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What are aerosol indirect effects?
— Twomey effect
— Cloud lifetime effect
— Semi-direct effect

Evidence of the different indirect aerosol effects
from field studies

Estimates of global mean indirect aerosol effects
Conclusions
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Different aerosol effects on water clouds

 Cloud albedo effect (pure forcing)

— for a constant cloud water content, more aerosols lead to
more and smaller cloud droplets - larger cross sectional
area - more reflection of solar radiation

e Cloud lifetime effect (involves feedbacks)

— the more and smaller cloud droplets will not collide as
efficiently - decrease drizzle formation - increase cloud
lifetime = more reflection of solar radiation

« Semi-direct effect (involves feedbacks)

— absorption of solar radiation by black carbon within a cloud
increases the temperature - decreases relative humidity 2
evaporation of cloud droplets - more absorption of solar
radiation (opposite sign)




Cloud evolution in a clean and polluted atmosphere
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Shiptracks
off the coast
of
Washington

Durkee et al., 2000
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Top-of-the-atmosphere global-mean radiative

forcing (W m=2) for 2000 relative to 1750 [IPcC, 2001]
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Estimate of the total radiative (aerosol and non-
aerosol) forcing since pre-industrial times
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Summary of aerosol forcing estimates
[Anderson et al., Science, 2003]

Forward Inverse
calculations calculations Applications
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Example of an inverse simulation /Knutti et al., 2002]

Simulated relation between
climate sensitivity (AT/
2xCO0,) and atmospheric
and oceanic warming:

s ' a) global ocean heat uptake
from 1955-1995 in the upper
3km

A b) atmospheric tempera-
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How are aerosol effects on clouds simulated in
climate models?

e Predict aerosol mass concentrations:

— sources (aerosol emissions of the major aerosol species:
sulfate, black carbon, organic carbon, sea salt, dust)

— transformation (dry and wet deposition, chemical
transformation and transport)

» Need a good description of cloud properties:

— precipitation formation (collision/coalescence of cloud
droplets and ice crystals, riming of snow flakes)

« Need to parameterize aerosol-cloud interactions:

— cloud droplet nucleation (activation of hygroscopic aerosol
particles)

— 1ce crystal formation (contact and immersion freezing,
homogeneous freezing in cirrus clouds)




Global annual mean aerosol emissions

(representative for 1985)
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Aerosol mass resulting from human activity

Sulfate [mg S5/m2] Organic Carbon [mg C/m2]

£ 0 1208 180 120% &w

Natural Aerosocls [mg S+C/m2]




Cloud microphysical processes in a climate model
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Aerosol - cloud droplet relationships

CDNC as a function of sulphate aerosols
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Temporal
evolution of
sulphur
emission
and direct
and indirect
radiative
forcing of
sulfate
aerosols

Boucher and
Pham, GRL, 2002

N ~
= I =]

Sulfur emission (Tg S/yr)
el
=

10 |

| A—A Sulfur emisslon
- &——© Sulfate burden

e O 0 QO Q © 9
o e [~ ] [ <] =) (4] [« )]
(s 61) uepinq ejeyng

= Lo
SR

=]
|

copoesoes P
= , :

Radiative forcing (Wm )

|
—
|

|@-e Direct (CONTROL)
=8 Indirect (CONTROL)
& © Direct (EPA-EMEP)
= -8 Indirect (EPA-EMEFP)

&

FEELL S PP FFL S E S



Top panel:
Direct effect
of sulphate
aerosols (—-o.
W/m?2)
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Cloud lifetime effect calculations

The autoconversion rate (precipitation formation rate in clouds
with no ice) in climate models depends on the cloud water
content g; and the number concentration of cloud droplets N:
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Aerosol effects
on cloud water

content
between pre-
industrial and
present-day

times

Difference in aerosol mass [mg/m2]
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Indirect aerosol effect

Difference between two 5-year simulations one with pre-industrial and one with
present-day aerosol emissions
[Global mean change in top-of-the-atmosphere net radiation: -1.4 W/m?2]
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Experiment DIRECT, r = —0.42
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Global mean indirect aerosol effect (Twomey vs.
lifetime) from different climate models
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Summary

Aerosol effects on the radiative balance are
significant. At the top-of-the atmosphere, the
cooling effect from sulfate and organic aerosols is
partly offset by the warming by black carbon.

All aerosols cause a reduction of solar radiation at
the Earth surface.

In addition aerosols significantly influence air
quality and the hydrological cycle.

We will know more about each individual aerosol
species, including their effects on ice clouds, by the
time the Forth IPCC Assessment report is published.




