## Emission estimates on a national scale - experiences of Nordic countries

IPCC Expert meeting on Short-Lived Climate Forcers Geneva 28 May 2018

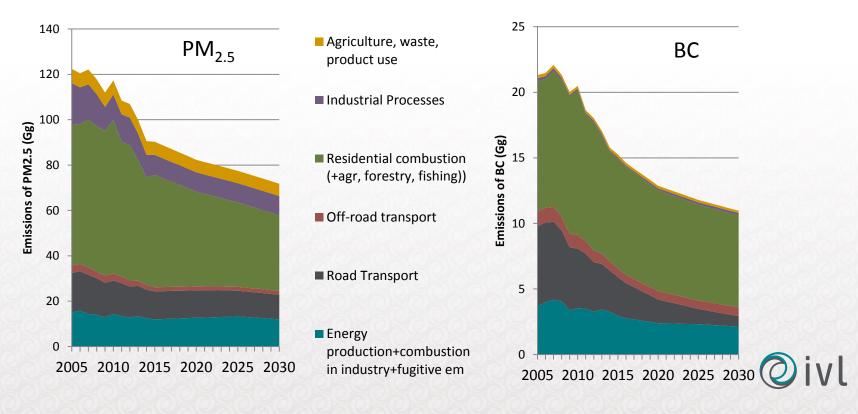
Karin Kindbom



### **Outline of the presentation**

- Project framework
- Important sources of BC and PM<sub>2.5</sub>
- Residential wood combustion
  - Emission factors and emission measurements
  - Activity data collection of data




## Nordic SLCP project: Improved emission inventories of Short-Lived Climate Pollutants

- 2013-2015: Background analysis and identification of knowledge gaps (TN2015:523)
- 2015-2017: Emission factors for SLCP emissions from residential wood combustion in the Nordic countries (TN2017:570).
- 2016-2018: Potentials for reducing the health and climate impacts of residential biomass combustion in the Nordic countries (TN2018:530)
- 2017-2018: Measures to reduce emissions of Short-Lived Climate Pollutants (SLCP) in the Nordic countries (TN2018:533)
  - Karin Kindbom, Tina Skårman, Erik Fridell, Ingrid Mawdsley, Sweden
  - Ole-Kenneth Nielsen, Morten Winther, Denmark
  - Kristina Saarinen, Maija Lappi, Heikki Lamberg, Finland
  - Kári Jónsson, Páll Valdimar Kolka Jónsson, Iceland
  - Kristin Aasestad, Norway



#### Nordic emission inventories and projections

- Residential wood combustion is a major source of PM<sub>2.5</sub> and BC in the Nordic countries (Denmark, Finland, Norway, Sweden)
- Depending on country, emission estimates include more or less uncertainty, need for better knowledge



# Factors influencing estimated emissions from residential wood burning

#### **Emission factors**

- Emission measurement method for deriving emission factors
- Combustion technology, e.g. older or modern
- Operation and handling, "bad firing habits" gives higher emissions
- Fuel quality, e.g. moisture. Influences combustion efficiency and emission level

#### Activity data

- Fuel amount used /combustion technology
- Share of fuel combusted under "bad combustion conditions"




## Measurement program: Emission factors Residential wood combustion

- Residential biomass appliances representative for the Nordic countries
- EC, OC, PM<sub>2.5</sub>, CH<sub>4</sub>, NMVOC
- Test methods (operational conditions and firing schemes):
  - Boilers: EN standard 303-5
  - Room heaters/stoves: EN 16510 series
  - Norwegian standard NS 3058
- Sampling: Dilution tunnel
- Additional test cases to simulate "bad combustion behaviour"
  - Part load, high load, moist fuel, dry fuel
- Technologies grouped for emission factors to be useful in inventories



