Dear Dr. Detlev Helmig,

First of all, I thank you very much for your willingness to participate in the upcoming IPCC Expert Meeting on SLCF in Geneva on 28-31 May. I would like to request you, on behalf of the scientific steering committee for this meeting, to deliver a presentation at the meeting, on impacts of atmospheric chemistry on the lifetimes of SLCF (VOC, ozone, NOX, etc). We expect it to be for 15 minutes including short Q&A for 2-3 minutes and to be delivered on Day 1. Could you kindly accept our request? We would very much appreciate your cooperation.

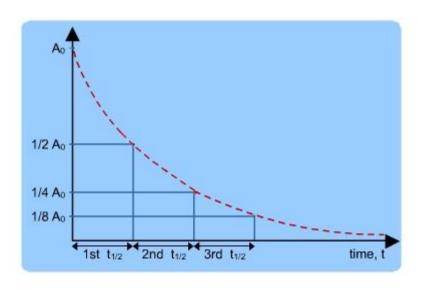
Best regards, Kiyoto Tanabe Co-Chair,

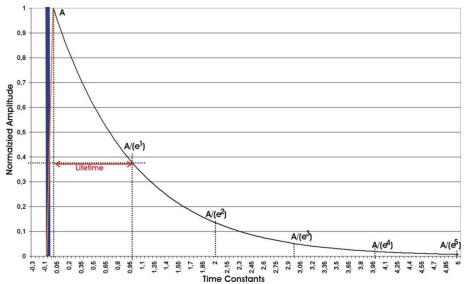
IPCC Task Force on National Greenhouse Gas Inventories

Impacts of atmospheric chemistry on the lifetimes of SLCF

Detlev Helmig¹, Andrea Pozzer²

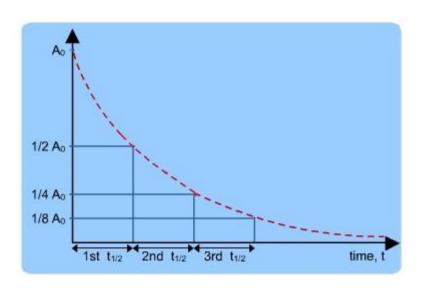
¹Institute of Arctic and Alpine Research, University of Colorado, Boulder, USA; ² Max Planck Institute for Chemistry, Mainz, Germany

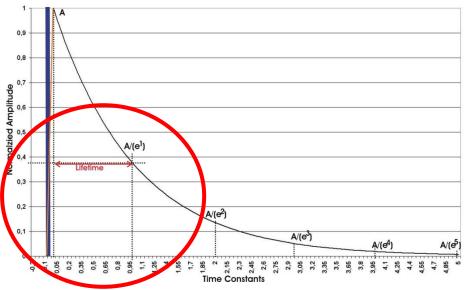



- Aerosols
 - Black Carbon
 - Organic Carbon
 - PM2.5
- Precursors (ozone precursors and aerosol precursors)
 - NOx
 - CO
 - NMVOC (including BVOC)
 - SO₂
 - NH₃

WMO-GAW Scientific Advisory Group for Reactive Gases

"Lifetime"


Natural lifetime: "lifetime" = time for concentration of species to fall to 1/e (36%) of starting value



"Lifetime"

Natural lifetime: "lifetime" = time for concentration of species to fall to 1/e (36%) of starting value

Dr. Peter Warneck Max Planck Institute for Chemistry Mainz Germany Dr. Jonathan Williams Max Planck Institute for Chemistry Mainz Germany

> Peter Warneck Jonathan Williams

The Atmospheric Chemist's Companion

Numerical Data for Use in the Atmospheric Sciences

Table 4.1 Overview on important trace gases in the troposphere: approximate residence times, molar mixing ratios, global distribution, sources and sinks^a

