 

SE Asia Young rubber 48.0 16 - 80 TBD TBD TBD TBD TBD Wasrinet al., 2000 

SE Asia 
Young cinnamon 
(7 years) 

68.0 TBD TBD TBD TBD TBD TBD 
Siregar&Gintings, 2000 

SE Asia Coconut 196.0 TBD TBD TBD TBD TBD TBD Lasco et al., 2002 

Tropical 
moist  
deciduous 
forest 

Africa 

Cocao -21 years 130.0 TBD TBD TBD TBD TBD TBD Kongsager et al., 2013 

Oil Palm-7 years 43.4 TBD TBD TBD TBD TBD TBD Kongsager et al., 2013 

Oil Palm-16 years 56.0 TBD TBD TBD TBD TBD TBD Kongsager et al., 2013 

Oil palm-23 years 90.6 TBD TBD TBD TBD TBD TBD Kongsager et al., 2013 

Rubber -12 years 123.0 TBD TBD TBD TBD TBD TBD Kongsager et al., 2013 

Rubber -44 years 427.2 TBD TBD TBD TBD TBD TBD Kongsager et al., 2013 

Orange -25 years 152.6 TBD TBD TBD TBD TBD TBD Kongsager et al., 2013 

Temperate, 
subtropical, 
tropical 

All All 
Tea Camellia 
sinensis 

TBD TBD TBD TBD TBD TBD TBD  
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UPDATED- TABLE 5. 4 DEFAULT MAXIMUM AND TIME-AVERAGED MEAN ABOVE-GROUND BIOMASS FOR VARIOUS TYPES OF PERENNIAL CROPLANDS (TONNES HA-1)   

Domain 
Ecological 

zone 
Continent Cropping system 

Maximum 
above-ground 

biomass 
carbon stock 

at harvest 
(Lmax) 

(tonnes C ha-1) 

Error 
Lmax 

Harvest 
/Maturit
y cycle 

(yr) 

Above-
ground 
biomass 

accumulatio
n rate (G) 

(tonnes C 
ha-1 yr-1) 

Error 
G 

Mean 
biomass 
carbon 
stock 

(Lmean) 

(tonnes C 
ha-1 yr-1) 

Error 
Lmean 

References 

TBD – to be deteremined for the second order draft based on available information on recent studies including, Bilas Singh et al, 2015, Yashmita-ulman and S. Avudainayagam , 2012, G. Singh, 2017, Miria A. and Anisa 
B. Khan, 2015, A. S. Dogra et al,2014, Y. Ulman and S. Avudainayagam, 2014, Swami K. R. et al, 2012, Anil Kumar Yadava, 2010, Sanjeev K. Chauhan et al, 2010, N. Singh and L. S. Lodhiya, 2016, F. Mohsin et al, 
2005, K. C. Singh, 2005, Umrao et al, 2010, S. Goswami et al, 2016, C. E Harwood and EKS Nambiar (CSIRO –ACAIR), Palm et al., 1999, Wasrinet al., 2000,  Siregar&Gintings, 2000,  Lasco et al., 2002,  Kongsager 
et al., 2013, Kotowska et al 2015,  Adachi et al 2011, Corley and Tinker, 2003, Bwalya  JM 2012, G. Liguori et al., 2009, Ting Wu et al.,2012, Zhaopeng Ou Yang et al. 2012, Kroodsma, D. A. and Field, C. B., 2006. 
Morgan, K.T. et al.,2006, Chalmers D.J. and Van Den Ende, B. 1975., Jiménez, C.M. and Diaz, J.B.R. 2003, Jiménez, C.M. and Diaz, J.B.R. 2004., Haynes, R.J. and Goh, K.M., 1980., Palmer, J.W., J.N. Wünsche, M. 
Meland and A. Hann. 2002., Lovatt, C.J. 1996, Villalobos, F.J., Testi, L., Hidalgo, J., Pastor, M., Orgaz, F., 2006., Murphy, T., Jones, G., Vanclay, J., and Glencross, K., 2013., Nendel, C. and Kersebaum, K.C. 2004., 
Buwalda, J.G. and Smith, G.S. 1987.,BMLFUW (Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft) 2000: Splechtna,B. & Glatzel, G. 2005: Wirth, C. et al., 2004, Mokany, K., R.J. Raison 
& A.S.P. Rokushkin, 2006, Popken, S., 2011, Kandler, G.; Bosch, B. 2013, Gyldenkærne, S. et al., 2005, Moxley, J. et al., 2014, Juhos K. és Tőkei, L. 2012., Kort, J. and Turnock, R. 1999, Kerckhoffs, L.H.J. and Reid, 
J.B. 2007, Pessler C, 2012, McConkey, B. et al., 2006, Milne, R. and Brown, T. A. 1997, Walter 2012,  Zanotelli et al 2015, Montanaro et al 2017, Scandellari et al 2016, Wu et al 2012 and Japan’s studies (on-going 
work).] 

 241 
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Below-ground biomass accumulation 242 

Tier 1 243 
The default assumption is that there is no change in below-ground biomass of perennial trees in agricultural systems. 244 
Default values for below-ground biomass for agricultural systems are not available. 245 

Tier 2 246 
This includes the use of actually measured below-ground biomass data from perennial woody vegetation. Estimating 247 
below-ground biomass accumulation is recommended for Tier 2 calculation. Root-to-shoot ratios show wide ranges 248 
in values at both individual species (e.g., Anderson et al., 1972) and community scales (e.g., Jackson et al., 1996; 249 
Cairns et al., 1997). Limited data is available for below ground biomass thus, as far as possible, empirically-derived 250 
root-to-shoot ratios specific to a region or vegetation type should be used.  251 

Tier 3 252 
This includes the use of data from field studies identical to forest inventories and modelling studies, if stock difference 253 
method is adopted.  254 

Biomass losses from removal,  fuelwood and disturbance 255 

Tier 1 256 
The default assumption is that all biomass lost is assumed to be emitted in the same year. Biomass removal, fuelwood 257 
gathering and disturbance loss data from cropland source are not available. FAO provides total roundwood and 258 
fuelwood consumption data, but not separated by source (e.g., Cropland, Forest Land, etc.). It is recognized that 259 
statistics on fuelwood are extremely poor and uncertain worldwide. Default removal and fuelwood gathering statistics 260 
(discussed in Chapter 4, Section 4.2) may include biomass coming from cropland such as when firewood is harvested 261 
from home gardens. Thus, it is necessary to ensure no double counting of losses occurs. If no data are available for 262 
roundwood or fuelwood sources from Cropland, the default approach will include losses in Forest Land (Section 4.2) 263 
and will exclude losses from Cropland.  Updated Tables 5.1 to 5.4 provides default values of maximum carbon stock 264 
per area (Lmax) and mean carbon stock per area (Lmean).  Countries should use Lmax in updated Table 5.1 to 5.4 in the 265 
case that perennial woody biomass is replaced at or over the year of harvest/maturity under a nominal harvest/maturity 266 
cycle assuming that perennial cropland is harvested and regenerated back into perennial cropland. Carbon losses are 267 
estimated by multiplying annual area of harvested/replaced cropland by Lmax.  Countries should used Lmean in updated 268 
Table 5.1 to 5.4 in the case that carbon removal hass occurred by land use change where the age of the perennial crop 269 
removed is unknown. Carbon losses are estimated by multiplying the annual area of land conversion by Lmean. When 270 
perennial cropland is converted to another type of cropland, losses are reported in cropland remaining cropland. When 271 
perennial cropland is converted to non-cropland land uses, losses are reported in relevant land converted categories 272 

Tiers 2 and 3 273 
National level data at a finer scale, based on inventory studies or production and consumption studies according to 274 
different sources, including agricultural systems, can be used to estimate biomass loss. These can be obtained through 275 
a variety of methods, including estimating density (crown coverage) of woody vegetation from air photos (or high 276 
resolution satellite imagery) and ground-based measurement plots. Species composition, density and above-ground 277 
vs. below-ground biomass can vary widely for different cropland types and conditions and thus it may be most efficient 278 
to stratify sampling and survey plots by cropland types. General guidance on survey and sampling techniques for 279 
biomass inventories is given in Chapter 3, Annex 3A.3.   280 

5.2.1.3 CHOICE OF ACTIVITY DATA 281 

This section has an elaboration on the methods.  282 

Activity data in this section refer to estimates of land areas of growing stock and harvested land with perennial woody 283 
crops. The area data are estimated using the approaches described in Chapter 3. They should be regarded as strata 284 
within the total cropland area (to keep land-use data consistent) and should be disaggregated depending on the tier 285 
used and availability of growth and loss factors. Examples of Cropland subcategories are given in updated Table 5.5. 286 

 287 

 288 
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 289 
 290 

 291 

Tier 1 292 
Under Tier 1, annual or periodic surveys are used in conjunction with the approaches outlined in Chapter 3 to estimate 293 
the average annual area of established perennial woody crops and the average annual area of perennial woody crops 294 
that are harvested or removed. The area estimates are further sub-divided into general climate regions or soil types to 295 
match the default biomass gain and loss values. Under Tier 1 calculations, international statistics such as FAO 296 
databases, and other sources can be used to estimate the area of land under perennial woody crops. 297 

Tier 2 298 
Under Tier 2, more detailed annual or periodic surveys are used to estimate the areas of land in different classes of 299 
perennial woody biomass crops. Areas are further classified into relevant sub categories such that all major 300 
combinations of perennial woody crop types and climatic regions are represented with each area estimate. These area 301 
estimates must match any country-specific biomass carbon increment and loss values developed for the Tier 2 method. 302 
If country-specific finer resolution data are only partially available, countries are encouraged to extrapolate to the 303 
entire land base of perennial woody crops using sound assumptions from best available knowledge.  304 

Tier 3 305 
Tier 3 requires high-resolution activity data disaggregated at sub-national to fine grid scales. Similar to Tier 2, land 306 
area is classified into specific types of perennial woody crops by major climate and soil categories and other potentially 307 
important regional variables (e.g., regional patterns of management practices). Furthermore, it is good practice to 308 
relate spatially explicit area estimates with local estimates of biomass increment, loss rates, and management practices 309 
to improve the accuracy of estimates. 310 

5.2.1.4 CALCULATION STEPS FOR TIER 1 AND TIER 2 311 

No Refinement 312 

5.2.1.5 UNCERTAINTY ASSESSMENT 313 

No Refinement 314 

5.2.2  Dead organic matter 315 

No refinement 316 

5.2.3 Soil carbon 317 

No Refinement in the Introduction 318 

 

UPDATED TABLE 5. 5 EXAMPLES OF PERENNIAL CROPLAND SUBCATEGORIES WHICH A COUNTRY MAY HAVE  

 

Broad subcategories Specific subcategories 

Fruit orchards Mango, Citrus, Apple, Vine (Grape, kiwifruit), Shrub (berry) 

Plantation crops 
Rubber, Coconut, Oil palm, Coffee, Cacao, Christmas trees, Short-rotation coppice 
plantations 

Agroforestry systems 
Hedgerow cropping (alley cropping), Improved fallow, Multi-storey systems, Home 
gardens, Boundary planting, Windbreaks 

See Table 5.3 as well. 
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Cropland management modifies soil C stocks to varying degrees depending on how specific practices influence C 319 
input and output from the soil system (Paustian et al., 1997; Bruce et al., 1999; Ogle et al., 2005).  The main 320 
management practices that affect soil C stocks in croplands are the type of residue management, tillage management, 321 
fertilizer management (both mineral fertilizers and organic amendments), choice of crop and intensity of cropping 322 
management (e.g., continuous cropping versus cropping rotations with periods of bare fallow), irrigation management, 323 
and mixed systems with cropping and pasture or hay in rotating sequences.  In addition, drainage and cultivation of 324 
organic soils reduces soil C stocks (Armentano and Menges, 1986).  325 

General information and guidance for estimating changes in soil C stocks are found in Section 2.3.3 of Chapter 2 326 
(including equations).  That section should be read before proceeding with specific guidelines dealing with Cropland 327 
soil C stocks. The total change in soil C stocks for Cropland is estimated using Equation 2.24 (Chapter 2), which 328 
combines the change in soil organic C stocks for mineral soils and organic soils; and stock changes associated with 329 
soil inorganic C pools (Tier 3 only).  This section provides specific guidance for estimating soil organic C stock 330 
changes. Soil inorganic C is fully covered by Section 2.3.3.1. 331 

To account for changes in soil C stocks associated with Cropland Remaining Cropland, countries need at a minimum, 332 
estimates of the Cropland area at the beginning and end of the inventory time period. If land-use and management 333 
data are limited, aggregate data, such as FAO statistics on Cropland, can be used as a starting point, along with expert 334 
knowledge about the approximate distribution of land management systems (e.g., medium, low and high input 335 
cropping systems, etc.). Cropland management classes must be stratified according to climate regions and major soil 336 
types, which can either be based on default or country-specific classifications.  This can be accomplished with overlays 337 
of land use on suitable climate and soil maps.   338 

5.1.1.1 5.2.3.1 CHOICE OF METHOD 339 

This section contains further elaboration on methods, updates and new guidance. 340 

Inventories can be developed using a Tier 1, 2, or 3 method, with each successive Tier requiring more detail and 341 
resources than the previous one.  It is also possible that countries will use different tiers to prepare estimates for the 342 
separate subcategories of soil C (i.e., soil organic C stocks changes in mineral soils and organic soils, and stock 343 
changes associated with soil inorganic C pools).  Decision trees are provided for mineral soils (Figure 2.5) and organic 344 
soils (Figure 2.6) in Section 2.3.3.1 (Chapter 2) to assist inventory compilers with selection of the appropriate tier for 345 
their soil C inventory.  346 

Mineral soils  347 

Tier 1 348 
For mineral soils, the estimation method is based on changes in soil organic C stocks over a finite period following 349 
changes in management that impact soil organic C.  Equation 2.25 (Chapter 2) is used to estimate change in soil 350 
organic C stocks in mineral soils by subtracting the C stock in the last year of an inventory time  period (SOC0) from 351 
the C stock at the beginning of the inventory time period (SOC(0 –T)) and dividing by the time dependence of the stock 352 
change factors (D).  In practice, country-specific data on land use and management must be obtained and classified 353 
into appropriate land management systems (e.g., high, medium and low input cropping), including tillage management, 354 
and then stratified by IPCC climate regions and soil types.  Soil organic C stocks (SOC) are estimated for the beginning 355 
and end of the inventory time period using default reference carbon stocks (SOCref) and default stock change factors 356 
(FLU, FMG, FI ).   357 

Tier 2 358 
Refining Application of the Default Equations 359 

For Tier 2, the same basic equations are used as in Tier 1 (Equation 2.25), but country-specific information is 360 
incorporated to specify better the stock change factors and reference C stocks with more disaggregation of climate 361 
regions, soil types, and/or the land management classification.   362 

Three-Pool Steady-State C Model 363 

The three-pool steady-state soil C model is based on estimating C inputs to soils and applying soil carbon pool specific 364 
decomposition rates that are modified by given environmental conditions and management practices. This model 365 
embraces more of the heterogeneity in soils, by subdividing soil C pool into different rates of turnover, i.e., fast (Active 366 
Pool), intermediate (Slow Pool) , and long turnover times (Passive Pool). 367 
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Tier 3 368 
Tier 3 approaches may use dynamic models and/or detailed soil C inventory measurements as the basis for estimating 369 
annual stock changes. Estimates from models are computed using coupled equations that estimate the net change of 370 
soil C. A variety of models exist (e.g., see reviews by McGill et al., 1996; and Smith et al., 1997).  Key criteria in 371 
selecting an appropriate model include its capability of representing all of the relevant management practices/systems 372 
for croplands; model inputs (i.e., driving variables) are compatible with the availability of country-wide input data; 373 
and verification against experimental data.   374 

