Expert Meeting on Carbon Dioxide Removal Technologies and Carbon Dioxide Capture, Use and Storage

The feasibility of developing new or updated IPCC default methods (and default emission factors) for various emerging technologies

Amit Garg¹

Omkar S Patange²

1-3 July 2024 Vienna, Austria and online

¹Indian Institute of Management Ahmedabad (IIMA) ²International Institute for Applied Systems Analysis (IIASA)

Key considerations for new methods

- Expected Significance (future importance)
- Technological Readiness Level
- Evidence and data: Potential, costs, current implementation
- Feasibility of higher tier methods
- Globally representative
- Reportable in IPCC Emissions Factor Database (EFDB)
 - 1. Robust
 - 2. Applicable
 - 3. Documented

Emerging CDR Technologies

Technological readiness and expected significance: Mitigation pathways in AR6 focused on AR, BECCS and DACCS

Source: Authors' illustration using data from Technical Summary AR6 WGIII report, trl: technology readiness level; tech: CDR technology

Legend: AR: Afforestation/ reforestation; BC: Biochar; BECCS: Bioenergy with carbon capture and storage; DACCS: Direct Air carbon capture and storage; SCS: Soil Carbon Sequestration

Emerging CDR Technologies

Current Implementation of emerging CDR technologies

Amount of carbon dioxide removal (CDR) is the sum of conventional CDR (2013-2022) and novel CDR (2023)

Source: Smith et al (eds.) The State of Carbon Dioxide Removal 2024 - 2nd Edition. DOI 10.17605/OSF.IO/F85QJ (2024)

- Around 99.9% of the current implementation of CDRs is through conventional routes like afforestation/reforestation
- Emerging CDR technologies like BECCS, DACCS and Enhanced Rock Weathering are growing more rapidly that conventional methods
- Only 0.6 out of the 1.3 million tonnes of CO₂ from emerging technologies was stored in geological reserves

BECCS – case of biomass cofiring in coal power plants

Figure Source: Yang, B., Wei, Y. M., Liu, L. C., Hou, Y. B., Zhang, K., Yang, L., & Feng, Y. (2021). Life cycle cost assessment of biomass cofiring power plants with CO2 capture and storage considering multiple incentives. *Energy Economics*, *96*, 105173.

- How to measure CDR from biomass co-fired coal power plant? Type of CO₂ capture? post-, pre- or oxy-fuel combustion?
- Fugitive emissions from pellet production and biomass to liquid and biomass to gas conversion (Appendix 4A.2 and 4A.3 in the 2019 Refinement to the 2006 Guidelines)
- Tier 1 EF from biomass combustion
- Tier 3: modelling methodology (plant level)
- Sources of biomass (tier 2/3) managed forests, energy crops, waste and residues, 1st versus 2nd generation biomass
- Carbon neutrality of biomass
- Where and how to classify? Energy, AFOLU?

BECCU/S – case of biomethane production

Schematic diagram for biogas with CCU and CCS

- Methods for CCU and CCS in biogas production systems
- 2006 and 2019 refinement guidelines already have some methods for bioenergy production
- Further expansion and mainstreaming of biomass to fuel conversion annexures from 2019 refinement to 2006 guidelines
- More representative emission factors measurement is required

BECCUS – case of bioenergy-CO2-EOR system

Figure Source: Patange, O. S., Garg, A., & Jayaswal, S. (2022). An integrated bottom-up optimization to investigate the role of BECCS in transitioning towards a net-zero energy system: A case study from Gujarat, India. *Energy*, *255*, 124508.

- Example of a net-zero energy system with CO₂ capture, utilization and storage connected to multiple sectors
- Methods and measurement guidelines for CCUS based netzero systems
- How to report emissions and CDR across Energy, IPPU, AFOLU and Waste sectors?

Soil Carbon Sequestration (SCS)

• Mature technology, methodological and measurement guidelines available

- Forestry and agriculture soil organic carbon emission factor
- Representativeness of the emission factors
- Uncertainty assessment would be important
- Measurement in different types of soils

Other anthropogenic mineral and biological CDRs

- Afforestation/Reforestation, agroforestry, improved forestry management – mature technologies/practices, mature guidelines
- Biochar mature technology, possibility of developing default removal factors?
- Blue carbon management nascent technology, low potential and expected significance, candidate for tier 3?
- Enhanced Weathering nascent technology, candidate for tier 3, draw reference from biochar?
- Ocean Alkalization nascent technology, candidate for tier 3?

Direct Air Capture (DAC) – case of net-zero aviation fuels

DAC with CCS

Figure Source: Becattini, V., Gabrielli, P., & Mazzotti, M. (2021). Role of carbon capture, storage, and utilization to enable a net-zero-CO2-emissions aviation sector. *Industrial & Engineering Chemistry Research*, *60*(18), 6848-6862.

- Two prevalent technologies Emission factors measurement
- What EF to measure?
 - EFDB criteria
- Where to report?
- How to classify? Energy, IPPU?
- Few plants exist in the world, applicability? – tier 3 approach?

Direct Air Capture (DAC) – case of net-zero aviation fuels

DAC with CCU

Figure Source: Becattini, V., Gabrielli, P., & Mazzotti, M. (2021). Role of carbon capture, storage, and utilization to enable a net-zero-CO2-emissions aviation sector. *Industrial & Engineering Chemistry Research*, 60(18), 6848-6862.

• What to measure?

- Leakage factor,
- Energy penalty of conversion,
- Efficiency of conversion
- Byproducts
- Documentation of FT synthesis and hydrogen
- Measurement of Emission factors for Green Hydrogen production (share of renewables versus batteries)
- Country representativeness?

amitgarg@iima.ac.in patange@iiasa.ac.at