Trace gas	Distribution			
Residence time	Abundance ^b	Major sources and sinks (Tg a-1)c		
Carbon monoxide, CO (2 m)	150 ppb (NH) 50 ppb (SH)	Anthropogenic (+450), biomass burning (+700) CH ₄ oxidation (+600), oxidation natural VOC (+800), reaction with OH (-2,000), stratosphere (-100), uptake by soils (-300)		
Ozone, O ₃ (2 m)	15–50 ppb Equator <poles< td=""><td>Influx from stratosphere (+600), photochemical production (+4,000), photochemical loss (-3,700), dry deposition (-800)</td></poles<>	Influx from stratosphere (+600), photochemical production (+4,000), photochemical loss (-3,700), dry deposition (-800)		
Nitrogen oxides, NO _x (2 days)	30 ppt (M) 0.3–5 ppb (C)	Fossil fuel-derived (+21), biomass burning (+8), emission from soils (+7), lightning (+5), loss occurs by oxidation of NO ₂ to HNO ₃		
Nitric acid, HNO ₃ (6 days)	70 ppt (M) 0.1–2 ppb (C) 50–130 ppt (FT)	Oxidation of NO ₂ (+43), dry deposition (-16), attachment to aerosol particles followed by wet deposition (-27)		
Ammonia, NH ₃ (~3 days)	50–90 ppt (M) 5 ppb (C)	Domestic animals (+22), emissions from oceans (+7), vegetation (+6), use of fertilizer (+6), dry deposition (-15), conversion to NH ₄ ⁺ aerosol followed by wet deposition (-30)		
Sulfur dioxide, SO ₂ (4 days)	20–90 ppt (M) 0.1–2 ppb (C)	Fossil fuel-derived (+150), volcanoes (+16 oxidation of DMS (+40), dry deposition (-75), Conversion to SO ₄ ²⁻ and wet deposition (-120)		

Table 4.1 (continued)

Trace gas	Distribution			
Residence time	Abundance ^b	Major sources and sinks (Tg a-1)c		
Ethane, C ₂ H ₆	1.3 ppb (M, NH)	Biomass burning (+7), natural gas loss (+6),		
(60 days)	0.4 ppb (M, SH)	the major sink is reaction with OH		
Propane, C ₃ H ₈	1 ppb (M, NH)	Anthropogenic sources (+23), the major sink		
(12 days)	0.2 ppb (M, SH)	is reaction with OH		
Benzene, C ₆ H ₆	0.3 ppb (C)	Industrial + fossil fuel (+1.5), Biofuel (+2)		
(10 days)	<0.1 (FT)	Biomass burning (+2.7), major sink is OH		
Toluene, C ₇ H ₈	0.6 ppb (C)	Industrial + fossil fuel (+4.7), Biofuel (+1.1)		
(2 days)	<0.05 (FT)	Biomass burning (+1.8), major sink is OH		
Isoprene, C ₅ H ₈	0.2-5 ppb (C)	Emissions from deciduous trees (+570), the		
(0.2 day)		major sink is reaction with OH		
Terpenes, C ₁₀ H ₁₆	0.03-2 ppb (C)	Emissions from coniferous and deciduous trees		
(0.4 day)	••	(+140), sinks are reactions with OH and O ₃		

	Major Sinks of Atmospheric Reactive Trace Gases						
NO _x	СО	NMVOC	SO ₂	NH ₃	O ₃		
ОН	ОН	ОН	ОН	dry dep.	photolysis		
dry dep.	soils	ozone	dry dep.	aerosol	chemical rxn		
wet dep.		Cl	wet dep.	wet dep.	dry dep. (non-		
aerosol		NO ₃			stomatal)		
		photolysis			dry dep.		
		aerosol			(stomates)		
					ОН		