A Tier 3 approach may also be developed using a measurement-based approach in which a monitoring network is 375 
sampled periodically to estimate soil organic C stock changes.  A much higher density of benchmark sites will likely 376 
be needed than with models to represent adequately the combination of land-use and management systems, climate, 377 
and soil types.  Additional guidance is provided in Section 2.3.3.1 of Chapter 2. 378 

Organic soils 379 
No Refinement. See 2013 Wetlands Supplement. 380 

Biochar C Amendments to Mineral Soils  381 

Tier 1 382 
This methodology utilizes a top-down approach in which the total amount of biochar generated and added to mineral 383 
soil is used to estimate the change in soil organic C stocks.  Use Equation 2.27 to estimate the change in C stock from 384 
biochar amendments in Chapter 2, Section 2.3.3.1, Volume IV.   385 

Tier 2 386 
Tier 2 methods use the same definitions and equations as Tier 1, but with country-specific factors.  See Section 2.3.3.1, 387 
Chapter 2, Volume IV for more information.  388 

Tier 3 389 
Tier 3 methods can be used to account for GHG sources and sinks not captured in Tiers 1 or 2, such as priming, 390 
changes to N2O or CH4 fluxes from soils, and changes to net primary production. More information on Tier 3 methods 391 
is provided in Section 2.3.3.1 of Chapter 2, Volume IV.   392 

5.2.3.2 CHOICE OF STOCK CHANGE AND EMISSION FACTORS 393 

This section contains further elaboration on methods, updates and new guidance. 394 

Mineral soils  395 

Tier 1 396 
Table 5.6 provides Tier 1 approach default stock change factors for land use (FLU), input (FI) and management (FMG).  397 
The method and studies that were used to derive the default stock change factors are provided in Annex 5A.1 and 398 
References. The default time period for stock changes (D) is 20 years and management practice is assumed to influence 399 
stocks to a depth of 30 cm, which is also the depth for the reference soil C stocks in Table 2.3 (Chapter 2).   400 

Tier 2 401 
Refining Application of Default Equations 402 

A Tier 2 approach entails the estimation of country-specific stock change factors.  Derivation of input (FI) and 403 
management factors (FMG) are based on comparisons to medium input and intensive tillage, respectively, because they 404 
are considered the nominal practices in the IPCC default management classification (see Choice of Activity Data).  It 405 
is good practice to derive values for a higher resolution classification of management, climate and soil types if there 406 
are significant differences in the stock change factors among more disaggregated categories based on an empirical 407 
analysis.  Reference C stocks can also be derived from country-specific data in a Tier 2 approach.  Additional guidance 408 
is provided in Chapter 2, Section 2.3.3.1.    409 

Reference C stocks can also be derived from country-specific data in a Tier 2 approach.  However, reference values 410 
must be consistent across land-use sectors (i.e., Forest Land, Cropland, Grassland, Settlements, Other land), which 411 
requires coordination among the various teams conducting soil C inventories for AFOLU.  412 

The depth for evaluating soil C stock changes can also be extended with the Tier 2 method.  This will require extending 413 
the depth of the reference C stocks (SOCREF) and stock change factors for all land uses (i.e., FLU, FI, and FMG) to ensure  414 
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consistency.  Variable depths between reference stocks and stock change factors are likely to introduce biases into the 415 
inventory estimates that are computed using Equation 2.25.  416 

For the case of land use change to a system that is increasing in C, such as Croplands converted to Grasslands, a Tier 417 
2 method may be a more accurate way to estimate the increase of soil C stocks to native levels. The Tier 1 method 418 
may overestimate soil C stock increases on an annual basis (e.g., Villarino et al., 2014).  419 

Furthermore, inventories may be improved by estimating carbon stocks on a mass equivalency basis when deriving 420 
country-specific factors for FLU,. This is because the soil weight in a certain soil depth changes with the various 421 
operations associated with land use change, for example uprooting, land leveling, and rain compaction due to the 422 
disappearance of the cover of tree canopy. In addition, cropland soils usually tend to have relatively higher density 423 
than the soils in forest land and possibly grasslands or wetlands. Settlement management may also impact the soil 424 
bulk density. In such case, the comparison of the soil carbon stocks between the cropland, settlement, grassland, 425 
wetland, or forest land within the same depth is not appropriate. It is more robust to compare the carbon stock on an 426 
equivalent mass basis, with the stock change calculated on the same weight soil. This method is also recommended 427 
when the bulk density between cropland, grassland, wetland, settlement and forest land is remarkably different even 428 
if the site is within close proximity.  However, it is important to realize that all measurements and associated stock 429 
change factors across all land uses must be on an equivalent mass basis if this method is applied.  This will be 430 
challenging and possibly not even practical unless done comprehensively for all land uses. 431 

Three-Pool Steady-State C Model 432 

Default parameters are provided for the three-pool steady-state C pool equations (Chapter 2, Section 2.3.3.1, Table 433 
2.4), but parameters may be revised if experimental data are available to test the model.  The average lignin and 434 
nitrogen contents of the C input is also required to estimate the size of the three C pools (See Table 5.7). 435 

Tier 3 436 
Constant stock change rate factors per se are less likely to be estimated in favor of variable rates that more accurately 437 
capture land-use and management effects. See Chapter 2, Section 2.3.3.1 for further discussion.  438 

Organic soils 439 
No Refinement. See 2013 Wetlands Supplement. 440 

Biochar C Amendments to Mineral Soils  441 

Tier 1 442 
Default emission factors are provided in Section 2.3.3.1, Chapter 2, Volume IV.    443 

Tier 2 444 
Tier 2 emission factors may be further disaggregated relative to the default factors based on variation in environmental 445 
conditions, such as the climate and soil types, in addition to variation associated with the biochar production methods. 446 
See Section 2.3.3.1, Chapter 2, Volume IV for more information.  447 

Tier 3 448 
Tier 3 methods are country-specific and may involve empirical or process-based models to account for a broader set 449 
of impacts of biochar amendments. More information on Tier 3 methods is provided in Section 2.3.3.1, Chapter 2, 450 
Volume IV.   451 

  452 
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UPDATED TABLE 5. 6 RELATIVE STOCK CHANGE FACTORS (FLU, FMG, AND FI) (OVER 20 YEARS) FOR DIFFERENT 

MANAGEMENT ACTIVITIES ON CROPLAND   

Factor 
value 
type 

Level 
Tempe
r-ature 
regime 

Moist-
ure 

regime1 

IPCC 
defaults  

Error2,3 Description 

Land use 

(FLU) 

Long-
term 
culti-
vated 

Tem-
perate/ 
Boreal 

Dry TBD TBD

Represents area that has been continuously managed 
for >20 yrs, to predominantly annual crops. Input and 
tillage factors are also applied to estimate carbon stock 
changes. Land-use factor was estimated relative to use of 
full tillage and nominal (‘medium”) carbon input levels. 

Moist TBD TBD

Tropical 

Dry TBD TBD

Moist/ 
Wet 

TBD TBD

Tropical 
montane

4

n/a 
TBD TBD

Land use 

(FLU) 
Paddy 
rice 

All 
Dry and 
Moist/ 
Wet 

TBD TBD Long-term (> 20 year) annual cropping of wetlands 
(paddy rice). Can include double-cropping with non-
flooded crops. For paddy rice, tillage and input factors are 
not used. 

Land use 

(FLU) 

Peren-
nial/ 
Tree 
Crop 

All 
Dry and 
Moist/ 
Wet 

TBD TBD

Long-term perennial tree crops such as fruit and nut trees, 
coffee and cacao. 

Land use 

(FLU) 

Set 
aside 
(< 20 
yrs) 

Tempe-
rate/ 

Boreal 
and 

Tropical 

Dry 
TBD TBD

Represents temporary set aside of annually cropland (e.g., 
conservation reserves) or other idle cropland that has been 
revegetated with perennial grasses. 

Moist/ 
Wet 

TBD TBD

Tropical 
montane

n/a 
TBD TBD

Tillage 

(FMG) 
Full  All 

Dry and 
Moist/ 
Wet 

TBD TBD Substantial soil disturbance with full inversion and/or 
frequent (within year) tillage operations. At planting time, 
little (e.g., <30%) of the surface is covered by residues.  

Tillage 

(FMG) 
Re-
duced 

Tem-
perate/ 
Boreal 

Dry 
TBD TBD

Primary and/or secondary tillage but with reduced soil 
disturbance (usually shallow and without full soil 
inversion). Normally leaves surface with >30% coverage 
by residues at planting.  

Moist TBD TBD

Tropical 

Dry TBD TBD

Moist/ 
Wet 

TBD TBD

Tropical 
montane

4 
n/a 

TBD TBD

Tillage 

(FMG) 
No-till 

Temperat
e/ Boreal 

Dry TBD TBD

Direct seeding without primary tillage, with only minimal 
soil disturbance in the seeding zone. Herbicides are 
typically used for weed control.  

Moist TBD TBD

Tropical 

Dry TBD TBD

Moist/ 
Wet 

TBD TBD

Tropical 
montane

4 
n/a 

TBD TBD

 453 
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UPDATED - TABLE 5.6 (CONTINUED) 
Relative stock change factors (FLU, FMG, AND FI) (over 20 years) for different management activities on 

cropland   

Factor 
value 
type 

Level 
Temper
-ature 
regime 

Moist-
ure 

regime1 

IPCC 
defaults  

Error2,3 Description 

Input 

(FI) 
Low 

Tem-
perate/ 
Boreal 

Dry 
TBD TBD

Low residue return occurs when there is due to removal of 
residues (via collection or burning), frequent bare-
fallowing, production of crops yielding low residues (e.g., 
vegetables, tobacco, cotton), no mineral fertilization or N-
fixing crops. 

Moist TBD TBD

Tropical 

Dry TBD TBD

Moist/ 
Wet 

TBD TBD

Tropical 
montane4 

n/a 
TBD TBD

Input 

(FI) 
Med-
ium 

All 
Dry and 
Moist/ 
Wet 

TBD TBD Representative for annual cropping with cereals where all 
crop residues are returned to the field. If residues are 
removed then supplemental organic matter (e.g., manure) 
is added.  Also requires mineral fertilization or N-fixing 
crop in rotation. 

Input 

(FI) 

High 

with-
out 
manure 

Tem-
perate/ 
Boreal 

and 
Tropical 

Dry 
TBD TBD

Represents significantly greater crop residue inputs over 
medium C input cropping systems due to additional 
practices, such as production of high residue yielding 
crops, use of green manures, cover crops, improved 
vegetated fallows, irrigation, frequent use of perennial 
grasses in annual crop rotations, but without manure 
applied (see row below). 

Moist/ 
Wet 

TBD TBD

Tropical 
montane4 

n/a 
TBD TBD

Input 

(FI) 

High – 
with 
manure 

Tem-
perate/ 
Boreal 

and 
Tropical 

Dry 
TBD TBD

Represents significantly higher C input over medium C 
input cropping systems due to an additional practice of 
regular addition of animal manure. 

Moist/ 
Wet 

TBD TBD

Tropical 
montane4 

n/a 
TBD TBD

TBD – To be determined based on literature review for second order draft.  These updates to may also require some changes to the 
descriptions of practices. See Annex 5A1 for more information. 
1 Where data were sufficient, separate values were determined for temperate and tropical temperature regimes; and dry, moist, 
and wet moisture regimes. Temperate and tropical zones correspond to those defined in Chapter 3; wet moisture regime corresponds to the 
combined moist and wet zones in the tropics and moist zone in temperate regions.  
2 + two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical 
analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. NA denotes ‘Not Applicable’, where factor 
values constitute defined reference values, and the uncertainties are reflected in the reference C stocks and stock change factors for land 
use. 
3  This error range does not include potential systematic error due to small sample sizes that may not be representative of the true 
impact for all regions of the world. 
4 There were not enough studies to estimate stock change factors for mineral soils in the tropical montane climate region.  As an 
approximation, the average stock change between the temperate and tropical regions was used to approximate the stock change for the 
tropical montane climate. 
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NEW GUIDANCE TABLE 5. 7 DEFAULT VALUES FOR NITROGEN AND LIGNIN CONTENTS IN CROPS FOR THREE-POOL 

STEADY-STATE C MODEL  

Crops N content of 
above-ground 

residues 

N content of 
below-ground 

residues 

Lignin content of 
above-ground 

residues 

Lignin content of 
below-ground 

residues 

Generic value for 
crops not indicated 
below 

TBD TBD TBD TBD 

Generic Grains 0.006 0.009 TBD TBD 

Winter Wheat 0.006 0.009 TBD TBD 

Spring Wheat 0.006 0.009 TBD TBD 

Barley 0.007 0.014 TBD TBD 

Oats 0.007 0.008 TBD TBD 

Maize 0.007 0.007 TBD TBD 

Rye 0.005 0.011 TBD TBD 

Rice 0.007 TBD TBD TBD 

Millet 0.007 TBD TBD TBD 

Sorghum 0.007 0.006 TBD TBD 

Beans and Pulses 0.01 0.01 TBD TBD 

Soybeans 0.008 0.008 TBD TBD 

Potatoes and Tubers 0.019 0.014 TBD TBD 

Peanuts 0.016 TBD TBD TBD 

Alfalfa and Legume 
Hay 

0.027 0.019 TBD TBD 

Non-legume hay 0.015 0.012 TBD TBD 

TBD – To be determined based on literature review for second order draft.  These updates to may also require some changes to the 
descriptions of practices. 

