

IPCC Workshop on the Inventory Software Energy Session Preview

Baku, Azerbaijan - 5 September 2024

André Amaro and Lucy Garland

IPCC TFI-TSU

Goals for our session:

- I. Get familiar with the IPCC Inventory Software Environment
 - Navigate the software interface and worksheets
 - Enter activity data and select emissions factors
 - Use the Fuel-Manager tool
 - Use the Reference Approach tool
 - Create a New Inventory Year

II. Be able to estimate emissions using the IPCC Inventory Software

Apply default IPCC factors (Tier 1)

Apply country/sector-specific factors (Tier 2)

Apply plant-specific factors (Tier 3)

Produce the Reference Approach

Way of work for Energy session:

Morning Session:

We will be working together from **09:00 to 12:30**, 3-hour of **hands-on activities**.

Step-by-step Approach:

Guided exercises to build **familiarity** and **confidence** with the IPCC Inventory Software.

Increasing Complexity:

Start with **basic tasks** and gradually move to more **complex exercises**.

Hands-On Practice:

Download the Excel dataset with input data from the EDG site to your computer before the session.

OVERVIEW:

In this exercise, you'll **enter activity data** aggregated at the national level into the IPCC Inventory Software. We will explore how to **apply both Tier 1 and Tier 2 approaches** to estimate GHG emissions.

FOCUS:

- Start by using default parameters for a quick estimation.
- Then, update the software with **sector-specific data** to **refine the estimates** using the Tier 2 method.

GOAL

• This exercise will help you understand how to input data and select appropriate emission factors based on available information.

OVERVIEW:

This exercise **introduces the Fuel Manager tool**, where you will learn to enter a **custom fuel** that has **country-specific properties**, such as carbon content and net calorific value.

FOCUS:

- Enter specific fuels consumed at the plant level.
- Use plant-specific parameters like net calorific values, carbon content, and oxidation factors.

GOAL:

• By the end of this exercise, you'll be **familiar with managing custom fuel** entries and applying detailed, **plant-specific data** for more accurate emission estimates.

Exercise 3 – Reference Approach

Overview:

In this exercise, you will attempt to replicate the **comparative analysis** between the **Reference and Sectoral Approaches**. The Sectoral Approach will use the results obtained in Exercises 1 and 2, while the Reference Approach will be based on national energy supply statistics.

FOCUS:

- Input national energy supply data into the software to calculate the Reference Approach.
- Compare the results from the Reference Approach with those obtained from the Sectoral Approach.

GOAL:

 This exercise will enhance your understanding of how different approaches can be used to validate and cross-check GHG emission estimates.

OVERVIEW:

In this final exercise, you will **create a new inventory year** in the IPCC Inventory Software. Starting with data from 2015, your task will be **to update the relevant information to reflect the year 2022.**

FOCUS:

- Learn how to copy and update data from a previous year to create a new inventory year.
- Apply the same methodologies used in earlier exercises to estimate GHG emissions for 2022.

GOAL:

 This exercise will reinforce your ability to manage and update inventories, ensuring that you can replicate and adjust GHG estimates as new data becomes available.

THANK YOU FOR YOUR ATTENTION

STAY IN TOUCH

ipcc-nggip.iges.or.jp

mggip-tsu@iges.or.jp

STAY CONNECTED

X ipcc_ch

ipcc

@ipcc

ipcc