Table 4.7 Modeled global budgets of tropospheric ozone $(Tg\ a^{-1})^a$

Influx from stratosphere	Chemical production ^b	Chemical loss ^b	Dry deposition	Global burden (Tg)	Residence time (days)	Model ^c
570	3,310	3,170	710	350	33	TM3 (1)
470	4,900	4,300	1,070	320	22	GEOS-Chem (2)
593	4,895	4,498	990	322	21	CHASER (3)
340	5,260	4,750	860	360	23	MOZART-2 (4)
540	4,560	4,750	860	290	19	MATCH-MPIC(5)
523	4,486	3,918	1,090	296	22	LMDz-INCA (6)
395	4,980	4,420	950	273	19	STOCHEM (7)
520	4,090	3,850	760	283	22	FRSGC/UCI (8)
715	4,436	3,890	1,261	303	21	LMDz-INCA (9)
770 ± 400	$3,420 \pm 770$	$3,470 \pm 520$	770 ± 180	300 ± 30	24 ± 2	11 models (10)
520 ± 200	$5,060 \pm 570$	$4,560 \pm 720$	$1,010 \pm 220$	340 ± 40	22±2	25 models (11)

Three-dimensional climatological distribution of tropospheric OH: Update and evaluation

C. M. Spivakovsky, J. A. Logan, S. A. Montzka, Y. J. Balkanski, 1,3

M. Foreman-Fowler, ^{1,4} D. B. A. Jones, ¹ L. W. Horowitz, ^{1,5} A. C. Fusco, ¹ C. A. M. Brenninkmeijer, ⁶ M. J. Prather, ⁷ S. C. Wofsy, ¹ and M. B. McElroy ¹

Primary OH source:

