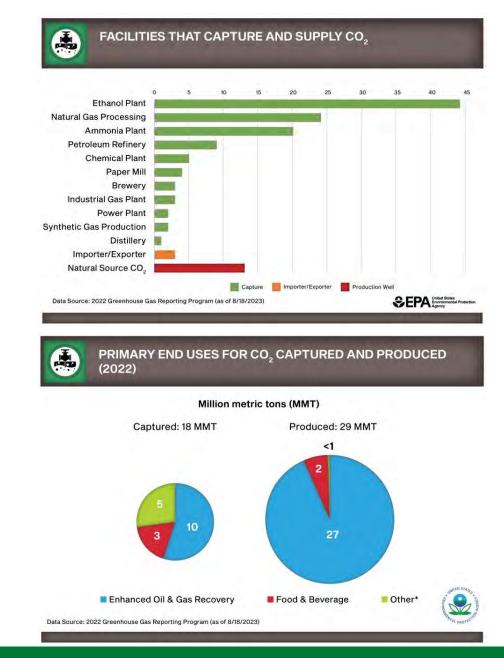
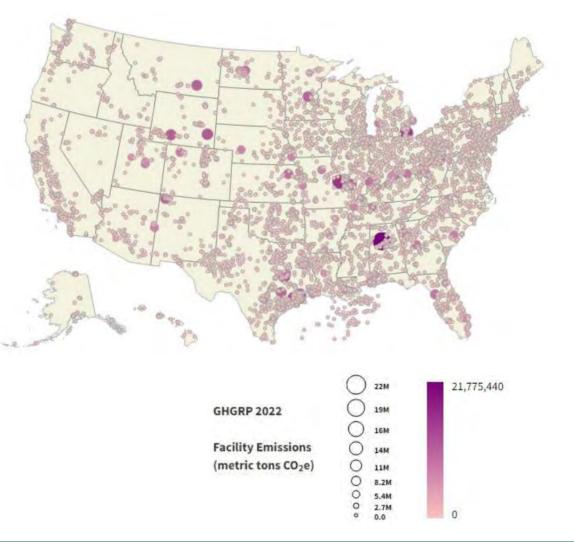
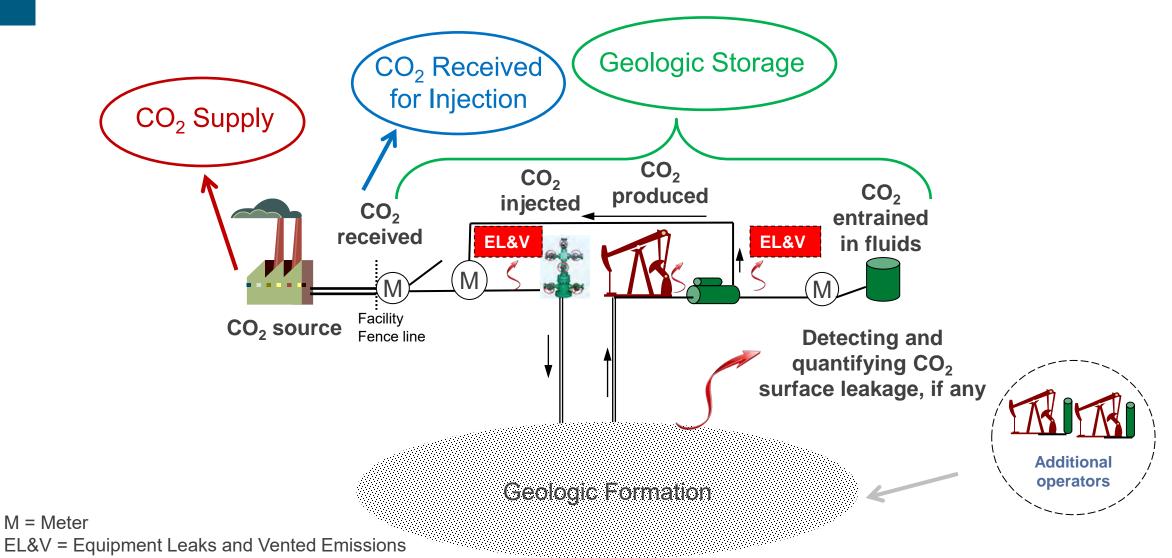
Monitoring, Reporting and Verification of CDR and CCUS: US Experiences and Lessons Learned for National GHG Inventories


