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IMEO interconnects better data with action on transparency, science, and environment | 7 o

implementation

Close the knowledge gap

peer-reviewed studies and data
reconciliation.

programme

Provide accurate, unbiased and

up-to-date information on methane
emissions

TRANSPARENCY

IMPLEMENTATION

Raise awareness and increase the capacity of

governments to pursue science based-policy options to
manage methane emissions.







IMEO an integrated emissions data hub providing actionable data

Data flow of the IMEO

GENERATE
FINAL
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Reconcile
inconsistencies
COLLECT DATA and identify gaps
Apply Big Data,
data science,
» Science measurements studies and machine

* OGMP companies’ assets data

+ National inventories learning

» Satellite data



Integrating Inventory and measurement-based emissions
provides very useful data

Example: Bamett Shale synthesis work: Robust, complementary approaches
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Successful reconciliation of oil and gas methane emissions in the US
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Successful reconciliation of oil and gas methane emissions in the US
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* Replicate Measurements: Reduce uncertainty of regional-level estimates

* Attribution: Stoichiometry (e.g. C;:C,, often allows differentiation between
fossil and biogenic GHG sources (e.g. methane)

* Accurate Activity factors: Inventory-based estimates require accurate facility
counts

* Emissions Distribution Characterization: accurate characterization of emission
factors:

* Sampling must capture low-probability, high-emitting sources
* Magnitude and frequency of high-emitting sources

* Co-occurring estimates: Align spatial and temporal domains of top-down and
bottom-up estimates.

Alvarez et al. Science (2018)
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Oil and gas emissions are 2 times higher than national inventory (loss rate of 4.3%).
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One basin (Sureste) is responsible for 50% of national O&G emissions.
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Norway Offshore O&G Methane Emissions

Measured CH, Flux (t year™)
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Methane emissions Surat Basin, New South
Wales, Australia
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Methane Emissions across O&G Basins
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Satellite observations quantify Permian methane
emissions

TROPOMI methane data averaged from May 2018 — March 2019
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TROPOMI data reveal high methane emissions from the Permian Basin
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CH, emissions (Mg/h)

Permian Basin Methane Emissions Trends
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¢
¢
¢
¢ 34
o ¢
Q M * @ M i t ,/\
¢ ¢ A A
L ¢ Ao v
150 * ¢ yv@ y | A I\V
¢ V'\ ® A
¢ of o % V
% b o o 3
100 |- 1 i 3al ¢ Y
N ¢
o] ’w ‘ A * .
50 - o o v ¢ ¢
" * e ¢ o o
: . : o ¢
¢ Daily Tower Emission Estimate
ol @ Aircraft Mass Balance (95 %Cl) o R
—\Neekly Moving Average ¢
95%Cl o ¢
Monthly Average
50 | [ | | 1 | I |

Jan 2020 Feb 2020 Mar 2020 Apr 2020 May 2020 Jun 2020 Jul 2020 Aug 2020 Sep 2020
Lyon et al. 2021., https://doi.org/10.5194/acp-21-6605-2021



https://doi.org/10.5194/acp-21-6605-2021

GHG Satellite Revolution is Underway

Mission Objective

Mission Overview

MethaneSAT

Provide policy-relevant/actionable GHG data

Regular monitoring of regions accounting for > 80% of gloal iIa prcti

Designed to detect, quantify, and track area emission rates as well as those from point
source emissions

Flux data product available immediately — data publicly available free of charge
High level of precision & small pixel size - Detection threshold 5 kg CH,/h/km?
Targeting satellite

Near real time flux data product availability — fully automated flux data product
Philanthropically funded

Partnering with New Zealand g MethaneSATSM



Oil and Gas Methane Partnership (OGMP) 2.0 Reporting Levels

Venture/Asset Reporting

« Single, consolidated emissions number
« Only applicable where company has very limited information

Emissions Category

« Emissions reported based on IOGP and Marcogaz emissions GOLD STANDARD:
categories

- Based on generic emissions factors Integrates “bottom-up”

Generic Emission Source Level source-level reporting, with

« Emissions reported by detailed source type independent “top-down” site-

« Based on generic emissions factors level measurements for the

Specific Emission Source Level majority assets

« Emissions reported by detailed source type using specific
emissions and activity factors

« Based on direct measurement or other methodologies

Level 4 + Site Level Measurement Reconciliation

« Direct measurement methodologies at a site or facility level*,
typically through sensors mounted on a mobile platform

« Reconciled with Level 4

* on a representative sample of facilities




Conclusions

OlOX0XO

Improved accuracy with greater spatial resolution would allow countries/interested parties to better
characterize methane emissions sources and take credit for progress both individually and
collectively.

Efficient abatement requires accurate characterization of emission sources, initial assumptions
without measurement-based data would point to the wrong methane sources to target for
abatement (e.g., Mexico: discrepancy between onshore/offshore emissions).

Atmospheric observations of GHG concentrations alone are not sufficient to drive change. For
example, data products limited to analysis of concentrations/enhancements and not fluxes are not
actionable.

The International Methane Emissions Observatory (IMEO) is developing an integrated data hub of
methane emissions, bringing together multi-scale data from industry (reported based on
measurement-based guidelines), inventories, satellite remote sensing and studies from the
academic community.
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