$$O_3 + hv$$
 -> $O(^1D) + O_2$
 $O(^1D) + H_2O$ -> 2 OH

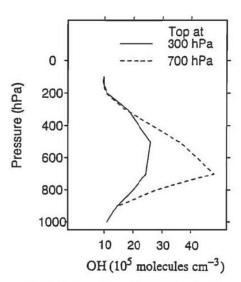
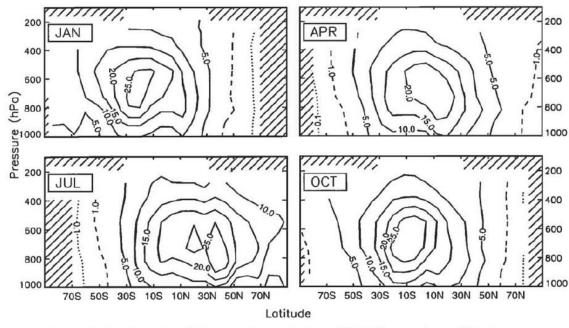
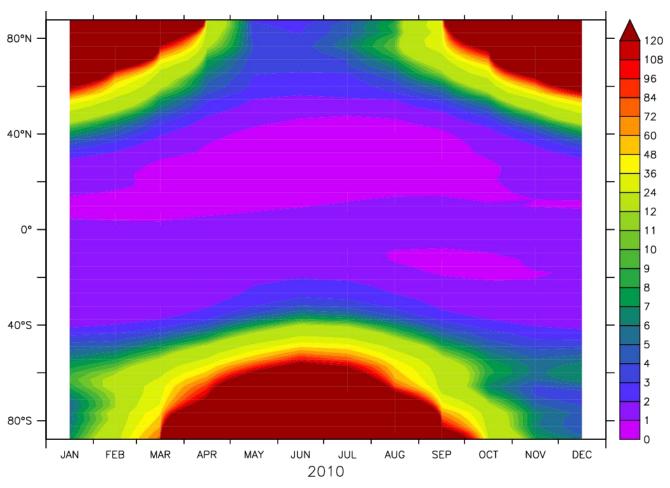
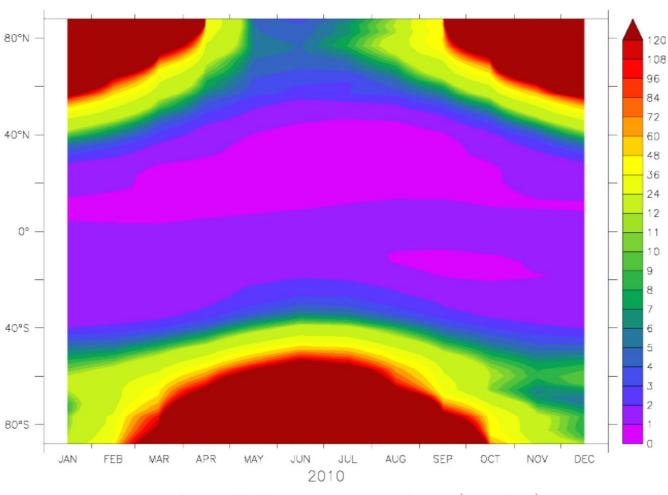
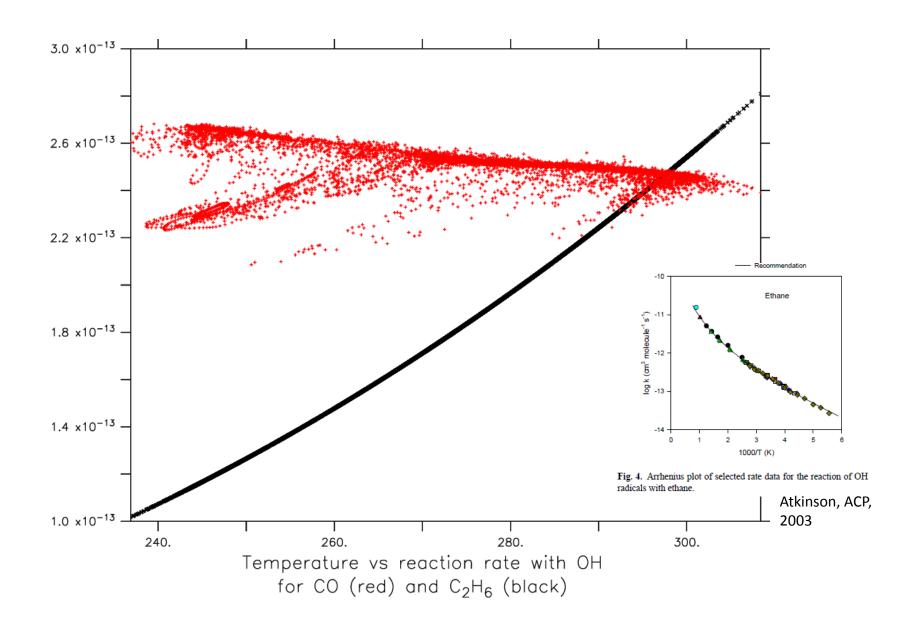


Figure 4. Vertical profiles of OH (10⁵ molecules cm⁻³) averaged over 24 hours at the equator for the cloud with optical depth 5 extending to 700 hPa (dashed line) and to 300 hPa (solid line). The optical depth of the cloud is distributed uniformly with altitude from the cloud top to 900 hPa.

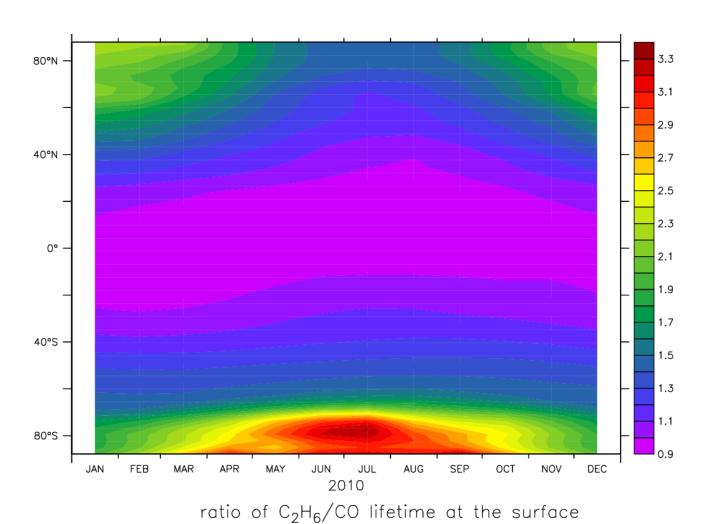




Figure 6. Zonally and monthly averaged concentrations of OH (10⁵ molecules cm⁻³) for January, April, July and October, including night hours. Contours are given for 0.1 (dotted lines), 1 (dashed lines), and for values from 5 to 30, with increments of 5 (solid lines).