Mark de Figueiredo IPCC Expert Meeting on CDR Technologies and CCUS July 2024

CO₂ Supply and End Uses in US


- CCUS activity has increased due to recent changes in the US tax code (45Q)
- CO₂ is supplied to US economy from different sources
 - Captured: industrial sources
 - Fossil sources
 - Biogenic sources
 - Produced: natural sources (CO₂ domes)
- CO₂ has a number of end uses
 - Geologic storage (sequestration)
 - Enhanced oil recovery (EOR)
 - Food and beverage
 - Other*

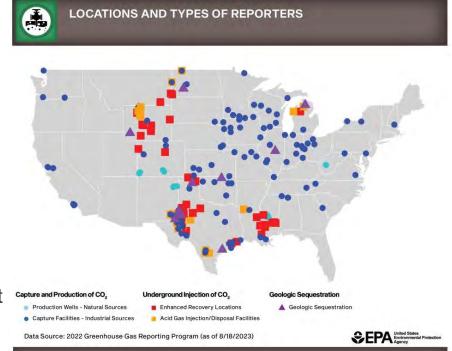
* Includes cleaning and solvent use, fumigants and herbicides, transportation and storage of explosives, firefighting equipment, industrial and municipal water/wastewater treatment, pulp and paper, metal fabrication and greenhouse plant growth



US Facility-Level Data on GHG Emissions

- US Environmental Protection Agency (EPA) GHG Reporting Program (GHGRP) collects GHG data under Clean Air Act authority
- GHGRP collects, verifies and publishes detailed annual GHG data from over 8,000 US facilities and suppliers across 41 industrial source categories
- This data supports and improves the Inventory of US GHG Emissions and Sinks, supports policy development, and informs industry, state and local governments, the research community, and the public
- GHGRP includes coverage of CCS
- Methodologies used in the GHGRP are consistent with 2006 IPCC Guidelines, Tier 3 methods

CCS in US GHG Reporting Program (GHGRP)



Geologic Storage (GHGRP Subpart RR)

- Provides monitoring and reporting mechanisms to quantify CO₂ storage and to identify and quantify potential leakage, if any
- Requirements include:
 - Report information on the mass of CO₂ received for injection
 - Develop and implement EPA-approved monitoring MRV plan
 - Report mass of CO₂ stored using a mass balance approach
 - Report annual monitoring activities
- MRV plan process is consistent with requirements outlined in 2006 IPCC Guidelines
- Elements of MRV plan
 - Delineation of monitoring areas based on the CO₂ plume location
 - Identification and evaluation of the potential surface leakage pathways and assessment of likelihood, magnitude, and timing, of surface leakage of CO₂through these pathways
 - Strategy for detecting and quantifying any surface leakage of CO₂ in the event leakage occurs
 - Approach for establishing the expected baselines for monitoring \overline{CO}_2 surface leakage
 - Summary of considerations made to calculate site-specific variables for the mass balance equation
- Over 25 facilities with approved MRV plans

Implementing IPCC Methodology (1)

- Some considerations are potentially unique to the United States
- Determining if the source of the supplied CO₂ is from industrial sources or natural domes
 - IPCC guidelines require assigning reductions to the proper source category
 - Because CO₂ pipelines often transport CO₂ from a mix of sources, it can be difficult to determine the source category of captured and stored CO₂ (e.g., Permian Basin has several geologic storage sites with multiple CO₂ sources connected to the system including natural CO₂ and industrial CO₂ sources)
- Aligning end uses to the IPCC source category used in the Inventory for the industrial source CO₂
 - Once the source of the captured carbon and the end use are identified, the use of the CO₂ must be categorized and aligned with IPCC source categories as best as possible
 - It must be determined if the captured carbon should be removed (or it is already removed) and if so, from which source category
- Confidential business information
 - GHGRP classifies the amount of CO₂ captured by a specific facility as confidential business information and therefore only aggregated data are available for use within the Inventory

Implementing IPCC Methodology (2)

- GHGRP data can be used to allocate CO₂ to its source and quantify CO₂ injection and geologic storage emissions, if any
- Allocate geologically stored CO₂ to the source directly if known based on data from geologic storage source category (GHGRP Subpart RR)
 - If unknown or if multiple sources are listed in geologic storage source category, allocate geologically stored CO₂ across sources based on data from CO₂ supply source category (GHGRP Subpart PP)
- For the most part, even though some facilities vary the source of CO₂, geologic storage can be directly allocated to an Inventory source category
 - For several facilities, geologically stored CO₂ needs to be allocated across natural domes and natural gas processing sources.
- National emissions associated with CO₂ injection and geologic storage can be calculated using data reported to geologic storage source category