5.2.3.3 CHOICE OF ACTIVITY DATA 458 

This section contains further elaboration on methods, updates and new guidance. 459 

Mineral soils  460 

Tier 1 461 
Cropland systems are classified by practices that influence soil C storage. The default management classification 462 
system is provided in Figure 5.1. Inventory compilers should use this classification to categorize management systems 463 
in a manner consistent with the default Tier 1 stock change factors.  This classification may be further developed for 464 
Tiers 2 and 3 approaches. In general, practices that are known to increase C storage, such as irrigation, mineral 465 
fertilization, organic amendments, cover crops and high residue yielding crops, have higher inputs, while practices 466 
that decrease C storage, such as residue burning/removal, bare fallow, and low residue crop varieties, have lower 467 
inputs.  These practices are used to categorize management systems and then estimate the change in soil organic C 468 
stocks. Practices should not be considered that are used in less than 1/3 of a given cropping sequence (i.e., crop 469 
rotation), which is consistent with the classification of experimental data used to estimate the default stock change 470 
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factors.  Rice production, perennial croplands, and set-aside lands (i.e., lands removed from production) are considered 471 
unique management systems (see below). 472 

Each of the annual cropping systems (low input, medium input, high input, and high input w/organic amendment) are 473 
further subdivided based on tillage management.  Tillage practices are divided into no-till (direct seeding without 474 
primary tillage and only minimal soil disturbance in the seeding zone; herbicides are typically used for weed control), 475 
reduced tillage (primary and/or secondary tillage but with reduced soil disturbance that is usually shallow and without 476 
full soil inversion; normally leaves surface with >30% coverage by residues at planting) and full tillage (substantial 477 
soil disturbance with full inversion and/or frequent, within year tillage operations, while leaving <30% of the surface 478 
covered by residues at the time of planting).  It is good practice only to consider reduced and no-till if they are used 479 
continuously (every year) because even an occasional pass with a full tillage implement will significantly reduce the 480 
soil organic C storage expected under the reduced or no-till regimes (Pierce et al., 1994; Smith et al., 1998).  Assessing 481 
the impact of rotational tillage systems (i.e., mixing reduced, no-till and/or full tillage practices) on soil C stocks will 482 
require a Tier 2 method.  483 

The main types of land-use activity data are: i) aggregate statistics (Approach 1), ii) data with explicit information on 484 
land-use conversions but without specific geo-referencing (Approach 2), or iii) data with explicit information on land-485 
use conversions and geo-referencing (Approach 3), such as land-use and management inventories making up a 486 
statistically-based sample of a country’s land area (see Chapter 3 for discussion of approaches). At a minimum, 487 
globally available land-use and crop production statistics, such as FAO databases (http://faostat.fao.org/), provide 488 
annual compilations of total land area by major land-uses, select management data (e.g., irrigated vs. non-irrigated 489 
cropland), land area in ‘perennial’ crops (i.e., vineyards, perennial herbaceous crops, and tree-based crops such as 490 
orchards) and annual crops (e.g., wheat, rice, maize, sorghum, etc.). FAO databases would be an example of aggregate 491 
data (Approach 1). 492 

Management activity data supplement the land-use data, providing information to classify management systems, such 493 
as crop types and rotations, tillage practices, irrigation, manure application, residue management, etc.  These data can 494 
also be aggregate statistics (Approach 1) or information on explicit management changes (Approach 2 or 3).  Where 495 
possible, it is good practice to determine the specific management practices for land areas associated with cropping 496 
systems (e.g., rotations and tillage practice), rather than only area by crop.  Remote sensing data are a valuable resource 497 
for land-use and management activity data, and potentially, expert knowledge is another source of information for 498 
cropping practices.  It is good practice to elicit expert knowledge using methods provided in Volume 1, Chapter 2 499 
(eliciting expert knowledge). 500 

National land-use and resource inventories, based on repeated surveys of the same locations, constitute activity data 501 
gathered using Approach 2 or 3, and have some advantages over aggregated land-use and cropland management data 502 
(Approach 1).  Time series data can be more readily associated with a particular cropping system (i.e., combination 503 
of crop type and management over a series of years), and the soil type can be determined by sampling or by referencing 504 
the location to a suitable soil map. Inventory points that are selected based on an appropriate statistical design also 505 
enable estimates of the variability associated with activity data, which can be used as part of a formal uncertainty 506 
analysis. An example of a survey using Approach 3 is the National Resource Inventory in the U.S. (Nusser and Goebel, 507 
1997). 508 

Activity data require additional in-country information to stratify areas by climate and soil types. If such information 509 
has not already been compiled, an initial approach would be to overlay available land cover/land-use maps (of national 510 
origin or from global datasets such as IGBP_DIS) with soil and climate maps of national origin or global sources, 511 
such as the FAO Soils Map of the World and climate data from the United Nations Environmental Program. A detailed 512 
description of the default climate and soil classification schemes is provided in Chapter 3, Annex 3A.5.  The soil 513 
classification is based on soil taxonomic description and textural data, while climate regions are based on mean annual 514 
temperatures and precipitation, elevation, occurrence of frost, and potential evapotranspiration. 515 

 516 

  517 
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Figure 5. 1 Classification scheme for cropping systems. In order to classify cropland management systems, 518 
the inventory compiler should start at the top and proceed through the diagram answering questions (move 519 
across branches if answer is yes) until reaching a terminal point on the diagram.  The classification diagram 520 
is consistent with default stock change factors in Table 5.5. C input classes (i.e., low, medium, high and high 521 
with organic amendment) are further subdivided by tillage practice. 522 

. 523 

 524 

 525 

 526 

Start

High C 
input

with organic
amendment

Continuous
  perennial crops (e.g., fruits, 

coffee and nuts)?

Practice
increasing C

input4?

Converted
into another managed

land use?

Annual
crop with no N mineral
fertilization or N-fixing

crop?

Annual
crop with practice

increasing C
input4?

Annual
crop with organic

amendment?

Practice
increasing C

input3?

Organic
amendment?

Long term
paddy  rice or  irrigated

rice  in rotation
(>20 yrs)?

No

No

No

No

Yes

No

Yes

Yes

Yes

No

Yes

No

YesYes

No

No

Yes

Yes

Yes

No

Converted
into continuous perennial

 cover5?

Set-aside

Medium C 
input

High C
input

Low C
input

Medium C
input

Non-cropland 
systems (e.g.,
Forest land,
Grassland)

Medium C
input

Medium C
input

Low C
input

Rice
Cultivation

Low C
input

Perennial
Crop

Annual
crop with residues 

removed or
burned1?

Annual
crop with low residue2

or rotation with bare
fallow?

No

Yes

Yes

Note:
1: Does not typically include grazing of residues in the field.
2: e.g. cotton, vegetables and tobacco.
3: Practices that increase C input above the amount typically generated by the low residues yielding varieties such as using organic 
amendments, cover crops/green manures, and mixed crop/grass systems.
4: Practices that increase C input by enhancing residue production, such as using irrigation, cover crops/green manures, vegetated fallows, 
high residue yielding crops, and mixed crop/grass systems.
5 Perennial cover without frequent harvest.
Note: Only consider practices, such as irrigation, residue burning/removal, mineral fertilizers, N-fixing crops, organic amendment, cover 
crops/green manures, low residue crop, or fallow, if used in at least 1/3 of cropping rotation sequence.

No
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 527 

Tier 2 528 
Refining Application of Default Equations 529 

Tier 2 approaches are likely to involve a more detailed stratification of management systems than in Tier 1 (see Figure 530 
5.1) if sufficient data are available. This can include further subdivisions of annual cropping input categories (i.e., low, 531 
medium, high, and high with amendment), rice cultivation, perennial cropping systems, and set-asides.  It is good 532 
practice to further subdivide default classes based on empirical data that demonstrates significant differences in soil 533 
organic C storage among the proposed categories.  In addition, Tier 2 approaches can involve a finer stratification of 534 
climate regions and soil types. 535 

For Tier 2, the specific definitions of management and input factors are typically made to match available activity data 536 
on how an activity affects C stocks.  For example, if a country has management factors related to specific tillage 537 
practices that involve a mix of intensities over time, then the country will also need activity data on those specific 538 
tillage practices to apply the country-specific factors. 539 

Three-Pool Steady-State C Model 540 

This method requires soil C input data based on the amount of biomass that is converted to dead organic matter 541 
annually. This rate will vary depending on the crop production, management activity, and other environmental 542 
variables.  Removals or reductions in dead organic matter are subtracted from the C input amount, which could occur 543 
with livestock grazing, grassland burning, or harvesting of grass for feed or bioenergy. Additions of C, particularly 544 
organic amendments such as manure, are included in the estimate of C input.  545 

It is good practice to estimate C input using country-specific methods in order to produce more accurate estimates.  If 546 
country-specific methods are not available, Equation 5.1 can be used to estimate C inputs with factors provided in 547 
Section 11.2.1.2 of Chapter 11, Volume 4 (See Section 11.2.1.2 for more information). 548 

 549 

Where: 550 

 ௜௡௣௨௧ = annual amount of N in crop residues (above and below ground), including N-fixing crops, and from 551ܥ
forage/pasture renewal, returned to soils annually, kg N yr-1 552 

 ሺ்ሻ = annual total amount of above-ground crop residue for crop T, kg d.m. ha-1. (Use factors in Table 11.2, 553ܴܩܣ
Chapter 11, or alternatively, the amount can be calculated using the method and data in Table 11.3, Chapter 554 
11) 555 

 ோ௘௠௢௩௘ሺ்ሻ = fraction of above-ground residues of crop T removed annually for purposes such as feed, 556ܿܽݎܨ
bedding and construction, dimensionless. Survey of experts in country is required to obtain data. If data 557 
for FracRemove are not available, assume no removal 558 

 ஻௨௥௡௧ሺ்ሻ = fraction of annual harvested area of crop T burnt, dimensionless 559ܿܽݎܨ

Cf = combustion factor (dimensionless) (refer to Chapter 2, Table 2.7) 560 

 ሺ்ሻ = annual total amount of belowground crop residue for crop T, kg d.m. ha-1 561ܴܩܤ

Crop(T) = harvested annual dry matter yield for crop T, kg d.m. ha-1 562 

RAG(T) = ratio of above-ground residues dry matter (AGDM(T)) to harvested yield for crop T (Crop(T)), kg d.m. 563 
(kg d.m.)-1, (Table 11.2) 564 

Equation 5. 1 Cropland litter carbon input for three-pool steady-state C model  

௜௡௣௨௧ܥ ൌ෍ൣܴܩܣሺ்ሻ ∗ ൫1 െ ோ௘௠௢௩௘ሺ்ሻܿܽݎܨ െ ሺܿܽݎܨ஻௨௥௡௧ሺ்ሻ ∗ ௙൯൧ܥ ൅ ሺ்ሻ൧ܴܩܤൣ
்

	

ሺ்ሻܴܩܣ ൌ ሺ்ሻ݌݋ݎܥ ∗ ܴ஺ீሺ்ሻ ∗ ሺ்ሻܽ݁ݎܣ ∗ 	ோ௘௡௘௪ሺ்ሻܿܽݎܨ

்ܴܩܤ ൌ ்݌݋ݎܥ ∗ ൫1 ൅ ܴ஺ீሺ்ሻ൯ ∗ ܴ: ሺ்ܵሻ ∗ ሺ்ሻܽ݁ݎܣ ∗ 	ோ௘௡௘௪ሺ்ሻܿܽݎܨ
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Area(T) = total annual area harvested of crop T, ha yr-1 565 

FracRenew (T) = fraction of total area under crop T that is renewed annually 1, dimensionless. For countries where 566 
pastures are renewed on average every X years, FracRenew = 1/X. For annual crops FracRenew = 1 567 

R:S(T) = ratio of below-ground root biomass to above-ground biomass for crop T, kg d.m. (kg d.m.)-1, (Table 568 
11.2) 569 

T = crop or forage type 570 

Data on crop yield statistics (yields and area harvested, by crop) may be obtained from national sources. If such data 571 
are not available, FAO publishes data on crop production: (http://faostat.fao.org/). Tillage management data are also 572 
required (proportion of full tillage, reduced tillage and no-till), and irrigation data for any lands that are provided 573 
supplement water (proportion of land). Monthly average temperature, precipitation and potential evapotranspiration 574 
is needed for each grid cell or region.  This information is available from global datasets, such as the CRU climate 575 
dataset (https://crudata.uea.ac.uk/cru/data/hrg/), if country-specific data are not available. The average sand content is 576 
needed for each grid cell or region, which is available from Harmonized World Soil Database 577 
(http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/).  578 

Tier 3 579 
For application of dynamic models and/or a direct measurement-based inventory in Tier 3, similar or more detailed 580 
data on the combinations of climate, soil, topographic and management data are needed, relative to the Tiers 1 and 2 581 
methods, but the exact requirements will depend on the model or measurement design. 582 

Organic soils 583 
No Refinement. See 2013 Wetlands Supplement. 584 

Biochar C Amendments to Mineral Soils  585 

Tier 1 586 
The activity data required for the Tier 1 method includes the total quantities of biochar distributed for amendment to 587 
mineral soils. These data must be disaggregated by production type, where production type is defined as a process 588 
utilizing a specific feedstock type, and a specific conversion process (gasification, or high-, medium-, or low-589 
temperature pyrolysis; Tables 2.4 and 2.5). In case data on the temperature of pyrolysis are unavailable, default factors 590 
for uncontrolled or unspecified pyrolysis temperatures are provided in Section 2.3.3.1 of Chapter 2, Volume IV.  591 
Changes in soil C associated with biochar amendments is considered to occur where it is incorporated into soil. 592 
However, due to the distributed nature of the land sector in which this can take place, inventory compilers may not 593 
have access to data on when or where biochar C amendments occur. Therefore, for the purposes of Tier 1 method, 594 
inventory compilers can rely on centralized records from biochar producers, importers, exporters or distributors, 595 
recording the quantity of biochar that has been provided to the land use sector for use as a soil amendment in the 596 
country. Note that exported biochar is not included in the total amount of biochar amended to soils in the country. 597 
Inventory compilers may further disaggregate amendments by land use if the data are available.     598 

Tier 2 599 
Tier 2 methods have the same activity data requirements as Tier 1 (quantities of biochar distributed for incorporation 600 
into mineral soils, disaggregated by production type). Additionally, activity data on the amount of biochar amendments 601 
may be disaggregated by climate zones and/or soil types if country-specific factors are disaggregated by these 602 
environmental variables. The additional climate and soil activity data may be obtained with a survey of biochar 603 
distributors and land managers.  604 

Tier 3 605 
The additional activity data required to support a Tier 3 method will depend on which processes are represented and 606 
environmental variables that are required as input to the model.  Priming, soil GHG emissions, and plant production 607 
responses to biochar all vary with biochar type, climate, and soil type. Furthermore, soil GHG emissions and plant 608 
production responses also vary with crop type and management. Therefore, Tier 3 methods may require environmental 609 
data on climate zones, soil types, crop types and crop management systems (such as nitrogen fertilizer application 610 

                                                           
1 This term is included in the equation to account for N release and the subsequent increases in N2O emissions (e.g., van der 

Weerden et al., 1999; Davies et al., 2001), from renewal/cultivation of grazed grass or grass/clover pasture and other forage 
crops. 
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rates, and whether soils are flooded for paddy rice production), in addition to the amount of biochar amendments in 611 
each of the individual combinations of strata for the environmental variables. More detailed activity data specifying 612 
the process conditions for biochar production or the physical and chemical characteristics of the biochar may also be 613 
required (such as surface area, cation exchange capacity, pH, and ash content). 614 

5.2.3.4 CALCULATION STEPS FOR TIER 1 615 

This section will be updated for the second order draft based on new factors, and also will provide new guidance. 616 

Mineral soils  617 
The steps for estimating SOC0 and SOC(0-T) and net soil C stock change per ha for Cropland Remaining Cropland on 618 
mineral soils are as follows: 619 

Step 1: Organize data into inventory time periods based on the years in which activity data were collected (e.g., 1990 620 
to 1995, 1995 to 2000, etc.) 621 

Step 2: Determine the amount Cropland Remaining Cropland by mineral soil types and climate regions in the 622 
country at the beginning of the first inventory time period.  The first year of the inventory time period will depend on 623 
the time step of the activity data (0-T; e.g., 5, 10 or 20 years ago). 624 

Step 3: Classify each Cropland into the appropriate management system using Figure 5.1.   625 

Step 4: Assign a native reference C stock values (SOCREF) from Table 2.3 based on climate and soil type.   626 

Step 5: Assign a land-use factor (FLU), management factor (FMG) and C input levels (FI) to each Cropland based on 627 
the management classification (Step 2).  Values for FLU, FMG and FI are given in Table 5.6.  628 

Step 6: Multiply the factors (FLU, FMG, FI) by the reference soil C stock (SOCREF) to estimate an ‘initial’ soil organic 629 
C stock (SOC(0-T)) for the inventory time period.    630 

Step 7: Estimate the final soil organic C stock (SOC0) by repeating Steps 1 to 5 using the same native reference C 631 
stock (SOCREF), but with land-use, management and input factors that represent conditions for each cropland in the 632 
last (year 0) inventory year.  633 

Step 8: Estimate the average annual change in soil organic C stocks for Cropland Remaining Cropland (∆C
Mineral

) by 634 

subtracting the ‘initial’ soil organic C stock (SOC(0-T)) from the final soil organic C stock (SOC0), and then dividing 635 
by the time dependence of the stock change factors (i.e., 20 years using the default factors).  If an inventory time 636 
period is greater than 20 years, then divide by the difference in the initial and final year of the time period.  637 

Step 9: Repeat steps 2 to 8 if there are additional inventory time periods (e.g., 1990 to 2000, 2001 to 2010, etc.). 638 