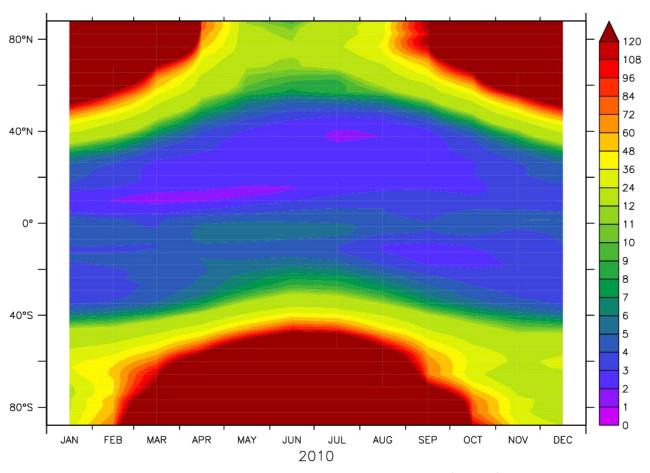
Global and seasonal lifetime of carbon monoxide


CO lifetime at the surface (months)

Global and seasonal lifetime of ethane

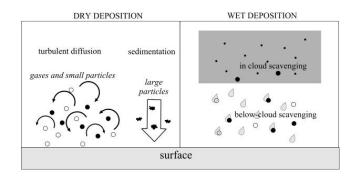


 C_2H_6 lifetime at the surface (months)


Lifetime as a function of temperature

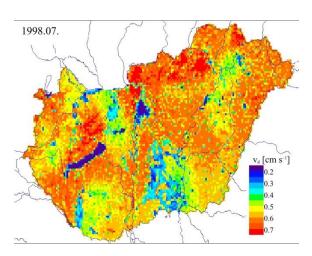
Lifetime as a function of temperature

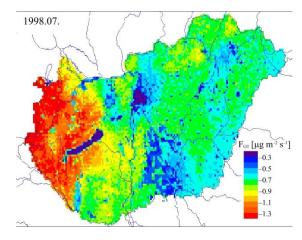
Global and seasonal lifetime of n-butane



NC₄H₁₀ lifetime at the surface (days)

Lifetime dependence on elevation




black: total, green: OH, red: photolysis

Ozone Dry Deposition

 $Flux = -v_d x Concentration$

http://elte.prompt.hu/sites/default/files/tananyagok/AtmosphericChemist ry/

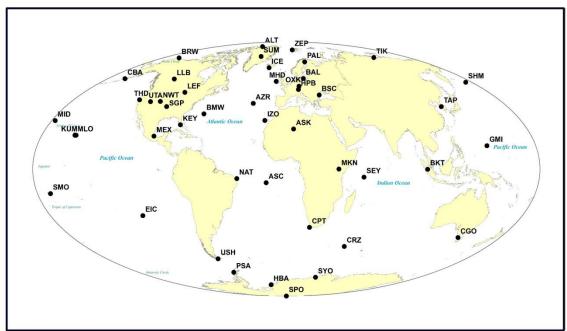
Ozone Deposition Velocity (v_d; cm/s)

0.1

Tropical Forests

Vegetated Land Agricultural Fields

Soil


Snow/Ice/Water

0.01

Reflection of VOC lifetimes in a global data set

VOC currently reported:

