

Towards the Subnational CO₂ Emission Monitoring Using Airborne and Space Sensors

- JAXA's Greenhouse Gases Monitoring Activities in Support of Carbon Cycle Science and Climate Monitoring -

Hiroshi Suto

Japan Aerospace Exploration Agency (JAXA)

E-mail: suto.hiroshi@jaxa.jp

IPCC TFI Expert Meeting on Use of Atmospheric Observation Data in Emission Inventories 5-7 September 2022 WMO HQ, Geneva- Switzerland Contributing to the GHG observation history from space

B GDSAT-2

GOBLEU

GOSAT satellite data presents 12 years of global CO_2 concentration and its global changes from 2009 to 2021. ²

 \bigcirc How to estimate CO₂ emission from observation ?

Motivation:

- Provide subnational emission estimates for potential QA/QC and verification of reported national emission inventories (NEIs).

Key role for observation:

- Collect spatially dense GHG data in a timely manner for detecting emissions hots spots and quantify the emissions and their changes.

Challenges for airborne and spaceborne observation (especially for CO₂):

- Quantity CO₂ concentration enhancements due to particular surface sources (e.g. power plant, cities, industrial areas, etc).

JAXA' GHG observation missions

Missions	GOSAT	GOSAT-2	GOBLEU
Platform	Satellite	Satellite	Passenger aircrafts
Image	Conficte Case Observing Sateline		Cobin seats
Launch	2009/1/23	2018/10/29	2020
Local observation time	13:00	13:00	On-demand
Revisit time	3 days	6 days	-
Observation target	CO ₂ , CH ₄ , SIF(Solar-induced chlorophyll fluorescence)	CO ₂ , CH ₄ , CO, N ₂ O SIF(Solar-induced chlorophyll fluorescence)	CO ₂ , NO ₂ SIF(Solar-induced chlorophyll fluorescence)
Observation image	Grid	Target	To Fukuoka Osaka 4

5

JAXA's concept for estimating CO_2 emission from remote sensing data:

- Retrieving upper and lower CO₂ concentration data from GOSAT satellite observations.
- Collecting NO_2 observation data as proxy for fossil fuel combustion.

JAXA's Missions	Background concentration	CO ₂ enhancement
GOSAT	Upper troposphere	Lower troposphere
(Spaceborne sensor)	(4 km to 12 km altitude)	(ground to 4 km altitude)
GOSAT-2	Upper troposphere	Lower troposphere
(Spaceborne sensor)	(4 km to 12 km altitude)	(ground to 4 km altitude)
GOBLEU (Airborne sensor)	Small footprint with simultaneous NO ₂ observation as CO ₂ emission marker	Small footprint with simultaneous NO ₂ observation as CO ₂ emission marker

JAXA's approach for estimating both CO₂ enhancement and background concentration

JAXA patrial column GHG product

- JAXA developed a new retrieval algorithm to derive the partial column.
- GOSAT observes both solar reflected light and thermal emission.
- Products are free available (https://www.eorc.jaxa.jp/GOSAT/Global_GHGs_Map/index.html).

Upper troposphere:

Serves as a new reference (background) CO₂ concertation for local analysis. <u>Lower troposphere:</u> Better reflects CO₂ changes due to local emissions.

Conventional Method Use only solar reflected light

CO₂ emission and enhanced density of the lower troposphere

Latitudinal gradient of JAXA CO₂ products

- Seasonal amplitude of lower tropospheric CO₂ concentration is larger than that of total column concentration.
- Latitudinal gradient of lower tropospheric concentration is more clear.

Comparison of XCO2 between OCO-2 and GOSAT

200

-20

-10

8

30

20

10

Difference XCO2[ppmv]

JAXA/GOSAT XCO2 and OCO-2 products are in good agreement. NO temporal and NO geolocational biases are observed.

GOBLEU

Comparison to the AirCore data

The vertical CO₂ gradient of the partial CO₂ products was evaluated using the AirCore data.
Vertical concentration of CO₂, CH₄, water vapor are in good agreement at Lamont, OK.