A numerical example is given below for Cropland Remaining Cropland on mineral soils, using Equation 2.25 and 639 
default reference C stocks (Table 2.3) and stock change factors (Table 5.6). 640 
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Example: The following example shows calculations for aggregate areas of cropland soil carbon stock 641 
change. In a warm temperate wet climate on Mollisol soils, there are 1Mha of permanent annual 642 
cropland. The native reference carbon stock (SOCref) for the region is 88 tonnes C ha-1. At the 643 
beginning of the inventory calculation period (in this example, 10 yrs earlier in 1990), the distribution 644 
of cropland systems were 400,000 ha of annual cropland with low carbon input levels and full tillage 645 
and 600,000 ha of annual cropland with medium input levels and full tillage. Thus, initial soil carbon 646 
stocks for the area were: 400,000 ha ● (88 tonnes C ha-1 ● 0.69 ● 1 ● 0.92) + 600,000 ha ● (88 tonnes 647 
C ha-1 ● 0.69 ● 1 ● 1) = 58.78 million tonnes C. In the last year of the inventory time period (in this 648 
example, the last year is 2000), there are: 200,000 ha of annual cropping with full tillage and low C 649 
input, 700,000 ha of annual cropping with reduced tillage and medium C input, and 100,000 ha of annual 650 
cropping with no-till and medium C input. Thus, total soil carbon stocks in the inventory year are: 651 
200,000 ha ● (88 tonnes C ha-1 ● 0.69 ● 1 ● 0.92) + 700,000 ha ● (88 tonnes C ha-1 ● 0.69 ● 1.08 ● 652 
1) + 100,000 ha ● (88 tonnes C ha-1 ● 0.69 ● 1.15 ● 1) = 64.06 million tonnes C. Thus, the average 653 
annual stock change over the period for the entire area is: 64.06 – 58.78 = 5.28 million tonnes/20 yr = 654 
264,000 tonnes C per year soil C stock increase (Note: 20 years is the time dependence of the stock 655 
change factor, i.e., factor represents annual rate of change over 20 years).  656 

 657 

Organic soils 658 
No Refinement. See 2013 Wetlands Supplement. 659 

Biochar C Amendments to Mineral Soils  660 

Will be provided in second order draft after factors are derived. 661 

5.2.3.5 UNCERTAINTY ASSESSMENT 662 

No Refinement 663 

5.2.4 Non-CO2 greenhouse gas emissions from biomass 664 

burning 665 

No Refinement  666 
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5.3 LAND CONVERTED TO CROPLAND 667 

No Refinement in the Introduction 668 

5.3.1 Biomass 669 

5.3.1.1 CHOICE OF METHOD 670 

This section provides elaboration on how to calculate CG. 671 

This section provides guidance on methods for calculating carbon stock change in biomass due to the conversion of 672 
land from natural conditions and other uses to Cropland, including deforestation and conversion of pasture and grazing 673 
lands to Cropland. The methods require estimates of carbon in biomass stocks prior to and following conversion, 674 
based on estimates of the areas of lands converted during the period between land-use surveys. As a result of 675 
conversion to Cropland, it is assumed (in Tier 1) that the dominant vegetation is removed entirely leading to emissions, 676 
resulting in near zero amounts of carbon remaining in biomass. Some type of cropping system is planted soon 677 
thereafter increasing the amount of carbon stored in biomass. The difference between initial and final biomass carbon 678 
pools is used to calculate carbon stock change from land-use conversion;  and in subsequent years accumulations and 679 
losses in perennial woody biomass in Cropland are counted using methods in Section 5.2.1 (Cropland Remaining 680 
Cropland).  681 

It is good practice to consider all carbon pools (i.e., above ground and below ground biomass, dead organic matter, 682 
and soils) in estimating changes in carbon stocks in Land Converted to Cropland. Currently, there is insufficient 683 
information to provide a default approach with default parameters to estimate carbon stock change in dead organic 684 
matter (DOM) pools2. DOM is unlikely to be important except in the year of conversion. It is assumed that there will 685 
be no DOM in Cropland. In addition, the methodology below considers only carbon stock change in above-ground 686 
biomass since limited data are available on below-ground carbon stocks in perennial Cropland. 687 

The IPCC Guidelines describe increasingly sophisticated alternatives that incorporate greater detail on the areas of 688 
land converted, carbon stocks on lands, and loss of carbon resulting from land conversions. It is good practice to adopt 689 
the appropriate tier depending on key source analysis, data availability and national circumstances. All countries 690 
should strive for improving inventory and reporting approaches by advancing to the highest tier possible given national 691 
circumstances. It is good practice for countries to use a Tier 2 or Tier 3 approach if carbon emissions and removals in 692 
Land Converted to Cropland is a key category and if the sub-category of biomass is considered significant based on 693 
principles outlined in Volume 1, Chapter 4. Countries should use the decision tree in Figure 1.3 to help with the choice 694 
of method. Land Converted to Cropland is likely to be a key category for many countries and further biomass is likely 695 
to be a key source.  696 

Tier 1 697 
The Tier 1 method follows the approach in Chapter 4 (Forest Land) where the amount of biomass that is cleared for 698 
cropland is estimated by multiplying the area converted in one year by the average carbon stock in biomass in the 699 
Forest Land or Grassland prior to conversion. It is good practice to account completely for all land conversions to 700 
Cropland. Thus, this section elaborates on the method such that it includes different initial uses, including but not 701 
limited to forests.  702 

Equation 2.15 in Chapter 2 summarises the major elements of a first-order estimation of carbon stock change from 703 
land-use conversion to Cropland. Average carbon stock change on a per hectare basis is estimated for each type of 704 
conversion. The average carbon stock change is equal to the carbon stock change due to the removal of biomass from 705 
the initial land use (i.e., carbon in biomass immediately after conversion minus the carbon in biomass prior to 706 
conversion), plus carbon stocks from one year of growth in Cropland following conversion. It is necessary to account 707 
only for any woody vegetation that replaces the vegetation that was cleared during land-use conversion. The GPG-708 
LULUCF combines carbon in biomass after conversion and carbon in biomass that grows on the land following 709 

                                                           
2 Any litter and dead wood pools (estimated using the methods described in Chapter 2, Section 2.3.2) should be assumed oxidized 

following land conversion. 
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conversion into a single term. In this method, they are separated into two terms, BAFTER and CG to increase 710 
transparency.  711 

As described in section 5.3.1.1., at Tier 1, carbon stocks in biomass immediately after conversion (BAFTER) are assumed 712 
to be zero, since the land is cleared of all vegetation before planting crops. Average carbon stock change per hectare 713 
for a given land-use conversion is multiplied by the estimated area of lands undergoing such a conversion in a given 714 
year. In subsequent years, change in biomass of annual crops is considered zero because carbon gains in biomass from 715 
annual growth are offset by losses from harvesting. Changes in biomass of perennial woody crops are counted 716 
following the methodology in Section 2.3.1.1 (Change in carbon stocks in biomass in land remaining in a land-use 717 
category) and Section 5.2.1 (Change in carbon stocks in biomass in cropland remaining cropland).  Thus, carbon gain 718 
of an annual crop is estimated only for the first year following a conversion, whereas, carbon gains and losses of 719 
perennial woody crop may also occur in subsequent years up to 20 years (at maximum).  720 

The default assumption for Tier 1 is that all carbon in biomass removed is lost to the atmosphere through burning or 721 
decay processes either on-site or off-site. Tier 1 calculations do not differentiate immediate emissions from burning 722 
and other conversion related losses.   723 

Tier 2 724 
The Tier 2 calculations are structurally similar to Tier 1, with the following distinctions. First, Tier 2 relies largely on 725 
country-specific estimates of the carbon stocks in initial and final land uses rather than the default data. Area estimates 726 
for Land Converted to Cropland are disaggregated according to original vegetation (e.g., from Forest Land or 727 
Grassland) at finer spatial scales to capture regional and crop systems variations in country-specific carbon stocks 728 
values. 729 

Second, Tier 2 may modify the assumption that carbon stocks immediately following conversion are zero. This enables 730 
countries to take into account land-use transitions where some, but not all, vegetation from the original land use is 731 
removed. 732 

Third, under Tier 2, it is good practice to apportion carbon losses to burning and decay processes if applicable. 733 
Emissions of carbon dioxide occur as a result of burning and decay in land-use conversions. Further, non-CO2 trace 734 
gas emissions occur as a result of burning. By partitioning losses to burning and decay, countries can also calculate 735 
non-CO2 trace gas emissions from burning (Section 5.3.4).  736 

The immediate impacts of land conversion activities on the five carbon stocks can be summarized in a disturbance 737 
matrix, which describes the retention, transfers and releases of carbon in the pools in the original ecosystem following 738 
conversion to Cropland. A disturbance matrix defines for each pool the proportion that remains in that pool and the 739 
proportion that is transferred to other pools.  A small number of transfers are possible, and are outlined in a disturbance 740 
matrix in Table 5.9.  The disturbance matrix ensures consistency of the accounting of all carbon pools. 741 

Biomass transfers to dead wood and litter can be estimated using Equation 2.20. 742 

Tier 3 743 
The Tier 3 method is similar to Tier 2, with the following distinctions: i) rather than relying on average annual rates 744 
of conversion, countries can use direct estimates of spatially disaggregated areas converted annually for each initial 745 
and final land use; ii) carbon densities and soil carbon stock change are based on locally specific information, which 746 
makes possible a dynamic link between biomass and soil; and iii) biomass volumes are based on actual inventories. 747 
The transfer of biomass, to dead wood and litter following land-use conversion can be estimated using Equation 2.20. 748 

 749 

 750 

 751 

 752 

Table 5. 8 Text to be provided in SOD 753 

 754 
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TABLE 5. 9 EXAMPLE OF A SIMPLE DISTURBANCE MARTRIX (TIER 2) FOR THE IMPACTS OF LAND CONVERSION ACTIVITIES 

ON CARBON POOLS  

To 

 

From 

Above-
ground 
biomass 

 

Below-
ground 
biomass 

 

Dead 
wood 

Litter Soil 
organ-

ic 
matter 

Harvest-
ed wood 
products 

Atmo-
sphere 

Sum of 
row 

(must 
equal 1) 

Above-ground 
biomass 

        

Below-ground 
biomass 

        

Dead wood 
        

Litter 
        

Soil organic 
matter 

        

Enter the proportion of each pool on the left side of the matrix that is transferred to the pool at the top of each column.  All of the pools 
on the left side of the matrix must be fully accounted, so the values in each row must sum to 1. 

Impossible transitions are blacked out. 

5.3.1.2 CHOICE OF EMISSION FACTORS 755 

This section provides elaboration on methods and updates. 756 

The emission/removal factors needed for the default method are: carbon stocks before conversion in the initial land 757 
use and after conversion to Cropland; and growth in biomass carbon stock from one year of cropland growth. 758 

Tier 1 759 
Default biomass carbon stock in initial land-use categories (BBEFORE) mainly Forest Land and Grassland are provided 760 
in Updated Table 5.10. Initial land-use based carbon stocks should be obtained for different Forest Land or Grassland 761 
categories based on biome type, climate, soil management systems, etc. It is assumed that all biomass is cleared when 762 
preparing a site for cropland use, thus, the default for BAFTER is 0 tonne C ha-1.  763 

In addition, a value is needed for carbon stocks after one year of growth in crops planted after conversion (CG). 764 
Updated Table 5.11 provides general defaults for CG while updated table 5.3 provides defaults for specific crops. 765 
Separate defaults are provided for annual non-woody crops and perennial woody crops. For lands planted in annual 766 
crops, the default value of CG is [5.0] [4.7] tonnes of C per hectare, based on the original IPCC Guidelines 767 
recommendation of 10 tonnes of dry biomass per hectare (dry biomass has been converted to tonnes carbon in Table 768 
5.11). The total accumulation of carbon in perennial woody biomass will, over time, exceed that of the default carbon 769 
stock for annual cropland. However, default values provided in this section are for one year of growth immediately 770 
following conversion, which usually give lower carbon stocks for perennial woody crops compared to annual crops.  771 

 772 

 773 

 774 

 775 

 776 



DO NOT CITE OR QUOTE   Chapter 5, Volume 4 (AFOLU) 
 
  First Order Draft 
 

DRAFT 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories     5.31 
 

 777 

UPDATED TABLE 5. 10 DEFAULT BIOMASS CARBON STOCKS REMOVED DUE TO LAND CONVERSION TO CROPLAND  

Land-use category 
Carbon stock in biomass before conversion (BBefore) 

(tonnes C ha-1) 
Error range # 

Forest Land 

See Chapter 4 Tables 4.7 to 4.12 for carbon stocks in a range of forest types 
by climate regions. Stocks are in terms of dry matter. Multiply values by a 
carbon fraction (CF) in Table 4.3 consistent with what used in forest land 
estimation to convert dry matter to carbon.

See Section 4.3 
(Land Converted 
to Forest Land) 

Grassland 

See Chapter 6 Table 6.4 for carbon stocks in a range of grassland types by 
climate regions. Multiply default carbon fraction (CF) 0.47 (for herbaceous 
biomass for Grassland, see page 6.29, Chapter 6 of the 2006 guidelines to 
convert dry matter to carbon. 

+ 75% 
[This range may 
change based on 
updated Table 

6.4] 
# Represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean. 

 778 

UPDATED TABLE 5. 11 DEFAULT BIOMASS CARBON STOCKS PRESENT ON LAND CONVERTED TO CROPLAND IN THE YEAR 

FOLLOWING CONVERSION   

Crop type by 
climate region 

Ecological 
zone 

Continent Cropping system 

Carbon stock in 
biomass after one 

year (CG) 

(tonnes C ha-1) 

Error 
range# 

Annual cropland All All Annual cropland [5.0][4.7] + 75% 

   [others]  TBD TBD TBD TBD TBD 

Perennial cropland      

   Tropical Highland All General perennial agroforestry 3.9 + 75% 

   Tropical Dry All General perennial agroforestry 2.6 + 75% 

   Tropical Moist All General perennial agroforestry 6.1 + 75% 

   Tropical Wet All General perennial agroforestry 10.0 + 75% 

Temperate and 
Subtropical 

All All General perennial cropland TBD TBD 

# Represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean. 

[Placeholder:Table 5.11 will be updated in the SOD consistent with default values in updated tables 5.1 to 5.4 for 
perennial crop and relevant tables in chapter 2 (Table 2.4 and Table 2.6) and chapter 11(Table 11.2)  for annual crop.] 

