

SLCFs emission inventory in China

Bofeng Cai Ph.D/Professor Center for Carbon Neutrality Chinese Academy of Environmental Planning

D Inventory system of China

D Differences with IPCC methods

D Inventory system of China

Differences with IPCC methods

Guide of SLCFs emission inventory in China

MEP (Ministry of Ecology and Environment of the People's Republic of China) has issued a series (3+5+1) of technical guidelines for compilation of emission inventory of air pollutants.

Technical guide for compilation of Chinese emission inventory						
Guide Name	Year	Institute	Web Link			
Technical guide for compilation of primary source emission inventory of atmospheric fine particulate matter(Trial)	2014	MEP	http://www.mee.gov.cn/gkml/hbb/bgg/201408/W020140828351293619540.pdf			
Technical guide for compilation of emission inventory of volatile organic compounds (Trial)	2014	MEP	http://www.mee.gov.cn/gkml/hbb/bgg/201408/W020140828351293705457.pdf			
Technical guide for compilation of atmospheric ammonia emission inventory (Trial)	2014	MEP	http://www.mee.gov.cn/gkml/hbb/bgg/201408/W020140828351293771578.pdf			
Technical guide for compilation of particulate matter emission inventory from dust sources (Trial)	2014	MEP	https://www.mee.gov.cn/gkml/hbb/bgg/201501/W020150107594588131490.pdf			
Technical guide for compilation of primary source emission inventory of inhalable particulate matter(Trial)	2014	MEP	http://www.mee.gov.cn/gkml/hbb/bgg/201501/W020150107594587771088.pdf			
Technical guide for compiling air pollutant emission inventory of road motor vehicles(Trial)	2014	MEP	http://www.mee.gov.cn/gkml/hbb/bgg/201501/W020150107594587831090.pdf			
Technical guide for compilation of emission inventory of air pollutants from non road mobile sources(Trial)	2014	MEP	https://www.mee.gov.cn/gkml/hbb/bgth/201407/W020140708387895377980.pdf			
Technical guide for compilation of emission inventory of air pollutants from biomass combustion sources(Trial)	2014	MEP	https://www.mee.gov.cn/gkml/hbb/bgg/201501/W020150107594588071383.pdf			
Technical guide for compiling air pollutant emission inventory of civil coal (Trial)	2016	MEP	https://www.mee.gov.cn/gkml/hbb/bgg/201610/W020161031388726962758.pdf			

Sources category of the guidelines in China

Name	Definition
Stationary combustion	A combustion equipment that produces heat when burning fossil fuels to provide heat and power for power
v	generation, industrial production and life
ΙΡΡΙΙ	The industrial activities with the purpose of physical and chemical conversion of industrial raw materials in the
n i e	process of industrial production and processing
N# 1 11	Various passenger, freight transportation facilities and mechanical equipment pulled by and movable by the
Mobile sources	engine
Solvent use sources	The industrial production and living department that produces and uses volatile organic solvents
	Varianza a miantenel a stinitias that have harmeful affects on the struggehanic anning mantin a miantenel
Agricultural sources	various agricultural activities that have narmful effects on the atmospheric environment in agricultural
	production
Dust sources	Various emission sources of particulate matter that do not pass through the exhaust cylinder, unorganized,
Dust sources	irregular discharge of loose surface particles under the action of natural force or manpower
D:	The combustion process of boilers, stoves and other biomass materials without modified processing, as well as
Biomass burning sources	forest fire, grassland fire, straw open burning, etc
Oil and gas storage and transportation	The process by which volatile oil and gas products are collected, stored, transported and sold
	The waste water, solid waste produced by industrial and living departments and waste gas after flue gas
waste disposal sources	denitration into the centralized treatment and disposal facilities after treatment and pollutant discharge source
Other emission sources	The collection of air pollutant emission sources not covered

Energy

Name	NOx	NH ₃	SO ₂	CO	NMVOC	BC	OC
Power production	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Power supply	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Industrial heat production and supply	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Civil heat production and supply	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Gas production and supply	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Industrial boilers of mining and manufacturing	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Urban household sources	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Rural household sources	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Passenger vehicles	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Truck	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Motorcycle	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Construction machinery	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
Agricultural machinery	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark

Energy

Name	NOx	NH ₃	SO ₂	CO	NMVOC	BC	OC
Small general machinery	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Diesel generator sets	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ship	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Railway diesel locomotive	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Aviation	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Biomass fuels	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Biomass open combustion	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

- Energy emission sources are mainly composed of combustion sources of fossil fuels, mobile source and biomass burning sources.
- Industrial boilers of mining and manufacturing include multiple industrial emission sources, such as iron and steel, non-ferrous metals, chemicals et al.