## The boiler population





#### A1 Simple



#### A4 Cast iron stove



#### A2 Modern



#### A5 Tiled stove



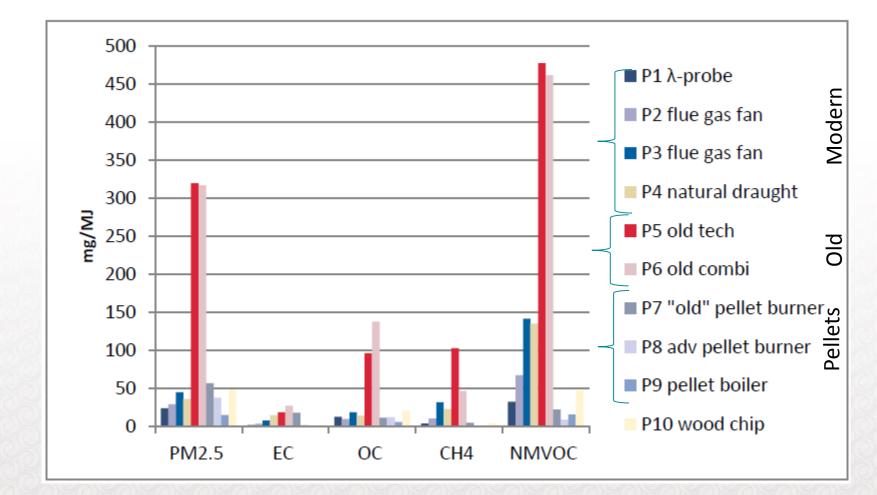
#### A3 State-of-the-art



A9 Sauna



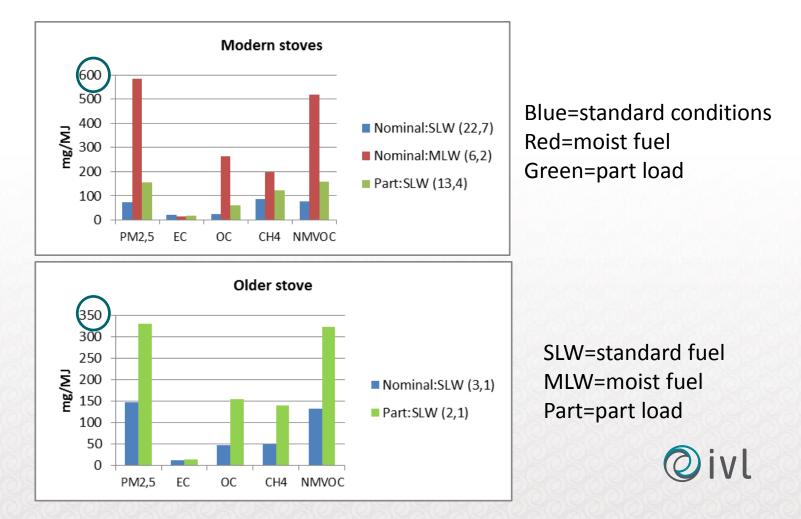
## A8 Pellets




#### **Results from measurement program**

- Older technologies generally higher emission levels than modern
- "Bad combustion" can increase emission levels significantly
- Important to take "bad combustion" into account in the national emission factors
- EC
- EC and PM<sub>2.5</sub> do not correlate (no "fixed" share EC/PM<sub>2.5</sub>)
- EC least affected by "bad combustion conditions"




**Technology important!** Emission factors from measurements: Individual boilers, <u>standard conditions</u>



#### Firing habits important!

**Emission factors from measurements:** 

Technology groups stoves, different combustion conditions



#### Emission factors technology groups: STOVES

N:S = Nominal load:Standard fuel N:M = Nominal load:Moist fuel P:S = Part load:Standard fuel

|                                          | Nominal                | N:S | N:S | Ratio moist         | Ratio part         |
|------------------------------------------|------------------------|-----|-----|---------------------|--------------------|
|                                          | load:<br>Standard fuel | min | max | fuel to<br>standard | load to<br>nominal |
|                                          | Standard fuel          |     |     | fuel                | load               |
|                                          |                        |     |     | N:M/N:S             | P:S/N:S            |
| Modern stoves<br>(incl state-of-the-art) | (8)                    |     |     |                     |                    |
| PM <sub>2.5</sub> (mg/MJ)                | 84                     | 60  | 106 | 5.0                 | 2.0                |
| EC (mg/MJ)                               | 20                     | 3   | 42  | 1.0                 | 1.0                |
| OC (mg/MJ)                               | 24                     | 6   | 39  | 8.0                 | 2.5                |
| CH <sub>4</sub> (mg/MJ)                  | 90                     | 31  | 153 | 2.0                 | 1.5                |
| NMVOC (mg/MJ)                            | 76                     | 19  | 144 | 5.0                 | 2.0                |
| Older stove*                             | (1)                    |     |     |                     |                    |
| PM <sub>2.5</sub> (mg/MJ)                | 147                    |     |     |                     | 2.5                |
| EC (mg/MJ)                               | 13                     |     |     |                     | 1.0                |
| OC (mg/MJ)                               | 47                     |     |     |                     | 3.5                |
| CH <sub>4</sub> (mg/MJ)                  | 49                     |     |     |                     | 3.0                |
| NMVOC (mg/MJ)                            | 132                    |     |     |                     | 2.5                |
| Tiled and masonry stove                  | (2)                    |     |     |                     |                    |
| PM <sub>2.5</sub> (mg/MJ)                | 140                    | 82  | 198 | 1.0                 | 2.0                |
| EC (mg/MJ)                               | 72                     | 22  | 122 | 1.0                 | 1.5                |
| OC (mg/MJ)                               | 51                     | 31  | 70  | 1.0                 | 2.0                |
| CH <sub>4</sub> (mg/MJ)                  | 114                    | 61  | 167 | 1.0                 | 2.0                |
| NMVOC (mg/MJ)                            | 181                    | 133 | 229 | 1.0                 | 1.0                |
| Pellet stove*                            | (1)                    |     |     |                     |                    |
| PM <sub>2.5</sub> (mg/MJ)                | 100                    |     |     |                     | 1.5                |
| EC (mg/MJ)                               | 10                     |     |     |                     | 1.0                |
| OC (mg/MJ)                               | 6                      |     |     |                     | 1.0                |
| CH <sub>4</sub> (mg/MJ)                  | 1                      |     |     |                     | 2.5                |
| NMVOC (mg/MJ)                            | 4                      |     |     |                     | 3.5                |
| Sauna stove*                             | (1)                    |     |     |                     |                    |
| PM <sub>2.5</sub> (mg/MJ)                | 104                    |     |     | 1.5                 |                    |
| EC (mg/MJ)                               | 52                     |     |     | 1.0                 |                    |
| OC (mg/MJ)                               | 15                     |     |     | 2.0                 |                    |
| CH <sub>4</sub> (mg/MJ)                  | 43                     |     |     | 2.0                 |                    |
| NMVOC (mg/MJ)                            | 85                     |     |     | 2.0                 |                    |
|                                          |                        |     |     |                     |                    |
|                                          |                        |     |     |                     |                    |