Tier 2 779 
Tier 2 methods should include some country-specific estimates for biomass stocks and removals due to land 780 
conversion, and also include estimates of on-site and off-site losses due to burning and decay following land 781 
conversion to Cropland. These improvements can take the form of systematic studies of carbon content and emissions 782 
and removals associated with land uses and land-use conversions within the country and a re-examination of default 783 
assumptions in light of country-specific conditions.  784 

Default parameters for emissions from burning and decay are provided. However, countries are encouraged to develop 785 
country-specific coefficients to improve the accuracy of estimates. The IPCC Guidelines use a general default of 0.5 786 
for the proportion of biomass burnt on-site for both Forest Land and Grassland conversions. Research studies suggest 787 
that the fraction is highly variable and could be as low as 0.2 (Fearnside, 2000; Barbosa and Fearnside, 1996; and 788 
Fearnside, 1990). Updated default proportions of biomass burnt on-site are provided in Chapter 4 (Forest Land) for a 789 
range of forest vegetation classes. These defaults should be used for transitions from Forest Land to Cropland. For 790 
non-forest initial land uses, the default proportion of biomass left on-site and burnt is 0.35. This default takes into 791 
consideration research, which suggests the fraction should fall within the range 0.2 to 0.5 (e.g., Fearnside, 2000; 792 
Barbosa and Fearnside, 1996; and Fearnside, 1990). It is good practice for countries to use 0.35 or another value 793 
within this range, provided that the rationale for the choice is documented. There is no default value for the amount 794 
of biomass taken off-site and burnt; countries will need to develop a proportion based on national data sources. In 795 
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Chapter 4 (Forest Land), the default proportion of biomass oxidized as a result of burning is 0.9, as originally stated 796 
in the GPG-LULUCF. 797 

The method for estimating emissions from decay assumes that all biomass decays over a period of 10 years. For 798 
reporting purposes countries have two options: 1) report all emissions from decay in one year, recognizing that in 799 
reality they occur over a 10 year period, and 2) report all emission from decay on an annual basis, estimating the rate 800 
as one tenth of the totals. If countries choose the latter option, they should add a multiplication factor of 0.10 to the 801 
equation. 802 

Tier 3 803 
Under Tier 3, all parameters should be country-defined using measurements and monitoring for more accurate values 804 
rather than the defaults. Process based models and decay functions can also be used. 805 

5.3.1.3 CHOICE OF ACTIVITY DATA 806 

This section provides an elaboration clarifying the activity data required for carbon gain estimation. 807 

All tiers require estimates of land areas converted to Cropland. The same area estimates should be used for both 808 
biomass and soil C calculations on Land Converted to Cropland. Higher tiers require greater specificity of areas. At 809 
a minimum, the area of Forest Land and natural Grassland converted to Cropland should be identified separately for 810 
all tiers. This implies at least some knowledge of the land uses prior to conversion. This may also require expert 811 
judgment if Approach 1 in Chapter 3 of these guidelines is used for land area identification.  812 

Tier 1 813 
Separate estimates are required of areas converted to Cropland from initial land uses (i.e., Forest Land, Grassland, 814 
Settlements, etc.) to final crop land type (i.e., annual or perennial) (ATO_OTHERS). For example, countries should 815 
estimate separately the area of tropical moist forest converted to annual cropland, tropical moist forest converted to 816 
perennial cropland, tropical moist Grassland converted to perennial cropland, etc. Although, to allow other pools to 817 
equilibrate and for consistency with land area estimation overall, land areas should remain in the conversion category 818 
for 20 years (or other period reflecting national circumstances) following conversion. The methodology assumes that 819 
area estimates are based on a one-year time frame, which is likely to require estimation on the basis of average rates 820 
on land-use conversion, determined by measurements estimates made at longer intervals. If countries do not have 821 
these data, partial samples may be extrapolated to the entire land base or historic estimates of conversions may be 822 
extrapolated over time based on the judgement of country experts. Under Tier 1 calculations, international statistics 823 
such as FAO databases, IPCC GPG Reports and other sources, supplemented with sound assumptions, can be used to 824 
estimate the area of Land Converted to Cropland from each initial land use. For higher tier calculations, country-825 
specific data sources are used to estimate all possible transitions from initial land use to final crop type.  For perennial 826 
woody cropland, the total area of planted perennial woody crops for the age classes within the maturing/harvesting 827 
cycle (up to 20 years) is required to estimate all biomass carbon change (CG). See section 5.2.1.3 for details. 828 

Tier 2 829 
It is good practice for countries to use actual area estimates for all possible transitions from initial land use to final 830 
crop type. Full coverage of land areas can be accomplished either through analysis of periodic remotely sensed images 831 
of land-use and land cover patterns, through periodic ground-based sampling of land-use patterns, or hybrid inventory 832 
systems. If finer resolution country-specific data are partially available, countries are encouraged to use sound 833 
assumptions from best available knowledge to extrapolate to the entire land base. Historic estimates of conversions 834 
may be extrapolated over time based on the judgment of country experts.  835 

Tier 3 836 
Activity data used in Tier 3 calculations should be a full accounting of all land-use transitions to Cropland and be 837 
disaggregated to account for different conditions within a country. Disaggregation can occur along political (county, 838 
province, etc.), biome, climate, or on a combination of such parameters. In many cases, countries may have 839 
information on multi-year trends in land conversion (from periodic sample-based or remotely sensed inventories of 840 
land use and land cover). Periodic land-use change matrix need to be developed giving the initial and final land-use 841 
areas at disaggregated level based on remote sensing and field surveys. 842 
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5.1.1.2 CALCULATION STEPS FOR TIER 1 AND TIER 2 843 

No Refinement 844 

5.1.1.3 UNCERTAINTY ASSESSMENT 845 

No Refinement 846 

5.3.2 Dead Organic Matter 847 

No Refinement 848 

5.3.3 Soil carbon 849 

No Refinement in the Introduction 850 

Land is typically converted to Cropland from native lands, managed Forest Land and Grassland, but occasionally 851 
conversions can occur from Wetlands and seldom Settlements.  Regardless of soil type (i.e., mineral or organic), the 852 
conversion of land to Cropland will, in most cases, result in a loss of soil C for some years following conversion 853 
(Mann, 1986; Armentano and Menges, 1986; Davidson and Ackerman, 1993). Possible exceptions are irrigation of 854 
formerly arid lands and conversion of degraded lands to Cropland.  855 

General information and guidance for estimating changes in soil C stocks are provided in Section 2.3.3 of Chapter 2 856 
(including equations), and that section needs to be read before proceeding with a consideration of specific guidelines 857 
dealing with cropland soil C stocks. The total change in soil C stocks for Land Converted to Cropland is estimated 858 
using Equation 2.24 (Chapter 2), which combines the change in soil organic C stocks (SOC stocks) for mineral soils 859 
and organic soils; and stock changes associated with soil inorganic C pools (Tier 3 only).  This section provides 860 
specific guidance for estimating soil organic C stock changes; see Section 2.3.3.1 for discussion on soil inorganic C 861 
(no additional guidance is provided in the Cropland section below). 862 

To account for changes in soil C stocks associated with Land Converted to Cropland, countries need to have, at a 863 
minimum, estimates of the areas of Land Converted to Cropland during the inventory time period. If land-use and 864 
management data are limited, aggregate data, such as FAO statistics, can be used as a starting point, along with 865 
knowledge of country experts of the approximate distribution of land-use types being converted and their associated 866 
management. If the previous land uses and conversions are not unknown, SOC stocks changes can still be computed 867 
using the methods provided in Cropland Remaining Cropland, but the land base area will likely be different for 868 
croplands in the current year relative to the initial year in the inventory.  It is critical, however, that the total land area 869 
across all land-use sectors be equal over the inventory time period (e.g., 7 million ha may be converted from Forest 870 
Land and Grassland to Cropland during the inventory time period, meaning that croplands will have an additional 7 871 
Million ha in the last year of the inventory, while grasslands and forests will have a corresponding loss of 7 Million 872 
ha in the last year).  Land Converted to Cropland is stratified according to climate regions and major soil types, which 873 
could either be based on default or country-specific classifications. This can be accomplished with overlays of climate 874 
and soil maps, coupled with spatially-explicit data on the location of land conversions. 875 

5.3.3.1 CHOICE OF METHOD 876 

This section contains elaboration on methods and new guidance. 877 

Inventories can be developed using a Tier 1, 2 or 3 approach with each successive tier requiring more detail and 878 
resources than the previous one.  It is also possible that countries will use different tiers to prepare estimates for the 879 
separate subcategories of soil C (i.e., soil organic C stocks changes in mineral soils and organic soils; and stock 880 
changes associated with soil inorganic C pools).  Decision trees are provided for mineral soils (Figure 2.5) and organic 881 
soils (Figure 2.6) in Section 2.3.3.1 (Chapter 2) to assist inventory compilers with selection of the appropriate tier for 882 
their soil C inventory. 883 
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Mineral soils  884 

Tier 1 885 
Soil organic C stock changes for mineral soils can be estimated for land-use conversion to Cropland using Equation 886 
2.25 in Chapter 2.  For Tier 1, the initial (pre-conversion) soil organic C stock (SOC(0-T)) and C stock in the last year 887 
of the inventory time period (SOC0) are computed from the default reference soil organic C stocks (SOCREF) and 888 
default stock change factors (FLU, FMG, FI).  Annual rates of stock changes are estimated as the difference in stocks 889 
(over time) divided by the time dependence (D) of the Cropland stock change factors (default is 20 years).   890 

Tier 2 891 
Refining Application of Default Equations 892 

The Tier 2 method for mineral soils also uses Equation 2.25, but involves country-specific or region-specific reference 893 
C stocks and/or stock change factors and more disaggregated land-use activity and environmental data.  894 

Three-Pool Steady-State C Model 895 

The three-pool steady-state soil C model is based on estimating C inputs to soils and applying soil carbon pool specific 896 
decomposition rates that are modified by given environmental conditions and management practices. This model 897 
embraces more of the heterogeneity in soils, by subdividing soil C pool into different rates of turnover, i.e., fast (Active 898 
Pool), intermediate (Slow Pool) , and long turnover times (Passive Pool). 899 

Tier 3 900 
Tier 3 methods will involve more detailed and country-specific models and/or measurement-based approaches along 901 
with highly disaggregated land-use and management data. Tier 3 approaches estimate soil C change from land-use 902 
conversions to Cropland, and may employ models, data sets and/or monitoring networks.  If possible, it is 903 
recommended that Tier 3 methods be integrated with estimates of biomass removal and the post-clearance treatment 904 
of plant residues (including woody debris and litter), as variation in the removal and treatment of residues (e.g., 905 
burning, site preparation) will affect C inputs to soil organic matter formation and C losses through decomposition 906 
and combustion. It is important that models be evaluated with independent observations from country-specific or 907 
region-specific field locations that are representative of the interactions of climate, soil and cropland management on 908 
post-conversion change in soil C stocks. 909 

Organic soils 910 
No Refinement. See 2013 Wetlands Supplement.   911 

Biochar C Amendments to Mineral Soils  912 

Tier 1 913 
This methodology utilizes a top-down approach in which the total amount of biochar generated and added to mineral 914 
soil is used to estimate the change in soil organic C stocks.  Use Equation 2.27 to estimate the change in C stock from 915 
biochar amendments in Chapter 2, Section 2.3.3.1, Volume IV.   916 

Tier 2 917 
Tier 2 methods use the same definitions and equations as Tier 1, but with country-specific factors.  See Section 2.3.3.1, 918 
Chapter 2, Volume IV for more information.  919 

Tier 3 920 
Tier 3 methods can be used to account for GHG sources and sinks not captured in Tiers 1 or 2, such as priming, 921 
changes to N2O or CH4 fluxes from soils, and changes to net primary production. More information on Tier 3 methods 922 
is provided in Section 2.3.3.1 of Chapter 2, Volume IV. 923 

5.3.3.2 CHOICE OF STOCK CHANGE AND EMISSION FACTORS 924 

This section contains elaboration on methods and new guidance. 925 

Mineral soils  926 

Tier 1 927 
For native unmanaged land, as well as for managed forest lands, settlements and nominally managed grasslands with 928 
low disturbance regimes, soil C stocks are assumed equal to the reference values (i.e., land-use, disturbance (forests 929 
only), management and input factors equal 1), while it will be necessary to apply the appropriate stock change factors 930 
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to represent previous land-use systems that are not the reference condition, such as improved and degraded grasslands.  931 
It will also be necessary to apply the appropriate stock change factor to represent input and management effects on 932 
soil C storage in the new cropland system.  Default reference C stocks are found in Table 2.3 (Chapter 2).  See the 933 
appropriate land-use chapter for default stock change factors. 934 

In the case of transient land-use conversions to Cropland, the stock change factors are given in Table 5.12, and depend 935 
on the length of the fallow (vegetation recovery) cycle in a shifting cultivation system, representing an average soil C 936 
stock over the crop-fallow cycle. Mature fallow denotes situations where the non-cropland vegetation (e.g., forests) 937 
recovers to a mature or near mature state prior to being cleared again for cropland use, whereas in shortened fallow, 938 
vegetation recovery is not attained prior to re-clearing. If land already in shifting-cultivation is converted to permanent 939 
Cropland (or other land uses), the stock change factors representing shifting cultivation would provide the ‘initial’ C 940 
stocks (SOC(0-T)) in the calculations using Equation 2.25 (Chapter 2).  941 

 942 

TABLE 5. 12 SOIL STOCK CHANGE FACTORS  (FLU, FMG, FI) FOR LAND-USE CONVERSIONS TO CROPLAND   

Factor value 
type 

Level 
Climate 
regime 

IPCC 
default 

Error
# 

Definition 

Land use 
Native forest or 

grassland 
 (non-degraded) 

All 1 NA Represents native or long-term, non-
degraded and sustainably managed forest 

and grasslands. Tropical 1 NA 

Land use 

Shifting cultivation 
– Shortened fallow 

Tropical 0.64 + 50% Permanent shifting cultivation, where 
tropical forest or woodland is cleared for 
planting of annual crops for a short time 
(e.g., 3-5 yr) period and then abandoned 

to regrowth.  

Shifting cultivation 
– Mature fallow 

Tropical 0.8 + 50% 

Land-use, 
Management, 
& Input 

Managed forest (default value is 1) 

Land-use, 
Management, 
& Input 

Managed grassland (See default values in Table 6.2) 

Land-use, 
Management, 
& Input 

Cropland (See default values in Table 5.5) 

# Represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean. NA denotes ‘Not 
Applicable’, where factor values constitute defined reference values. 

Tier 2 943 
Refining Application of Default Equations 944 

Estimation of country-specific stock change factors is probably the most important development associated with the 945 
Tier 2 approach.  Differences in soil organic C stocks among land uses are computed relative to a reference condition, 946 
using land-use factors (FLU).  Input factors (FI) and management factors (FMG) are then used to further refine the C 947 
stocks of the new cropland system.  Additional guidance on how to derive these stock change factors is given in 948 
Croplands Remaining Croplands, Section 5.2.3.2. See the appropriate chapter for specific information regarding the 949 
derivation of stock change factors for other land-use categories (Forest Land in Section 4.2.3.2, Grassland in 6.2.3.2, 950 
Settlements in 8.2.3.2, and Other Land in 9.3.3.2).  951 

Reference C stocks can also be derived from country-specific data in a Tier 2 approach.  However, reference values 952 
should be consistent across the land uses (i.e., Forest Land, Cropland, Grassland, Settlements, Other Land), and thus 953 
must be coordinated among the various teams conducting soil C inventories for AFOLU.   954 

The depth for evaluating soil C stock changes can also be extended with the Tier 2 method.  This will require extending 955 
the depth of the reference C stocks (SOCREF) and stock change factors for all land uses (i.e., FLU, FI, and FMG) to ensure 956 
consistency.  Variable depths between reference stocks and stock change factors are likely to introduce biases into the 957 
inventory estimates that are computed using Equation 2.25.  958 
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For the case of land use change to a system that is increasing in C, such as Croplands converted to Grasslands, a Tier 959 
2 method may be a more accurate way to estimate the increase of soil C stocks to native levels. The Tier 1 method 960 
may overestimate soil C stock increases on an annual basis (e.g., Villarino et al., 2014).  961 

Furthermore, inventories may be improved by estimating carbon stocks on a mass equivalency basis when deriving 962 
country-specific factors for FLU,. This is because the soil weight in a certain soil depth changes with the various 963 
operations associated with land use change, for example uprooting, land leveling, and rain compaction due to the 964 
disappearance of the cover of tree canopy. In addition, cropland soils usually tend to have relatively higher density 965 
than the soils in forest land and possibly grasslands or wetlands. Settlement management may also impact the soil 966 
bulk density. In such case, the comparison of the soil carbon stocks between the cropland, settlement, grassland, 967 
wetland, or forest land within the same depth is not appropriate. It is more robust to compare the carbon stock on an 968 
equivalent mass basis, with the stock change calculated on the same weight soil. This method is also recommended 969 
when the bulk density between cropland, grassland, wetland, settlement and forest land is remarkably different even 970 
if the site is within close proximity.  However, it is important to realize that all measurements and associated stock 971 
change factors across all land uses must be on an equivalent mass basis if this method is applied.  This will be 972 
challenging and possibly not even practical unless done comprehensively for all land uses. 973 