IPPU

Name	NOx	NH ₃	SO ₂	CO	NMVOC	BC	OC
Coal mining and washing			\checkmark		\checkmark		
Black metal smelting and rolling processing	\checkmark				\checkmark	\checkmark	\checkmark
Non-ferrous metal smelting and rolling processing industry			\checkmark				
Non-metallic mineral products industry	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark
Oil, coal and other fuel processing industries	\checkmark				\checkmark	\checkmark	\checkmark
Chemical raw materials and chemical products manufacturing industry			\checkmark				
Chemical fiber manufacturing					\checkmark		
Rubber and plastic products industry					\checkmark		
Paper and paper products industry					\checkmark		
Wine, beverage and refined tea manufacturing industry					√		
Food manufacturing industry, agricultural and sideline food processing industry							
Cottonocracy							

D Method system of China

D Differences with IPCC methods

Differences with IPCC methods: Energy sector

For the vast majority of SLCFs emissions from the energy sector, it is most based on activity level of emission sources (e.g. fuel consumption) and production coefficient of pollutants (e.g. emission factor of fuels).

$$\boldsymbol{E} = \boldsymbol{A} \times \boldsymbol{E}\boldsymbol{F} \times (\boldsymbol{1} - \boldsymbol{\eta})$$

A is the emission source activity level; EF is the production coefficient of pollutants; η is the the actual removal efficiency of pollutants by pollution control technology.

Continuous Emission Monitoring System (CEMS) that meet the normative requirements are used to calculate pollutants (SO2, NOx and PM) emissions for combustion sources of fossil fuels, e.g. boilers of power, heat production and supply industry.

$E = \sum_{k} C \times Q \times T \times 10^{-6}$

k is the k section of flue monitoring; *C* is the hourly average pollutant discharge concentration (mg/m^3) ; *Q* is the hourly average pollutant flue gas discharge (m^3/h) ; *T* is the total production hours (h)

Differences with IPCC methods: Transpotation

Micro-level emission simulation method are used to calculated SLCFs emissions from the mobile sources, it is mostly based on fuel consumption and production coefficient of pollutants, or vehicle ownership (P), the average annual mileage (VKT) and the pollutant emission per unit distance (EF).

$$E_1 = \sum_i A_i \times EF_{1i} \qquad E_2 = \sum_i P_i \times VKT_i \times EF_{2i} \times 10^{-6}$$

A is the fuel consumption, EF_{1i} is the production coefficient of pollutants; P is the vehicle ownership; VKT is the average annual mileage (km); EF_{2i} is the pollutant emission per unit distance (kg/km).

Difference: For the micro-level emission simulation, the road network emission can be calculated by combining the traffic flow data, and the real-time discharge of each road.

$$E_{y,d,h,l} = \sum_{i} TV_{i,y,d,h,l} \times L_l \times EF_i(v) \times 10^{-6}$$

 $E_{y,d,h,l}$ is the pollutant discharge (ton) of section l at h hour on day d y year; $TV_{i,y,d,h,l}$ is the traffic flow of type i vehicle on day d y year l road; L is the length of section l (km); E_{fi} is the emission coefficient of type i vehicle at speed v (g / km)

Differences with IPCC methods: Aviation

The flight process of the aircraft are divided into LTO cycle (take-off, climb out, approaching and landing) and cruise phase, and total aviation SLCFs emissions include emissions during the LTO cycle and cruise phase.

(1)
$$E_1 = F \times EF$$
 (2) $E_2 = E_{LTO} + E_c = C_{LTO} \times EF_{LTO} + L \times EF_c$

F is the total energy consumption, include energy consumption during the LTO cycle and cruise phase; EF is the emission factor of fuel.

 C_{LTO} is the number of landing cycles (times); EF_{LTO} is the emission factor (kg/LTO); L is the cruise mileage; EF_c is the emission factor of aircraft engine(kg/km);

Difference: Only calculate SLCFs emissions of LTO cycle, which is based on the number of LTO cycles and the emission factor of one LTO cycle, but lacks methods for calculating SLCFs emissions in the cruise phase.

$$E = (C_{LTO} \times EF) \times 10^{-3}$$

 C_{LTO} is the number of landing cycles (times); EF is the emission factor (kg/LTO)

D Method system of China

Differences with IPCC methods

Gaps list

IPCC code	Category	Gaps	Guide of SLCFs emission inventory in China				
1.A.3.a.ii	Domestic aviation	Embedding emissions from landing and take-off in the Tier 1 EFs of a fuel-based approach	Just calculate emissions of LTO cycle (take-off, climb out approaching and landing)				
1.A.3.b.i	Cars						
1.A.3.b.ii	Light duty trucks	Time dependency of technologies	Technology advances is reflected through the emission factors of different emission				
1.A.3.b.iii	Heavy duty trucks and buses	Time dependency of commonogies	standards.				
1.A.3.b.iv	Motorcycles						
1.A.3.e.ii	Off-road	Most alternative methodologies do not cover BC and OC emissions	Some BC and OC emission factors for off-road mobile machinery are provided. e.g. the BC and OC emissions factor of non-road machinery with national III emission standard.				
	IPPU	Abatement techniques and efficiencies	Technical differences are considered when providing IPPU emission factors for different industrial processes. e.g. the CO, BC and OC emission factor of lime production by rotary kiln with solid fuel; CO, BC and OC emission factor of lime production by vertical kiln with gas fuel.				

• Establish and improve SLCFs emission calculation methodology in the aviation, including:

- 1. Referring to IPCC methodology, established a full-stage aviation SLCFs emission accounting method, including take-off, climb out, cruise, approach and taxiing.
- 2. Improve SLCFs emission factor database for different aircraft types and engine types.
- 3. Improve the space allocation method for aviation emissions.
- Establish and improve SLCFs emission calculation methodology in the field of mobile sources, especially the BC and OC emissions from tire wear.
- More and more energy departments (especially factories and enterprises) have developed real-time calculation methods for on-line monitoring (CEMS), which is worthy of further exploration.

Thanks!