### "Bad combustion" in emission factors

#### Emissions = AD \* EF

- AD = fuel use in the specific technology or technology group (MJ)
- EF = emission factor for a pollutant (mg/MJ)
- To take bad combustion conditions into account in the emission factor (EF), the following equation can be used (*Savolahti et al., 2016*):
- $EF = EF_{Normal} * S_{Normal} + Ratio_{Bad/Good} * EF_{Normal} * S_{Bad}$ 
  - S = share of fuel used
  - Ratio = factor for bad combustion

Savolahti M., Karvosenoja N., Tissari J., Kupiainen K., Sippula O. & Jokiniemi J. (2016). Atmospheric Environment 140 (2016) 495–505. https://doi.org/10.1016/j.atmosenv.2016.06.023



## Activity data: Residential wood combustion

- Combustion technologies
- Fuel consumption (type and amount for each technology)
- User behaviour (share of "bad combustion")



# Current activity data collection in Sweden, Denmark and Finland (1)

#### Combustion technology:

- Regular or intermittent surveys/questionnaires, sometimes in combination with modelling based on expected lifetimes of equipment.
- Depending on country, rather good understanding of present technologies, **OR** difficult to get good enough data, low response rates in surveys, questions not detailed enough/do not cover all information needed.
- Fuel consumption:
  - Regular surveys
  - Sometimes low response rates. Depending on country assignment of fuel to technology based on studies **OR** not yet done (assumptions).
  - Solid data requires surveys potentially coupled with energy demand modelling.



## Current activity data collection in Sweden, Denmark and Finland (2)

#### User behaviour:

- Emission factors for "bad combustion" based on measurement data
- Share of "bad combustion" estimated based on expert judgement, dedicated studies, interviews with chimney sweepers etc.
- OR no assumptions made regarding user behaviour, the default EFs from EMEP/EEA Guidebook assumed to be representative average.



## Activity data in Nordic inventories

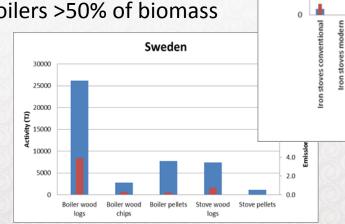
30000

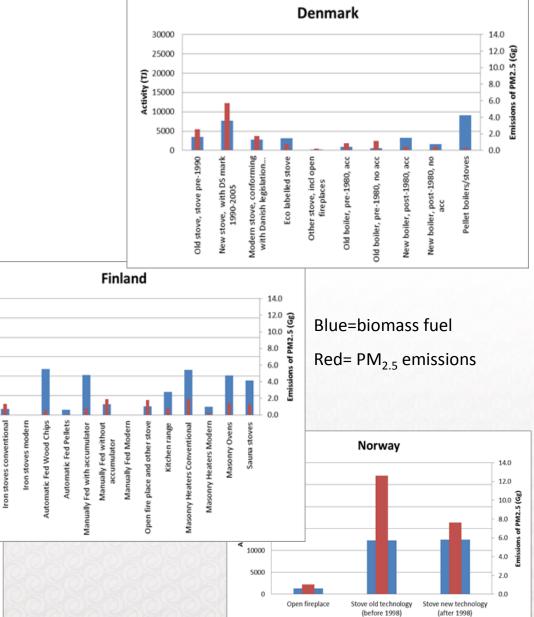
25000

Ê 20000

Activity 10000

5000


Denmark, 10 technology types. New stoves and pellet boilers/stoves use the largest quantities of biomass fuel.