Three-Pool Steady-State C Model 974 

Default parameters are provided for the three-pool steady-state C pool equations (Chapter 2, Section 2.3.3.1, Table 975 
2.6), but parameters may be revised if experimental data are available to test the model.  Lignin and nitrogen contents 976 
are also needed for the C input data (See Section 5.2.3.2 for crop data, and Section 6.2.3.2 for grass data). 977 

Tier 3 978 
Constant stock change rate factors per se are less likely to be estimated in favor of variable rates that more accurately 979 
capture land-use and management effects. See Chapter 2, Section 2.3.3.1 for further discussion.  980 

Organic soils 981 
No Refinement. See 2013 Wetlands Supplement. 982 

Biochar C Amendments to Mineral Soils  983 

Tier 1 984 
Default emission factors are provided in Chapter 2, Section 2.3.3.1, Volume IV.    985 

Tier 2 986 
Tier 2 emission factors may be further disaggregated relative to the default factors based on variation in environmental 987 
conditions, such as the climate and soil types, in addition to variation associated with the biochar production methods. 988 
See Section 2.3.3.1, Chapter 2, Volume IV for more information.  989 

Tier 3 990 
Tier 3 methods are country-specific and may involve empirical or process-based models to account for a broader set 991 
of impacts of biochar amendments. More information on Tier 3 methods is provided in Section 2.3.3.1, Chapter 2, 992 
Volume IV. 993 

5.3.3.3 CHOICE OF ACTIVITY DATA 994 

This section contains elaboration on methods and new guidance. 995 

Mineral soils  996 

Tier 1  and Tier 2  -  Refinement of  Default  Equations 997 
For purposes of estimating soil carbon stock change, area estimates of Land Converted to Cropland should be stratified 998 
according to major climate regions and soil types. This can be based on overlays with suitable climate and soil maps 999 
and spatially-explicit data of the location of land conversions. Detailed descriptions of the default climate and soil 1000 
classification schemes are provided in Chapter 3, Annex 3A.5. Specific information is provided in the each of the 1001 
land-use chapters regarding treatment of land-use/management activity data (Forest Land in Section 4.2.3.3, Cropland 1002 
in 5.2.3.3, Grassland in 6.2.3.3, Settlements in 8.2.3.3, and Other Land in 9.3.3.3).   1003 

One critical issue in evaluating the impact of Land Converted to Cropland on soil organic C stocks is the type of land-1004 
use and management activity data.  Activity data gathered using Approach 2 or 3 (see Chapter 3 for discussion about 1005 
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approaches) provide the underlying basis for determining the previous land use for Land Converted to Cropland.  In 1006 
contrast, aggregate data (Approach 1, Chapter 3) only provide the total amount of area in each land at the beginning 1007 
and end of the inventory period (e.g., 1985 and 2005).  Approach 1 data are not sufficient to determine specific 1008 
transitions. In this case all Cropland will be reported in the Cropland Remaining Cropland category and in effect 1009 
transitions become step changes across the landscape. This makes it particularly important to achieve coordination 1010 
among all land sectors to ensure that the total land base is remaining constant over time, given that some land area 1011 
will be lost and gained within individual sectors during each inventory year due to land-use change. 1012 

Tier 2  – Three-Pool Steady-State C Model   1013 
This method requires soil C input data based on the amount of biomass that is converted to dead organic matter 1014 
annually.  This rate will vary depending on plant production, management activity, natural disturbances, and other 1015 
environmental variables. Removals or reductions in dead organic matter are subtracted from the C input , which could 1016 
occur with practices such as collection of coarse woody debris or crop residues, burning of grasslands, field burning 1017 
of agricultural residues, livestock grazing, and other practices. Disturbance events, such as pest outbreaks, may 1018 
increase the dead organic matter, and therefore the C input to soils.  It is good practice to use country-specific methods 1019 
for estimating C input to soils, but defaults approaches are provided for cropland (Section 5.2.3.3) and grassland 1020 
(Section 6.2.3.3). Tillage management data are also required (proportion of full tillage, reduced tillage and no-till), 1021 
and irrigation data for any lands that are provided supplement water (proportion of land). 1022 

Additional ancillary data for this method include monthly weather data and soil texture (i.e., sand content), which are 1023 
available from global weather and soils datasets if country-specific data are not available, such as the CRU climate 1024 
dataset (https://crudata.uea.ac.uk/cru/data/hrg/), and the Harmonized World Soil Database 1025 
(http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/), respectively. 1026 

Tier 3 1027 
For application of dynamic models and/or a direct measurement-based inventory in Tier 3, similar or more detailed 1028 
data on the combinations of climate, soil, topographic and management data are needed, relative to Tier 1 or 2 methods, 1029 
but the exact requirements will be dependent on the model or measurement design.    1030 

Organic soils 1031 
No Refinement. See 2013 Wetlands Supplement. 1032 

Biochar C Amendments to Mineral Soils  1033 

Tier 1 1034 
The activity data required for the Tier 1 method includes the total quantities of biochar distributed for amendment to 1035 
mineral soils. These data must be disaggregated by production type, where production type is defined as a process 1036 
utilizing a specific feedstock type, and a specific conversion process (gasification, or high-, medium-, or low-1037 
temperature pyrolysis; Tables 2.4 and 2.5). In case data on the temperature of pyrolysis are unavailable, default factors 1038 
for uncontrolled or unspecified pyrolysis temperatures are provided in Section 2.3.3.1 of Chapter 2, Volume IV.  1039 
Changes in soil C associated with biochar amendments is considered to occur where it is incorporated into soil. 1040 
However, due to the distributed nature of the land sector in which this can take place, inventory compilers may not 1041 
have access to data on when or where biochar C amendments occur. Therefore, for the purposes of Tier 1 method, 1042 
inventory compilers can rely on centralized records from biochar producers, importers, exporters or distributors, 1043 
recording the quantity of biochar that has been provided to the land use sector for use as a soil amendment in the 1044 
country. Note that exported biochar is not included in the total amount of biochar amended to soils in the country.  1045 
Inventory compilers may further disaggregate amendments by land use if the data are available.  1046 

Tier 2 1047 
Tier 2 methods have the same activity data requirements as Tier 1 (quantities of biochar distributed for incorporation 1048 
into mineral soils, disaggregated by production type). Additionally, activity data on the amount of biochar amendments 1049 
may be disaggregated by climate zones and/or soil types if country-specific factors are disaggregated by these 1050 
environmental variables. The additional climate and soil activity data may be obtained with a survey of biochar 1051 
distributors and land managers.  1052 

 1053 

 1054 

Tier 3 1055 
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The additional activity data required to support a Tier 3 method will depend on which processes are represented and 1056 
environmental variables that are required as input to the model.  Priming, soil GHG emissions, and plant production 1057 
responses to biochar all vary with biochar type, climate, and soil type. Furthermore, soil GHG emissions and plant 1058 
production responses also vary with crop type and management. Therefore, Tier 3 methods may require environmental 1059 
data on climate zones, soil types, crop types and crop management systems (such as nitrogen fertilizer application 1060 
rates, and whether soils are flooded for paddy rice production), in addition to the amount of biochar amendments in 1061 
each of the individual combinations of strata for the environmental variables. More detailed activity data specifying 1062 
the process conditions for biochar production or the physical and chemical characteristics of the biochar may also be 1063 
required (such as surface area, cation exchange capacity, pH, and ash content). 1064 

5.3.3.4 CALCULATION STEPS FOR TIER 1 1065 

This section will be updated for the second order draft based on new factors, and also will provide new guidance. 1066 

Mineral soils  1067 
The steps for estimating SOC0 and SOC(0-T) and net soil C stock change per ha of Land Converted to Cropland on 1068 
mineral soils are as follows: 1069 

Step 1: Organize data into inventory time periods based on the years in which activity data were collected (e.g., 1990 1070 
to 1995, 1995 to 2000, etc.) 1071 

Step 2: Determine the amount of Land Converted to Cropland by mineral soil types and climate regions in the 1072 
country at the beginning of the first inventory time period.  The first year of the inventory time period will depend on 1073 
the time step of the activity data (0-T; e.g., 5, 10 or 20 years ago). 1074 

Step 3: For Grassland converted to Cropland, classify previous grasslands into the appropriate management system 1075 
using Figure 6.1.  No classification is needed for other land uses at the Tier 1 level. 1076 

Step 4: Assign native reference C stock values (SOCREF) from Table 2.3 based on climate and soil type.   1077 

Step 5: Assign a land-use factor (FLU), management factor (FMG) and C input levels (FI) to each grassland based on 1078 
the management classification (Step 2).  Values for FLU, FMG and FI are given in Table 6.2 for grasslands.  Values are 1079 
assumed to be 1 for all other land uses.  1080 

Step 6: Multiply the factors (FLU, FMG, FI) by the reference soil C stock to estimate an ‘initial’ soil organic C stock 1081 
(SOC(0-T)) for the inventory time period.    1082 

Step 7: Estimate the final soil organic C stock (SOC0) by repeating Steps 1 to 5 using the same native reference C 1083 
stock (SOCREF), but with land-use, management and input factors that represent conditions for the cropland in the last 1084 
(year 0) inventory year.  1085 

Step 8: Estimate the average annual change in soil organic C stocks for land converted to Cropland (∆C
Mineral

) by 1086 

subtracting the ‘initial’ soil organic C stock (SOC(0-T)) from the final soil organic C stock (SOC0), and then dividing 1087 
by the time dependence of the stock change factors (i.e., 20 years using the default factors).  Note: if an inventory time 1088 
period is greater than 20 years, then divide by the difference in the initial and final year of the time period.  1089 

Step 9: Repeat Steps 2 to 8 if there are additional inventory time periods (e.g., 1990 to 2000, 2001 to 2010, etc.).  1090 
Note that Land Converted to Cropland will retain that designation for 20 years.  Therefore, inventory time periods 1091 
that are less than 20 years may need to refer to the previous inventory time period to evaluate if a parcel of land is 1092 
considered Land Converted to Cropland or Cropland Remaining Cropland. 1093 

A numerical example is given below for Forest Land converted to Cropland on mineral soils, using Equation 2.25 and 1094 
default reference C stocks (Table 2.3) and stock change factors (Table 5.6). 1095 
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Example:    For a forest on volcanic soil in a tropical moist environment: SOCRef = 70 tonnes C  ha-1. 1096 
For all forest soils (and for native grasslands) default values for stock change factors (FLU , FMG , FI) are 1097 
all 1; thus SOC(0-T) is 70 tonnes C ha-1. If the land is converted into annual cropland, with intensive 1098 
tillage and low residue C inputs then SOC0 = 70 tonnes C ha-1 ● 0.48 ● 1 ● 0.92 = 30.9 tonnes C ha-1. 1099 
Thus the average annual change in soil C stock for the area over the inventory time period is calculated 1100 
as (30.9 tonnes C ha-1 – 70 tonnes C ha-1) / 20 yrs =    -2.0 tonnes C ha-1 yr-1.  1101 

 1102 

Organic soils 1103 
No Refinement. See 2013 Wetlands Supplement. 1104 

Biochar C Amendments to Mineral Soils  1105 

Will be provided in second order draft after factors are derived. 1106 

5.3.3.5 UNCERTAINTY ASSESSMENT 1107 

No Refinement 1108 

5.3.4 Non-CO2 greenhouse gas emissions from biomass 1109 

burning 1110 

No Refinement 1111 

5.4 COMPLETENESS, TIME SERIES, QA/QC, AND 1112 

REPORTING 1113 

No Refinement  1114 
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5.5 METHANE EMISSIONS FROM RICE 1115 

CULTIVATION 1116 

No Refinement in the Introduction. 1117 

Anaerobic decomposition of organic material in flooded rice fields produces methane (CH4), which escapes to the 1118 
atmosphere primarily by transport through the rice plants  (Takai, 1970; Cicerone and Shetter, 1981; Conrad, 1989; 1119 
Nouchi et al., 1990). The annual amount of CH4 emitted from a given area of rice is a function of the number and 1120 
duration of crops grown, water regimes before and during cultivation period, and organic and inorganic soil 1121 
amendments (Neue and Sass, 1994; Minami, 1995). Soil type, temperature, and rice cultivar also affect CH4 emissions. 1122 

5.5.1 Choice of method 1123 

No Refinement 1124 

The basic equation to estimate CH4 emissions from rice cultivation is shown in Equation 5.2. CH4 emissions are 1125 
estimated by multiplying daily emission factors by cultivation period3 of rice and annual harvested areas4. In its most 1126 
simple form, this equation is implemented using national activity data (i.e., national average cultivation period of rice 1127 
and area harvested) and a single emission factor. However, the natural conditions and agricultural management of rice 1128 
production may be highly variable within a country. It is good practice to account for this variability by disaggregating 1129 
national total harvested area into sub-units (e.g., harvested areas under different water regimes). Harvested area for 1130 
each sub-unit is multiplied by the respective cultivation period and emission factor that is representative of the 1131 
conditions that define the sub-unit (Sass, 2002). With this disaggregated approach, total annual emissions are equal to 1132 
the sum of emissions from each sub-unit of harvested area. 1133 

 1134 

 1135 

Where:  1136 

CH4 Rice = annual methane emissions from rice cultivation, Gg CH4 yr-1 1137 

EFijk = a daily emission factor for i, j, and k conditions, kg CH4 ha-1 day-1 1138 

tijk = cultivation period of rice for i, j, and k conditions, day  1139 

Aijk = annual harvested area of rice for i, j, and k conditions, ha yr-1  1140 

i, j, and k = represent different ecosystems, water regimes, type and amount of organic amendments, and other 1141 
conditions under which CH4 emissions from rice may vary 1142 

The different conditions that should be considered include rice ecosystem type, flooding pattern before and during 1143 
cultivation period, and type and amount of organic amendments. Other conditions such as soil type, and rice cultivar 1144 
can be considered for the disaggregation if country-specific information about the relationship between these 1145 
conditions and CH4 emissions are available. The rice ecosystem types and water regimes during cultivation period are 1146 
listed in Table 5.14. If the national rice production can be subdivided into climatic zones with different production 1147 
systems (e.g., flooding patterns), Equation 5.2 should be applied to each region separately. The same applies if rice 1148 
statistics or expert judgments are available to distinguish management practices or other factors along administrative 1149 

                                                           
3 In the case of a ratoon crop, ‘cultivation period’ should be extended by the respective number of days. 

4 In case of multiple cropping during the same year, ‘harvested area’ is equal to the sum of the area cultivated for each cropping. 

 

 
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Equation 5. 2 CH4 emissions from rice cultivation 
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units (district or province). In addition, if more than one crop is harvested during a given year, emissions should be 1150 
estimated for each cropping season taking into account possible differences in cultivation practice (e.g., use of organic 1151 
amendments, flooding pattern before and during the cultivation period).  1152 

The decision tree in Figure 5.2 guides inventory agencies through the process of applying the good practice IPCC 1153 
approach. Implicit in this decision tree is a hierarchy of disaggregation in implementing the IPCC method. Within this 1154 
hierarchy, the level of disaggregation utilised by an inventory agency will depend upon the availability of activity and 1155 
emission factor data, as well as the importance of rice as a contributor to its national greenhouse gas emissions. The 1156 
specific steps and variables in this decision tree, and the logic behind it, are discussed in the text that follows the 1157 
decision tree. 1158 

Tier 1 1159 
Tier 1 applies to countries in which either CH4 emissions from rice cultivation are not a key category or country-1160 
specific emission factors do not exist. The disaggregation of the annual harvest area of rice needs to be done for at 1161 
least three baseline water regimes including irrigated, rainfed, and upland. It is encouraged to incorporate as many of 1162 
the conditions (i, j, k, etc.) that influence CH4 emissions (summarized in Box 5.2) as possible. Emissions for each sub-1163 
unit are adjusted by multiplying a baseline default emission factor (for field with no pre-season flooding for less than 1164 
180 days prior to rice cultivation and continuously flooded fields without organic amendments, EFc) by various scaling 1165 
factors as shown in Equation 5.3. The calculations are carried out for each water regime and organic amendment 1166 
separately as shown in Equation 5.3.  1167 

Box 5. 1 Text to be provided in SOD 1168 



 DO NOT CITE OR QUOTE                                                                                Chapter 5, Volume 4 (AFOLU)  
 
First Order Draft 
 

5.42   DRAFT 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 
 

 1169 

  1170 

Box 5. 2 Conditions influencing CH4 emissions from rice cultivation  

The following rice cultivation characteristics should be considered in calculating CH4 emissions as well as 
in developing emission factors: 

Regional differences in rice cropping practices: If the country is large and has distinct agricultural regions 
with different climate and/or production systems (e.g., flooding patterns), a separate set of calculations 
should be performed for each region. 