Future Data

- In April 2024, several updates were finalized to GHGRP regulations
- New reporting pathway for EOR operators that use ISO 27916:2019 standard to quantify CO₂ stored as a result of their operations (GHGRP Subpart VV)
 - Data could be treated in the Inventory in the same way as data from geologic storage category (GHGRP Subpart RR)
- CO₂ suppliers including capture facilities will be required to report facility identification numbers and annual quantities of CO₂ transferred to geologic storage
- Reporting requirements for direct air capture (DAC) facilities, including amount of CO₂ captured and energy use

Creating Robust, Transparent, and Workable MRV Frameworks for Carbon Dioxide Removal

Area	Key Activities
Develop tools and methods	 FECM: National Lab consortia supporting CDR MRV tool and standards development ARPA-E: Program supporting ocean CDR MRV
Issue best practices for life cycle assessment (LCA)	 FECM: DAC best practices + forthcoming analysis from CDR purchase pilot FECM + Bioenergy Technology Office: Biomass CDR best practices

DOE: United States Department of Energy FECM: DOE Office of Fossil Energy and Carbon Management ARPA-E: DOE Advanced Research Projects Agency for Energy

MRV Technology Commercialization Lab Call

Lead Lab	Key Activities						
Lawrence Livermore National Laboratory	Develop an umbrella carbon dioxide removal MRV framework in collaboration with National Renewable Energy Laboratory, Lawrence Berkeley National Laboratory, and a leading group of five industry partners headed up by CarbonPlan. Lawrence Livermore National Laboratory will also play a coordination role for the cohort of carbon dioxide removal MRV projects.						
Pacific Northwest National Laboratory	Develop an adaptive MRV framework for mineralization-based carbon dioxide removal pathways in collaboration with Lawrence Livermore National Laboratory and 22 industry partners. The team will work closely with communities, especially often disadvantaged mining towns and coastal communities that would be prime candidates for mineralization-based carbon dioxide removal, to understand how MRV can be used to address their needs and concerns.						
National Renewable Energy Laboratory	Develop and validate best practices for cement and concrete carbon dioxide removal pathways in collaboration with Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, and nine industry partners. The cement and concrete industries present a nearly unparalleled opportunity for direct air capture coupled with permanent sequestration and provides a value-added end use for captured carbon dioxide.						
National Renewable Energy Laboratory	Address critical MRV challenges for biomass carbon removal and storage pathways in collaboration with Lawrence Livermore National Laboratory and eight industry partners. The project seeks to address a scientific knowledge gap regarding the durability of various bio-derived products and a lack of best practices and protocols needed.						

CDR Purchase Pilot Prize

- CDR Purchase Pilot Prize is a three-phase competition that awards innovative technology developers
- Technology areas
 - Direct air capture with storage
 - Biomass with carbon removal and storage
 - Enhanced rock weathering and mineralization
 - Planned or managed carbon sinks
- 24 semi-finalists for first phase announced in May 2024
- Demonstration of rigorous MRV practices through third-party scientific validation could inform IPCC process

International Context

- Carbon management is a **global challenge** that requires international collaboration
- Several multilateral partnerships are undertaking activities that complement IPCC process
- IPCC process can in turn help **inform** these partnerships

— Key multilateral partnerships ————————————————————————————————————											
Carbon Management Challenge		CLEANENERGY MINISTERIAL Advancing Clean Energy Together		CARBON DIOXIDE REMOVAL MISSION			CETPartnership		Sieaghg		
			Clean Energy Ministerial CCUS Initiative		Mission Innovation CDR				IEAGHG R&D Programme		
•	21 countries and the EU	•	15 countries	•	9 members	•	30 countries	•	37 members		
•	Commitment to scale carbon management capacity to 1 gigatonne per year by 2030	•	Convenes public and private sectors to accelerate carbon management	•	Goal to enable CDR capacity of 100 million tonnes per year by 2030	•	Fosters international carbon management research and innovation	•	Funds carbon management R&D to reduce GHG emissions		

Thank You