Finland, 13 technology types. Biomass fuel use is more evenly distributed on several technologies.

Norway, 3 technology types. Approximately equal amounts of biomass used in old and new technology stoves.

Sweden, 5 technology types. Wood boilers >50% of biomass







### **Conclusions residential wood combustion**

- Emission inventories of residential wood combustion sensitive to user behaviour and combustion technology
- Measurement program has provided SLCP and PM<sub>2.5</sub> emission factors for several types of residential wood combustion technologies representative for the Nordic countries
- User behaviour important to take into account
- EC (BC) least affected by behaviour
- ➡ EC and PM<sub>2.5</sub> do not correlate
- Activity data collection challenging need to combine information from different sources, and make assumptions



## Thank you for your attention!

karin.kindbom@ivl.se





## Emission measurement methods influences emission factors for particulate matter (PM)

#### Sampling

- In hot flue gases
- In diluted flue gases at lower temperature
- Semivolatile organic compounds created in inefficient combustion (for example at poor user practices)
  - Exist in gas phase in hot flue gas measurements, not as PM
  - Partly condensed as additional PM in diluted sampling (lower temperatures)
- Measurement methods thus give different results regarding amount of PM
- Reported differences in the order of 2-10 times



#### Emission factors technology groups: BOILERS

N:S = Nominal load:Standard fuel N:M = Nominal load:Moist fuel P:S = Part load:Standard fuel

|                              | Nominal load:<br>Standard fuel<br>(N:S) | N:S<br>min | N:S<br>max | Ratio moist<br>fuel to<br>standard fuel<br>N:M/N:S | Ratio part<br>load to<br>nominal load<br>P:S/N:S |
|------------------------------|-----------------------------------------|------------|------------|----------------------------------------------------|--------------------------------------------------|
| Modern log wood boilers      | (6)                                     |            |            |                                                    |                                                  |
| PM <sub>2.5</sub> (mg/MJ)    | 35                                      | 24         | 45         | 1.5                                                |                                                  |
| EC (mg/MJ)                   | 6                                       | 2          | 15         | 1.0                                                |                                                  |
| OC (mg/MJ)                   | 15                                      | 10         | 19         | 1.0                                                |                                                  |
| CH <sub>4</sub> (mg/MJ)      | 15                                      | 4          | 32         | 1.5                                                |                                                  |
| NMVOC (mg/MJ)                | 85                                      | 32         | 141        | 1.5                                                |                                                  |
| Traditional log wood boilers | (2)                                     |            |            |                                                    |                                                  |
| PM <sub>2.5</sub> (mg/MJ)    | 320                                     | 317        | 320        | 1.5                                                | 4.0                                              |
| EC (mg/MJ)                   | 25                                      | 19         | 27         | >1.5                                               | 1.0                                              |
| OC (mg/MJ)                   | 120                                     | 96         | 138        | >1.5                                               | >4.0                                             |
| CH <sub>4</sub> (mg/MJ)      | 75                                      | 47         | 103        | >1.5                                               | >3.0                                             |
| NMVOC (mg/MJ)                | 470                                     | 462        | 477        | >1.5                                               | >3.0                                             |
| Pellet-fired boilers         | (3)                                     |            |            |                                                    |                                                  |
| PM <sub>2.5</sub> (mg/MJ)    | 35                                      | 15         | 57         |                                                    | 3.0                                              |
| EC (mg/MJ)                   | 6                                       | 1          | 14         |                                                    | 1.5                                              |
| OC (mg/MJ)                   | 10                                      | 6          | 11         |                                                    | 3.5                                              |
| CH <sub>4</sub> (mg/MJ)      | 2                                       | 1          | 4          |                                                    | 5.0                                              |
| NMVOC (mg/MJ)                | 15                                      | 9          | 22         |                                                    | 6.0                                              |
| Wood chip boiler*            | (1)                                     |            |            |                                                    |                                                  |
| PM <sub>2.5</sub> (mg/MJ)    | 50                                      |            |            | 1.5                                                | 5.0                                              |
| EC (mg/MJ)                   | 2                                       |            |            | 5.0                                                | 6.0                                              |
| OC (mg/MJ)                   | 20                                      |            |            | 1.5                                                | 5.0                                              |
| CH <sub>4</sub> (mg/MJ)      | 5                                       |            |            | 3.0                                                | 15.0                                             |
| NMVOC (mg/MJ)                | 50                                      |            |            | 2.0                                                | 15.0                                             |
|                              |                                         |            |            |                                                    |                                                  |