Multiple crops: If more than one crop is harvested on a given area of land during the year, and the growing 
conditions vary among cropping seasons, calculations should be performed for each season. 

Water regime: In the context of this chapter, water regime is defined as a combination of (i) ecosystem type 
and (ii) flooding pattern. 

Ecosystem type: At a minimum, separate calculations should be undertaken for each rice ecosystem (i.e., 
irrigated, rainfed, and deep water rice production). 

Flooding pattern: Flooding pattern of rice fields has a significant effect on CH4 emissions (Sass et al., 
1992; Yagi et al., 1996; Wassmann et al., 2000). Rice ecosystems can further be distinguished into 
continuously and intermittently flooded (irrigated rice), and regular rainfed, drought prone, and deep water 
(rainfed), according to the flooding patterns during the cultivation period. Also, flooding pattern before 
cultivation period should be considered (Yagi et al., 1998; Cai et al., 2000; 2003a; Fitzgerald et al., 2000). 

Organic amendments to soils: Organic material incorporated into rice soils increases CH4 emissions 
(Schütz et al., 1989; Yagi and Minami, 1990; Sass et al., 1991). The impact of organic amendments on CH4 
emissions depends on type and amount of the applied material which can be described by a dose response 
curve (Denier van der Gon and Neue, 1995; Yan et al., 2005). Organic material incorporated into the soil 
can either be of endogenous (straw, green manure, etc.) or exogenous origin (compost, farmyard manure, 
etc.). Calculations of emissions should consider the effect of organic amendments. 

Other conditions: It is known that other factors, such as soil type (Sass et al., 1994; Wassmann et al., 1998; 
Huang et al., 2002), rice cultivar (Watanabe and Kimura, 1998; Wassmann and Aulakh, 2000), sulphate 
containing amendments (Lindau et al., 1993; Denier van der Gon and Neue, 2002), etc., can significantly 
influence CH4 emissions. Inventory agencies are encouraged to make every effort to consider these 
conditions if country-specific information about the relationship between these conditions and CH4 
emissions is available. 
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Figure 5. 2 Decision tree for CH4 emissions from rice production 1171 

 1172 

 1173 

 1174 

 1175 
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Where: 1176 

EFi = adjusted daily emission factor for a particular harvested area 1177 

EFc = baseline emission factor for continuously flooded fields without organic amendments (from Table 5.13) 1178 

SFw = scaling factor to account for the differences in water regime during the cultivation period (from Table 1179 
5.14)  1180 

SFp = scaling factor to account for the differences in water regime in the pre-season before the cultivation 1181 
period (from Table 5.15)  1182 

SFo = scaling factor should vary for both type and amount of organic amendment applied (from Equation 5.4 1183 
and Table 5.16)  1184 

SFs,r = scaling factor for soil type, rice cultivar, etc., if available 1185 

 1186 

Tier 2 1187 
Tier 2 applies the same methodological approach as Tier 1, but country-specific emission factors and/or scaling factors 1188 
should be used. These country-specific factors are needed to reflect the local impact of the conditions (i, j, k, etc.) that 1189 
influence CH4 emissions, preferably being developed through collection of field data. As for Tier 1 approach, it is 1190 
encouraged to implement the method at the most disaggregated level and to incorporate the multitude of conditions (i, 1191 
j, k, etc.) that influence CH4 emissions.  1192 

Tier 3 1193 
Tier 3 includes models and monitoring networks tailored to address national circumstances of rice cultivation, repeated 1194 
over time, driven by high-resolution activity data and disaggregated at sub-national level. Models can be empirical or 1195 
mechanistic, but must in either case be validated with independent observations from country or region-specific studies 1196 
that cover the range of rice cultivation characteristics (Cai et al., 2003b; Li et al., 2004; Huang et al., 2004). Proper 1197 
documentation of the validity and completeness of the data, assumptions, equations and models used is therefore 1198 
critical. Tier 3 methodologies may also take into account inter-annual variability triggered by typhoon damage, 1199 
drought stress, etc. Ideally, the assessment should be based on recent satellite data. 1200 

5.5.2 Choice of emission and scaling factors 1201 

This section contains updates and new guidance. 1202 

Tier 1 1203 
A baseline emission factor for non-flooded fields for less than 180 days prior to rice cultivation and continuously 1204 
flooded during the rice cultivation period without organic amendments (EFc) is used as a starting point. The IPCC 1205 
default for EFc is 1.15 kg CH4 ha-1 day-1 (with error range of 0.77 – 1.71, Table 5.13), estimated by a statistical analysis 1206 
of available field measurement data.  1207 

Scaling factors are used to adjust the EFc to account for the various conditions discussed in Box 5.2, which result in 1208 
adjusted daily emission factors (EFi) for a particular sub-unit of disaggregated harvested area according to Equation 5.3. 1209 
The most important scaling factors, namely water regime during and before cultivation period and organic 1210 
amendments, are represented in Tables 5.14, 5.15, and 5.16, respectively, through default values.  Country-specific 1211 
scaling factors should only be used if they are based on well-researched and documented measurement data. It is 1212 
encouraged to consider soil type, rice cultivar, and other factors if available. 1213 

 1214 

 

 

rsopwci SFSFSFSFEFEF ,  

Equation 5. 3 Adjusted daily emission factor
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UPDATED- TABLE 5. 13 DEFAULT CH4 BASELINE EMISSION FACTOR ASSUMING NO FLOODING FOR LESS THAN 180 DAYS 

PRIOR TO RICE CULTIVATION, AND CONTINUOUSLY FLOODED DURING RICE CULTIVATION WITHOUT ORGANIC 

AMENDMENTS 

CH4 emission 
(kg CH4 ha-1 

d-1) 

World Regional 

Emission factor Error range Region Emission 
factor 

Error range 

1.15 0.77 - 1.71 

East Asia TBD TBD
Southeast Asia TBD TBD

South Asia TBD TBD
Europe TBD TBD

North America TBD TBD
South America TBD TBD

Source: Emission Factors and Error Ranges with TBD are to be determined based on statistical model and updated database used in 
developing the IPCC 2006 Guidelines. Updated values are to be provided in the second order draft (SOD). 
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 1215 

Water regime during the cultivation period (SFw): Table 5.14 provides default scaling factors and error ranges 1216 
reflecting different water regimes. The aggregated case refers to a situation when activity data are only available for 1217 
rice ecosystem types, but not for flooding patterns (see Box 5.2). In the disaggregated case, flooding patterns can be 1218 
distinguished in the form of three subcategories as shown in Table 5.14. It is good practice to collect more 1219 
disaggregated activity data and apply disaggregated case SFw whenever possible.  1220 

New Guidance 

  

 

The following guidelines provide good practices in performing manual measurement of methane emissions 
using the closed-chamber technique for continuously flooded rice fields with recommended fertilizer application 
and no organic amendment. The data can be used to develop country- and region-specific EFc. 

Chamber Design: It is good practice to use lightweight material that is break resistant and inert to reactions with 
CH4 (e.g., acrylic and PVC). It may be a rectangular or cylindrical chamber, covering at least two rice hills. The 
chamber height must be higher than the rice plant. If necessary, use a base with a grove that can be filled with 
water to ensure a gas-tight closure. The chamber is equipped with a small fan, a thermometer, a vent hole with a 
stopper, and a gas sampling port (e.g., a flexible tube connected to a valve). 

Field set up and Experimental Design: Select a field that is homogeneous with respect to soil properties, and use 
an appropriate experimental design with at least 3 replications.  

Sampling Strategies:  Sampling can be done 1 or 2 times per day between mid-morning and late morning period, 
and at least once a week for the whole growing period. More frequent measurements are needed during 
agricultural management events (e.g., irrigation, drainage, and N fertilization). All treatments would have to be 
measured at the same time. At each sampling time, it is good practice to obtain 3 to 4 gas samples within 30 
minutes after closure of the chamber.   

For gas sampling, the use of a syringe or a pump is recommended depending on the required sample volume. 
Plastic or glass containers can be used for collecting samples, and should be transferred to a laboratory and 
analyzed within the allowable storage period. 

Gas Analysis: Use gas chromatograph (GC) equipped with a flame ionization detector (FID) for analysis. 
Calibrate the GC before every analysis, using certified standard gases. 

Data Processing: Use linear regression of the gas concentration inside the chamber against time to calculate the 
hourly flux. Identify the reasons of non-linearity (if exists) for the validation and correction of calculated flux. 
Use trapezoidal integration to calculate cumulative gas emissions from the hourly flux data. 

Deriving Emission Factor:  

A simple average and standard deviation could be used to derive the country EF with data from several sites in 
different regions, or environmental conditions that create variation in methane emissions in the continuously 
flooded rice systems. The compiler could also derive disaggregated EFs using regressions models to predict the 
values for different regions and/or environmental conditions. 

For more details refer to Minamikawa et al. 2015, and Sanders and Wassmann, 2014. 

Box 5. 3 Good practice guidance for developing baseline emission factors (EF) for 
methane emission from rice cultivation 
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 1221 

 

UPDATED TABLE 5. 14 DEFAULT CH4 EMISSION SCALING FACTORS FOR WATER REGIMES DURING THE CULTIVATION 

PERIOD RELATIVE TO CONTINUOUSLY FLOODED FIELDS   

Water regime 

Aggregated case Disaggregated case 

Scaling 
factor 
(SFw) 

Error 
range  

Scaling 
factor 
(SFw) 

Error 
range  

Upland a 0 - 0 - 

Irrigated b 

Continuously flooded 

0.79 0.70 - 0.89 

1 0.72 - 1.28 

Intermittently flooded – single aeration 0.79 0.59 – 1.06 

Intermittently flooded – multiple aeration 0.53 0.40 - 0.70 

Rainfed and 
deep water c 

Regular rainfed 

0.42 0.37 - 0.47 

0.55 0.40 - 0.77 

Drought prone 0.18 0.12 - 0.26 

Deep water 0.06 0.03 – 0.12 

ND: not determined 
a Fields are never flooded for a significant period of time.  
b Fields are flooded for a significant period of time and water regime is fully controlled.  

 • Continuously flooded: Fields have standing water throughout the rice growing season and may only dry out for harvest (end-season 
drainage). 

 • Intermittently flooded : Fields have at least one aeration period of more than 3 days during the cropping season. 

 - Single aeration: Fields have a single aeration during the cropping season at any growth stage (except for end-season drainage). 

 - Multiple aeration: Fields have more than one aeration period during the cropping season except for end-season drainage, including 
alternate wetting and drying (AWD). 
c Fields are flooded for a significant period of time and water regime depends solely on precipitation.  

 • Regular rainfed: The water level may rise up to 50 cm during the cropping season. 

 • Drought prone: Drought periods occur during every cropping season. 

 • Deep water rice: Floodwater rises to more than 50 cm for a significant period of time during the cropping season. 

Note: Other rice ecosystem categories, like swamps and inland, saline or tidal wetlands may be discriminated within each sub-category. 

 

Source: Scaling Factors and Error Ranges are determined based on statistical model and updated database used in developing the IPCC 
2006 Guidelines.  

 

Water regime before the cultivation period (SFp): Table 5.15 provides default scaling factors for water regime before 1222 
the cultivation period which can be used when country-specific data are unavailable. This table distinguishes three 1223 
different water regimes prior to rice cultivation, namely:  1224 

1. Non-flooded pre-season < 180 days, which often occurs under double cropping of rice;   1225 

2. Non-flooded pre-season > 180 days, e.g., single rice crop following a dry fallow period; and 1226 

3. Flooded pre-season in which the minimum flooding interval is set to 30 days; i.e., shorter flooding periods (usually 1227 
done to prepare the soil for ploughing) will not be included in this category.  1228 

When activity data for the pre-season water status are not available, aggregated case factors can be used. It is good 1229 
practice to collect more disaggregated activity data and apply disaggregated case of SFp. Scaling factors for additional 1230 
water regimes can be applied if country-specific data are available. 1231 
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UPDATED - TABLE 5. 15 DEFAULT CH4 EMISSION SCALING FACTORS FOR WATER REGIMES BEFORE THE CULTIVATION 

PERIOD  

Water regime prior to rice cultivation (schematic 

presentation showing flooded periods as shaded) 

Aggregated case Disaggregated case 

Scaling 
factor (SFp) 

Error 
range  

Scaling 
factor (SFp) 

Error 
range  

Non flooded pre-
season <180 d 

 

1.20 0.91 - 1.58 

1 0.88 - 1.12 

Non flooded pre-
season >180 d 

 0.92 0.83 – 1.03 

Flooded pre-
season (>30 d)a,b 

 2.12 1.86 - 2.41 

a Short pre-season flooding periods of less than 30 d are not considered in selection of SFp 
b For calculation of pre-season emission see below (section on completeness) 

 

Source: Scaling Factors and Error Ranges are determined based on statistical model and updated database used in developing the IPCC 
2006 Guidelines. 

 

Organic amendments (SFo): It is good practice to develop scaling factors that incorporate information on the type 1233 
and amount of organic amendment applied (compost, farmyard manure, green manure, and rice straw). On an equal 1234 
mass basis, more CH4 is emitted from amendments containing higher amounts of easily decomposable carbon and 1235 
emissions also increase as more of each organic amendment is applied. Equation 5.4 and Table 5.16 present an approach 1236 
to vary the scaling factor according to the amount of different types of amendment applied. Rice straw is often 1237 
incorporated into the soil after harvest. In the case of a long fallow after rice straw incorporation, CH4 emissions in the 1238 
ensuing rice-growing season will be less than the case that rice straw is incorporated just before rice transplanting 1239 
(Fitzgerald et al., 2000). Therefore, the timing of rice straw application was distinguished. An uncertainty range of 0.54-1240 
0.64 can be adopted for the exponent 0.59 in Equation 5.4. 1241 

 1242 

 1243 

Where: 1244 

SFo = scaling factor for both type and amount of organic amendment applied 1245 

ROAi = application rate of organic amendment i, in dry weight for straw and fresh weight for others, tonne ha-1 1246 

CFOAi = conversion factor for organic amendment i (in terms of its relative effect with respect to straw applied 1247 
shortly before cultivation) as shown in Table 5.16. 1248 

 1249 

CROP
> 180 d

CROP

> 30 d

CROP

< 180 d

 

59.0

1 







 

i
iio CFOAROASF  

Equation 5. 4 Adjusted CH4 emission scaling factors for organic amendments 
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TABLE 5. 16 DEFAULT CONVERSION FATORS FOR DIFFERENT TYPES OF ORGANIC AMENDMENTS  

 

Organic amendment 
Conversion factor 

(CFOA) Error range 

Straw incorporated shortly (<30 days) before cultivationa 1 0.96 - 1.04 

Straw incorporated long (>30 days) before cultivationa 0.09 0.01 - 0.17 

Compost 0.17 0.08 - 0.26 

Farm yard manure 0.14 0.08 - 0.20 

Green manure 0.42 0.37 - 0.47 

a Straw application means that straw is incorporated into the soil, it does not include case that straw just placed on the soil surface, nor 
that straw was burnt on the field. 