Karion, A., Sweeney, C., Tans, P., and Newberger, T., (2010) <u>AirCore: An</u> <u>Innovative Atmospheric Sampling</u> <u>System</u>, *Journal of Atmospheric and Oceanic Technology*, Nov. 2010, doi: 10.1175/2010JTECHA1448.1.

Model-based evaluation (ongoing)

Estimating megacity emissions from the partial column

GOSAT-2

GOBLEU

product

Spatial distribution of XCO2_LT obtained from target observation in March 2019 Comparison between our estimates and the ODIAC inventory estimates.

The results was encouraging towards megacity emission estimates using the partial column product.

By Observation by research aircraft

Demonstration of simultaneous CO₂ and NO₂ observation over point source Challenging for coverage and observation frequency

GOBLEU: Greenhouse gas Observations of Biospheric and Local Emissions from the Upper sky

Greenhouse gas remote sensing from a passenger aircraft

Summer nurritt file

THE REPORT

100.

Suto et al., in prep.

GOBLEU: Greenhouse gas Observations of Biospheric and Local Emissions from the Upper sk

GOSAT-2

GOBLEU

- Cities are responsible for more than 70 % of the global total GHG emissions.
- 30 % of the Japan's total CO₂ emissions are emitted between Tokyo and Fukuoka area (shaded in red).
- To achieve the net zero goal, the sectoral emissions and their relative magnitude are expected to change drastically over the next decade.

Our objectives:

- Monitoring Japan's subnational ~ local climate
 mitigation progress (e.g. emission reduction and
 sink enlargement) using high-resolution GHG and
 AQ measurements.
- Providing an objective evaluation for reported inventory emission estimates.

GHG remote sensing from a passenger aircraft

Observation swath:

~50km

Our concepts:

- NO hardware modification to aircraft*

GOBLEU

- Compact instruments on cabin seats
- Observing through cabin window
- Small power consumption with mobile battery operation
- 3 modules: 450nm, 740nm and 1.6um bands for NO₂, SIF and CO₂ with fiber coupling.

Commercial airliners can make repeatable and frequent observations over mega-cites with lower cost than research flights!.

Altitude ~11km For stand alone NO₂ instrument

Observation swath: ~40km

*Limitation of size and wight, the capacity of battery, electronical magnetic conduction from instruments have to be passed the certifications.

The first high resolution NO₂ observations from GOBLEU

- High NO₂ were observed over emission hot spots (cities, point sources, and traffic)

GDSAT-Z

- In megacity Nagoya, spatial pattern of NO_2 is different from GOBLEU(GB) and emission inventory.

Suto et al., in prep.

16

Observing NO_2 as a CO_2 emission marker

1 ROPOMI: NO_2 observation 0.05° x 0.05° grid Local time 12:30 (UT+9) GB: NO₂ observation $0.005^{\circ} \times 0.005^{\circ}$ grid Local time 10:45 (UT+9) GB: NO₂ observation 0.05° x 0.05° grid Local time 10:45 (UT+9) (TROP. grid) EDGAR: CO_2 inventory $0.1^{\circ} \times 0.1^{\circ}$ grid

- GB provides fine spatial structures of NO₂ concentration.
- GB clearly indicate the emission from industry while it was not clear in satellite observation (due to time and spatial resolution).

Note: observation time of TROPOMI and GB are different.

Suto et al., in prep.

NO_2 Spatial correlation with ground-based observation

- NO₂ spatial correlation between GB and ground-based observation are in good agreement.
- Especially in Nagoya, TROP show less agreement with ground-based NO₂ observation.
- The result highlight the significance of the co-located CO_2 and NO_2 .

GOSAT

GOBLEU

Suto et al., in prep.

18

- JAXA partial column concentration has vertical information for GHG concentration and will support to estimate local CO₂ emission.
- Regular GOBLEU flight (1 or 2 flights/month) started in this summer.
- Cities CO_2 emission estimate is ongoing with observed NO_2 as CO_2 emission marker.
- JAXA continuously observe the global and local GHG concentration by satellite and passenger aircrafts.