Ethane

Propane

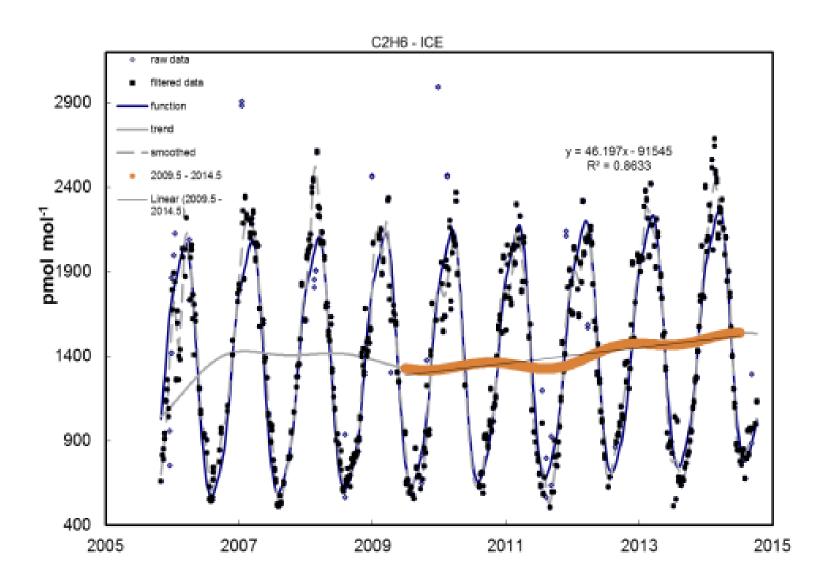
iso-Butane

n-Butane

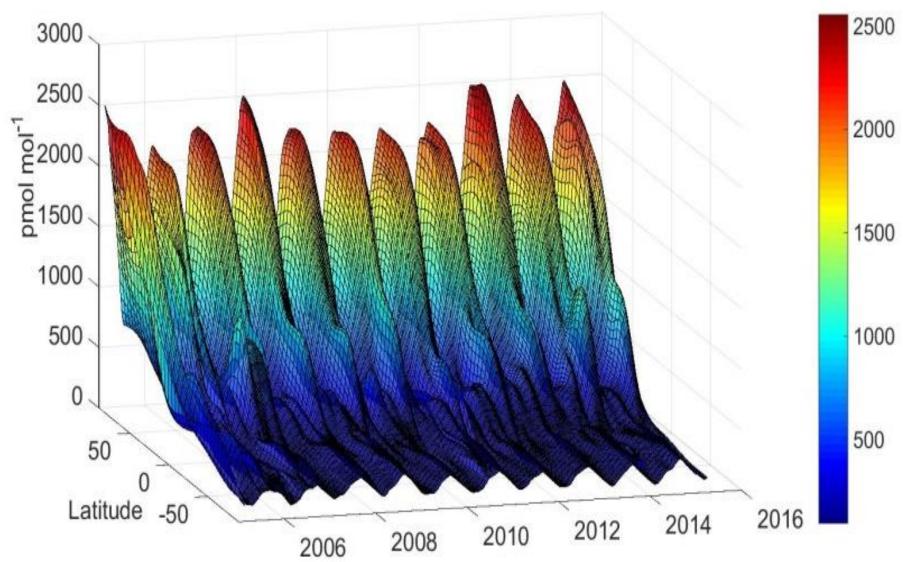
iso-Pentane

n-Pentane

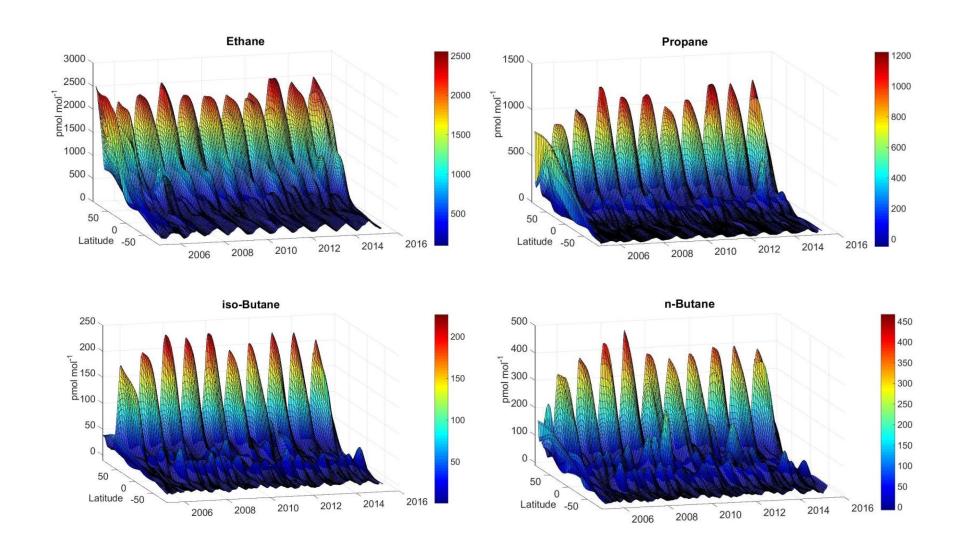
n-Hexane


New:

Acetylene


Isoprene

Benzene


Ethane 'Modern' Flask Record from Iceland

Global Atmospheric Distribution of Light Alkanes

Summary – Short-Lived Trace Gases Sinks and Lifetimes

<u>Most important sinks:</u> OH, ozone, photolysis, dry deposition, wet deposition, soils (bacterial consumption), aerosol

<u>Lifetimes:</u> days – many months

vary by temperature

vary by geographical location

vary by elevation

vary by time of year

estimates have relative large uncertainties

Summary – Short-Lived Trace Gases Sinks and Lifetimes

Most important sinks: OH, ozone, photolysis, dry denc soils (bacterial consumption), aerosol

et deposition,

Lifetimes: days – many mon+

COmplicated!!!

Very Complicated!!!

Very Complicated!!!

Lievation

Vary by time of very samples have re'

Table 4.10 Estimates of sources and sinks of ammonia, NH₃ (Tg a⁻¹ as nitrogen)

				3 . 0		
	Böttger	Stedman		Schlesinger	Dentener	
	et al.	and Shetter	Warneck	and Hartley	and Crutzen	Denman
Process	(1978)	(1983)	(1988)	(1992)	(1994)	et al. (2007)