 

Source: Conversion Factors and Error Ranges are determined based on statistical model and updated database used in developing the 
IPCC 2006 Guidelines. 

 

Soil type (SFs) and rice cultivar (SFr): In some countries emission data for different soil types and rice cultivar are 1250 
available and can be used to derive SFs and SFr, respectively. Both experiments and mechanistic knowledge confirm 1251 
the importance of these factors, but large variations within the available data do not allow one to define reasonably 1252 
accurate default values. It is anticipated that in the near future simulation models will be capable of producing specific 1253 
scaling factors for SFs and SFr.  1254 

Tier 2 1255 
Inventory agencies can use country-specific emission factors from field measurements that cover the conditions of rice 1256 
cultivation in their respective country.  It is good practice to compile country-specific data bases on available field 1257 
measurements which supplement the Emission Factor database5 by other measurement programs (e.g., national) not yet 1258 
included in this data base. However, certain standard QA/QC requirements apply to these field measurements (see 1259 
Section 5.5.5).  1260 

In Tier 2, inventory agencies can define the baseline management according to the prevailing conditions found in their 1261 
respective country and determine country-specific emission factors for such a baseline. Then, inventory agencies can 1262 
also determine country-specific scaling factors for management practices other than the baseline. In case where 1263 
country-specific scaling factors are not available, default scaling factors can be used.  However, this may require some 1264 
recalculation of the scaling factors given in Tables 5.14 to 5.16 if the condition is different from the baseline. 1265 

Tier 3 1266 
Tier 3 approaches do not require choice of emission factors, but are instead based on a thorough understanding of 1267 
drivers and parameters (see above). 1268 

5.5.3 Choice of activity data  1269 

This section contains further elaboration on methods. 1270 

New Guidance Box 5. 4 Example of how to estimate methane emission from rice cultivation using Tier 1 method  1271 
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A country in Southeast Asia has rice area of 3 million hectares, with 50% of the area classified as 1272 
irrigated, 30% rainfed, 15% upland, and 5% deep water. Irrigated areas are planted for 2 growing 1273 
seasons annually. Rice growing periods are 120 days, except for deep water rice which has 220 days. 1274 
For irrigated areas, 50% is continuously flooded and 50% is managed with multiple aerations. Irrigated 1275 
areas are flooded pre-season )>30 days(, and 2 tonnes/ha of straw residues are incorporated shortly )less 1276 
than 30 days( before cultivation. 1277 

Calculations: 1278 

Equations 5.2 and 5.3, of the 2006 IPCC Guidelines, are used to estimate methane emission from rice 1279 
cultivation: 1280 

 
kji

kjikjikjiRice AtEFCH
,,

6
,,,,,,4 )10(

 1281 

rsopwci SFSFSFSFEFEF ,
 1282 

Step 1: Calculate annual harvested area for each rice ecosystem as follows: 1283 

   Irrigated harvested area = 3,000,000 ha x 0.50 x 2 = 3,000,000 ha 1284 

  - Irrigated, continuously flooded harvested area = 3,000,000 x 0.5 = 1,500,000 ha 1285 

  - Irrigated, with multiple aeration harvested area = 3,000,000 x 0.5 = 1,500,000 ha 1286 

   Rainfed harvested area = 3,000,000 ha x 0.30 = 900,000 ha 1287 

   Upland harvested area = 3,000,000 ha x 0.15 = 450,000 ha 1288 

   Deepwater harvested area = 3,000,000 ha x 0.05 = 150,000 ha 1289 

Step 2: Assign scaling factors from Table 5.14 to account for water management during the cultivation 1290 
period )SFw(, for each rice ecosystem: 1291 

   SFw for Irrigated, Continuously Flooded = 1 1292 

   SFw for Irrigated, Multiple Aeration = 0.53 1293 

SFw for Rainfed = 0.55 1294 

   SFw for Upland = 0 1295 

   SFw for Deepwater = 0.06 1296 

Step 3: Assign scaling factor from Table 5.15 to account for water management before the cultivation 1297 
period )SFp(, for Irrigated area: 1298 

   SFp for Irrigated = 2.12 1299 

SFp for Rainfed = 1 1300 

   SFp for Upland = 1 1301 

   SFp for Deepwater = 2.12 1302 

Step 4: Assign scaling factors from Table 5.14 to account for organic amendment )SFo( in irrigated 1303 

   Rice areas only: 1304 

   SFo for Irrigated = )1 + ROA x CFOA(^0.59 = )1 + )2 x 1((^0.59 = 1.91 1305 

Step 5: Calculate adjusted daily emission factors )EFi, kg CH4/ha/day( for each rice ecosystem, using 1306 
emission factor )EFc( for Southeast Asia in Table 5.13, as follows: 1307 

   EFi for Irrigated, Continuously Flooded = EFc x 1 x 2.12 x 1.91 = 1308 

   EFi for Irrigated, Multiple Aeration = EFc x 0.53 x 2.12 x 1.91 = 1309 

   EFi for Rainfed = EFc x 0.55 x 1 =  1310 
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   EFi for Upland = EFc x 0 x 1 =  1311 

   EFi for Deepwater = EFc x 0.06 x 2.12 =  1312 

Step 6: Estimate methane emissions )Gg CH4/yr(  for each rice ecosystem as follows: 1313 

   CH4 Emission for Irrigated, Continuously Flooded = EFi x t 240 days x 1,500,000 ha x 10-6 =  1314 

   CH4 Emission for Irrigated, Multiple Aeration = EFi x t 240 days x 1,500,000 ha x 10-6 = 1315 

   CH4 Emission for Rainfed = EFi x 120 days x 900,000 ha x 10-6 =  1316 

   CH4 Emission for Upland = EFi x 120 days x 450,000 ha x 10-6 =   1317 

   CH4 Emission for Deepwater = EFi x 220 x 150,000 ha x 10-6 =  1318 

 Step 7: Sum the emissions from each rice ecosystem to estimate total methane emissions for the country. 1319 

  Total CH4 Emission = ______________________ Gg CH4/yr (Note: Final estimate will be provided    1320 
in the SOD, once EFc for Southeast Asia is made available). 1321 

 1322 

5.5.4 Uncertainty assessment 1323 

No Refinement 1324 
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Annex 5A.1 Estimation of default stock change factors for 1714 

mineral soil C emissions/removals for cropland 1715 

Default stock change factors will be updated in Table 5.5 based on an analysis of a global dataset of experimental 1716 
results for tillage, input, set-aside, and land use to a 30cm depth. The land-use factor represents the loss of carbon that 1717 
occurs after 20 years of continuous cultivation. Tillage and input factors represent the effect on C stocks after 20 years 1718 
following the management change. Set-aside factors represent the effect of temporary removal of cultivated cropland 1719 
from production and placing it into perennial cover for a period of time that may extend to 20 years. 1720 

Semi-parametric mixed effect models are being derived to estimate the new factors. Variables included depth, number 1721 
of years since the management change, and the type of management change (e.g., reduced tillage vs. no-till). For depth, 1722 
data are not aggregated to a standardized set of depths but rather each of the original depth increments are used in the 1723 
analysis (e.g., 0-5 cm, 5-10 cm, and 10-30 cm) as separate observations of stock changes. Similarly, time series data 1724 
are not aggregated, even though those measurements are taken from the same plots. Consequently, random effects are 1725 
used to account for the dependencies in times series data and among data points representing different depths from 1726 
the same study.   1727 

Special consideration is given to representing depth increments in order to avoid aggregating data across increments 1728 
in the original dataset.  Consider a field in which the soil has a characteristic ܻሺݏሻ, such as soil organic C, that changes 1729 
in value with depth, from ݏ ൌ 0 decimeters (surface) to ݏ ൌ 8 dm. For simplicity, suppose this field is perfectly 1730 
uniform (no spatial variation) and we have no measurement error, so that a single soil core will be sufficient to describe 1731 
the soil. We extract a 0-8dm core and measure the average value of ܻ in the core (averaging over decimeters), to 1732 
obtain the true average value over ሾ0,8ሿ as ߤሾ଴,଼ሿ ൌ 1/3. Now suppose instead that we measured the core in increments: 1733 
0-1dm, 1-3dm, and 3-8dm. Again, we measure the average value of ܻ in each core increment, obtaining 1734 

ሾ଴,ଵሿߤ ൌ 0.8802083, ߤሾଵ,ଷሿ ൌ 0.5677083, and ߤሾଷ,଼ሿ ൌ 0.1302083. 1735 

The simple average of these three values is 0.5260417, much larger than the true value of 1/3. The simple average is 1736 
wrong. Instead, we should take a weighted average that reflects the differently-sized increments: 1737 

ሺ1 െ 0ሻߤሾ଴,ଵሿ ൅ ሺ3 െ 1ሻߤሾଵ,ଷሿ ൅ ሺ8 െ 3ሻߤሾଷ,଼ሿ
8

ൌ
2.6666667

8
ൌ
1
3
. 1738 

Next, suppose that instead of one soil core, we took two sets of soil cores. The first core uses 0-1dm, 1-3dm, and 3-1739 
8dm as before, but the second uses only 0-4dm and 4-8dm. Using the same weighting scheme as before, we can 1740 
compute weighted averages within each core. Then using the fact that both cores have the same amount of information 1741 
about 0-8dm, we would take a simple average of the two weighted averages: 1742 

ሺ1 െ 0ሻߤሾ଴,ଵሿ ൅ ሺ3 െ 1ሻߤሾଵ,ଷሿ ൅ ሺ8 െ 3ሻߤሾଷ,଼ሿ
ሺ2ሻሺ8ሻ

൅
ሺ4 െ 0ሻߤሾ଴,ସሿ ൅ ሺ8 െ 4ሻߤሾସ,଼ሿ

ሺ2ሻሺ8ሻ
ൌ
2.6666667

16
൅
2.6666667

16
ൌ
1
3
. 1743 

Now suppose we wanted to use those data to estimate the average characteristic in the increment 2-4dm, an increment 1744 
which is not used in either core. Instead, it is partially contained in the first core's increments [1, 3] and [3, 8], and 1745 
fully contained in the second core's increment [0,4]. We might try using a fraction of each increment, one-half of [1, 1746 
3], one-fifth of [3, 8], and one-half of [0, 4]: 1747 

ሺ1/2ሻሺ3 െ 1ሻߤሾଵ,ଷሿ ൅ ሺ1/5ሻሺ8 െ 3ሻߤሾଷ,଼ሿ
ሺ2ሻሺ2ሻ

൅
ሺ1/2ሻሺ4 െ 0ሻߤሾ଴,ସሿ

ሺ2ሻሺ2ሻ
ൌ
0.6979167

4
൅
1.1666667

4
ൌ 0.4661458. 1748 

In fact, the correct value is ߤሾଶ,ସሿ ൌ 0.3958333, so we are way off target with this ad hoc approach. 1749 

Suppose we took a different approach, by trying to reconstruct the true ܻሺݏሻ. These points are highly suggestive of a 1750 
quadratic relationship. In fact, unknown to the scientist, the true relationship is exactly quadratic, 1751 

ܻሺݏሻ ൌ
1
64

ሺݏ െ 8ሻଶ ൌ 1 െ ݏ0.25 ൅  ଶ. 1752ݏ0.015625

We fit the following quadratic model to the data using the midpoints ݔ of the increments. 1753 

଴ߚ ൅ ݔଵߚ ൅  ଶ 1754ݔଶߚ
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The problem is using the midpoints of the increment ranges and ignoring the fact that these are increment data, not 1755 
point data. To do this properly, we need to create a custom set of covariates, which are functions of the increment 1756 
endpoints. These functions come from integrating the underlying quadratic function over the increments. We have 1757 
centered at the maximum depth, 8dm, for convenience. This means that the true quadratic relationship is 1758 

଴ߙ ൅ ݏଵሺߙ െ 8ሻ ൅ ݏଶሺߙ െ 8ሻଶ ൌ 0 ൅ 0ሺݏ െ 8ሻ ൅
1
64

ሺݏ െ 8ሻଶ. 1759 

Because we now have the quadratic model exactly right, we can go back to the problem of estimating ߤሾଶ,ସሿ and we 1760 
are able to calculate exactly the right answer, 0.3958333. More generally, when combining increment data for 1761 
statistical analysis, we have to take into account the increment nature of the data or we will have statistically invalid 1762 
inferences, particularly for regression relationships. In general, we will not know the true relationship and will need 1763 
to model it flexibly. Any model (like the quadratic in our example) needs to be converted into a set of custom covariates 1764 
by integrating, just as we did here. 1765 

Using this customized approach, we are in the process of estimating management and input factors to a 30 cm depth 1766 
over a 20 year time period.  Variance will be calculated for each of the factor values, and can be used with simple 1767 
error propagation methods or to construct probability distribution functions with a normal density. 1768 
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Annex 5A.2 Estimation of Default Emission Factors and 2972 

Scaling Factors for CH4 Emission from Rice Cultivation 2973 

The default emission factors and scaling factors were estimated using a statistical model (Yan et al., 2003) after 2974 
updating the databases used in developing the IPCC 2006 Guidelines. 2975 

We conducted a literature review and collected the latest measurement data of CH4 emission from rice fields that 2976 
are available in peer-reviewed journals. For each measurement, documented information included average flux in 2977 
the rice-growing seasons; integrated seasonal emission; water regimes in the rice-growing season; water conditions 2978 
in the season before rice planting (preseason water status); timing, type, and amount of organic amendment; 2979 
nitrogen fertilization; soil properties; location; climate; year; and season of measurement. 2980 

The effects of controlling variables on CH4 flux were estimated by using a linear mixed effect model, which is 2981 
suitable for analyzing unbalanced data, that is, data having unequal numbers of observations in the subclasses. 2982 
CH4 flux data do not meet model assumpations of a normal distribution of the error, and so they were transformed 2983 
into a log-normal distribution. Thus, flux data were first log-transformed and then analyzed by the following linear 2984 
model:  2985 

 2986 

where flux is the average CH4 flux during the rice-growing season; SOC is soil organic carbon content; a is the 2987 
effects of SOC; PWi is the effect of preseason water status (i is flooded, long drainage, short drainage, double 2988 
drainage, or unknown); WTj is the effect of water regime in the rice-growing season (j is continuous flooding, 2989 
single drainage, multiple drainage, wet season rainfed, dry season rainfed, deepwater, or unknown); CLk is the 2990 
effect of climate; OMl is the effect of added organic materials (l is compost, farmyard manure, green manure, rice 2991 
straw used on-season, or rice straw used off-season); AOMl is the amount of organic amendment in t ha−1; pHm 2992 
is the effect of soil pH (m is one of the pH classes). Since optimum soil pH has often been reported for CH4 2993 
emission, soil pH was classified as a category variable and grouped into <4.5, 4.5–5.0, 5.0–5.5, 5.5–6.0, 6.0–6.5, 2994 
6.5–7.0, 7.0–7.5, 7.5–8.0 and ≥8.0. 2995 

The effects of the controlling variables on CH4 flux were computed by fitting the model to observations using the 2996 
SAS/STAT procedure MIXED (Release 8.01, SAS Institute Inc., Cary, NC, USA). Global and regional default 2997 
emission factors and scaling factors (water regimes during the cultivation period, water regimes before the 2998 
cultivation period, organic amendment) were estimated using the resulting model.  2999 
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Annex 5A.3 Estimation of Coefficients and Factors for Biomass 3006 

C Emissions and Removals in Cropland 3007 
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