Sources						
Coal combustion	0.03	<2	≤2	2	_	2.5
Automobiles	0.2 - 0.3	_	0.2	0.2	_	_
Biomass burning	_	_	2-8	5	2	5.4
Domestic animals	20-30	23	22	32	22	35
Wild animals	_	3	4	_	2.5	_
Human excrements	_	1.5	3	4	_	2.6
Soil/plant emissions	1	$(51)^{a}$	15	10	5.1	2.4
Fertilizer losses	1.2 - 2.4	3.5	3	9	6.4	_
Oceans	_	_	_	13	7	8.2
Sum of sources	22–34	83	54	75	45	56.1
Sinks						
Precipitation (continents)	15±7	50	30	30	13.6°	-
Precipitation (oceans)	6±6	10	8	16	16 ^c	-
Dry deposition (land)	b	14	10	10	13.6°	-
Reaction with OH	3	9	1	1	1.8c	_
Sum of sinks	24 ± 13	83	49	57	45	_

Table 4.6 Estimates for the global budget of carbon monoxide, CC

	Logan et al. (1981)				
Type of source or sink	Global	NH	SH		
Sources					
Fossil fuel combustion ^b	450	425	25		
Biomass burning	655	415	240		
Biofuels	_	_	_		
Oxidation of human-made HCa	90	85	5		
Oxidation of natural HCa	560	380	180		
Ocean emissions	40	13	27		
Emissions from vegetation	130	90	40		
Oxidation of methane	810	405	405		
Total source strength	2,735	1,813	922		
Sinks					
Reaction with OH radicals	3,170	1,890	1,280		
Consumption by soils	250	210	40		
Flux into the stratosphere	_	_	_		
Total sink strength	3,420	2,100	1,320		